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Ergodicity, geometric ergodicity and mixing
conditions for nonparametric ARMA processes*
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Abstract. In this paper, we introduce nonparametricarma models which provide an
alternative to nonparametric autoregressive models, when there is a large dependence to
the past observations. Conditions for ergodicity and geometric ergodicity are given when
both the nonparametric autoregressive part and the moving average structure depend only
one step behind. Also, a Fisher–consistent procedure is provided and its performance is
studied through a simulated example.
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1 Introduction

Autoregressive models with moving average errors (arma models) have been
extensively used in applications when dealing with time series data. They corre-
spond to linear autoregressive models where the errors are described by a moving
average process. More precisely, anarma (p, q) model, is a stationary process
{Xt : t ≥ 1} verifying

Xt =
p∑

j=1

φjXt−j + εt , (1)

whereεt = ut −
q∑

j=1

θjut−j with ut i.i.d. random variables andut independent

of {Xt−j , j ≥ 1}, E|ut | < ∞.
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It is well known that, quite often,arma models have several advantages with
respect to autoregressive models, when there is a large dependence to the past
observations. As pointed by Granger and Newbold (1986) “If some economic
variable is in equilibrium but is moved from the equilibrium position by a series
of buffering effects from unpredictable events either from within the economy,
such as strikes, or from outside, such as periods of exceptional weather, and the
system is such that the effects of such events are not inmediately assimilated, then
a moving average model will arise”. In such situations,arma models allow to fit
several real data sets by using less parameters by introducing the moving average
structure for the errorsεt . This is related to the “principle of parsimony” which
suggests that parameters should be introduced only when they are needed.

On the other hand, the assumption of a linear autoregression function is quite
restrictive. As pointed by Bosq (1996) a nonparametric predictor is “in general
more efficient and more flexible than the predictor based on Box and Jenkins
method and nearly equivalent if the underlying model is truly linear” (see also
Carbon and Delecroix (1993) for a comparative study on 17 series).

However, the nonparametric autoregression modelXt = m (Xt ) + ut , where
Xt = (Xt−1, . . . , Xt−r ), faces the problem known as the “curse of dimensional-
ity”. In order to solve the problem of empty neighborhoods, an approach can be
to introduce moving average errors which reduce the dependence to the past in
Xt obtaining thus a smaller dimensionr .

Putting things together, following a semiparametric approach, we introduce
nonparametricarma models which allow the autoregressive part of the model
to be nonparametric, while the moving average part remains linear.

By analogy to (1), one can consider a stationary process{Xt : t ≥ 1} verifying

Xt = g
(
Xt−1, . . . , Xt−p

) + εt , (2)

whereεt = ut −
q∑

j=1

θjut−j with ut i.i.d. random variables andut independent of

{Xt−j , j ≥ 1}, E|ut | < ∞. From now on, we will refer to a stochastic process
verifying (2) as a nonparametricarma (p, q) model and it will be denoted by
narma (p, q) model.

In particular, thenarma (1,1) is a stationary process{Xt : t ≥ 1} verifying

Xt = g(Xt−1) + εt , (3)

with εt = ut − θ0ut−1; ut independent and identically distributed andut inde-
pendent of{Xt−j , j ≥ 1}, E|ut | < ∞.
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In this paper, we give conditions for ergodicity and geometric ergodicity of
thenarma (1,1) model. From this last statement, under Harris recurrence and
aperiodicity of the chain, it follows that the process is also a geometricα-mixing
process. As is well known, mixing conditions have shown to be useful to de-
rive asymptotic properties of kernel estimates for nonparametric autoregression
models (see for instance, Bosq (1996) and the references therein).

In Section 2 we prove under mild conditions the ergodicity ofnarma (1,1)
processes, while in Section 3 we give conditions for geometric ergodicity and
mixing properties ofnarma (1,1) processes. Finally, in Section 4 we propose
Fisher–consistent estimates of the autoregression functiong and the moving
average parameterθ , and an iterative procedure to calculate them. We also
illustrate its behaviour through two simulated examples.

We now introduce some notation. Letf be the density ofut ; andfu1|X1=x

the density ofut | Xt = x with respect to the Lebesgue measureλ. Then,
εt | Xt−1 = x has a densityfx given by

fx(y) =
∫

f (z)fu1|X1=x((z − y)/θ0)dz .

The transition density, denoted byp(x, y), i.e., the density ofXt |Xt−1 = x, will
bep(x, y) = fx(y − g(x)). Its transition law will be denoted byP(x, ·) while
P n(x, ·) stands for the law ofXt |Xt−n = x.

In order to prove ergodicity and geometric ergodicity we will use similar
techniques to those of Mokkadem (1987).

2 Ergodicity of narma(1,1) Processes

Assume that:

H1. g is bounded over compact sets.

H2. inf
x∈K1u∈K2

fx(u) > b(K1, K2) > 0 for all compact setsK1 andK2.

H3. There existM > 0 andη > E (|u1|) such that

(i) |g(x)| + |θ0|r+(x) ≤ |x| − η for |x| > M

(ii) sup
|x|≤M

r+(x) < ∞.

with r+(x) = E(|u1| | X1 = x).

Note thatH1 andH3 (ii) entail that sup
|x|≤M

[|g(x)| + |θ0|r+(x)
]

< ∞.
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Remark 2.1. It is easy to see that similar arguments to those used in Propo-
sition 1 of Mokkaden (1987) (using the ergodicity criterium given by Tweedie
(1975)) reduce the problem of proving ergodicity to show the following condi-
tions:

A1. For all Borelian setA with λ(A) �= 0 and any compact setK ⊂ R, there
exists a positive integern0 such that

inf
x∈K

P n0(x, A) > 0 .

A2. There existM > 0, η > 0 ands > 0 such that

E|g(x) + εx,t |s ≤ |x|s − η for |x| > M and sup
|x|≤M

E|g(x) + εx,t |s < ∞,

whereεx,t is a random variable with distribution given by the law of
εt |Xt−1 = x;

while aperiodicity is implied by condition

A3. There existsn1 ∈ N such thatP n1(x, ·) andλ are equivalent for allx.

Proposition 2.1. UnderH1 andH2, conditionsA1 andA3 are fulfilled.

Proof. a) We begin by showing thatA1 holds. LetA be a Borelian set such
thatλ(A) > 0 andK a compact set. Since there exists a bounded setB ⊂ A

such thatλ(B) > 0 we have:

P(x, A) =
∫

A

p(x, y)dy ≥
∫

B

fx(y − g(x))dy =
∫

B−g(x)

fx(u)du .

Let C =
⋃
x∈K

(B − g(x)) ⊂
⋃
x∈K

(B − g(x)) = K∗, K∗ is a compact set sinceg

is bounded onK. Therefore

P(x, A) ≥ b(K, K∗) λ(B − g(x)) = b(K, K∗)λ(B) > 0

andA1 holds withn0 = 1.
b) We shall now see thatA3 holds forn1 = 1. If λ(A) = 0 thenP(x, A) =∫

A

p(x, y)dy = 0 for all x. On the other hand sincefx(u) > 0, if P(x, A) = 0

for all x, we haveλ(A) = 0. �
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Remark 2.2. SinceP n is absolutely continuous with respect toλ, underA1
the chain is strongly irreducible.

Letπ be a sub-invariant measure for{Xt}; in the ergodic case,π is the invariant
probability. As in Lemma 1 of Mokkaden (1987) we have that underH1 andH2
for each compact setK ⊂ R λ(K) > 0 implies 0< π(K) < ∞. Thus, in order
to obtain the ergodicity of the process defined by (1.1) it remains to proveA2.

Proposition 2.2. UnderH1 , H2 andH3 anynarma (1,1) process is ergodic.

Proof. Ergodicity follows from Remark 2.1, using Proposition 2.1 and the fact
thatA2 follows easily fromH3 and the following inequality

E(|g(x) + εx,t |) ≤ |g(x)| + E(|u1|) + |θ0|r+(x) . �

Remark 2.3. As in Mokkaden (1987, Proposition 2)H1 , H2 and the following
condition

C1. There existM > 0 andη > 0 such that

|g(x)| ≤ |x| − η for |x| > M ,

will entail ergodicity if E(εx,t ) = 0. However, this last condition will not be
verified bynarma models in most of the situations. For instance, in the linear
case with zero mean normally distributed errorsE(ut−1 | Xt−1 = x) �= 0 and
thereforeE(εx,t ) �= 0.

3 Geometric Ergodicity and Mixing Properties for narma Processes

We recall the following definition and results:

• A Markov chain{Xt} is geometrically ergodic if there exists 0< ρ < 1
such that‖P n(x, ·)−π‖ = O(ρn) for almost allx(π), where‖ · ‖ stands
for the total variation norm.

• In Nummelin and Tuominen (1982) it is shown that if{Xt} is geometrically
ergodic Harris recurrent and aperiodic then∫

‖P n(x, ·) − π‖π(dx) = O(ρn) . (4)

• Finally in Rosenblatt (1971) it is shown that (4) implies that the process
{Xt} is α-mixing with α(n) = an, for some 0< a < 1 (geometrically
α-mixing process).
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Proposition 3.1. Under H1 , H2 and H3 the chain{Xt} defined by (3) is
Harris-recurrent andπ andλ are equivalent.

Proof. SinceH1 and H2 entail A1 the process{Xt} is strongly-irreducible
(see Tweedie (1976)). On the other hand by Proposition 2.2,H1 , H2 andH3
imply the ergodicity of{Xt} and therefore the conclusion follows from a result
of Tweedie (1976). �

Again as in Mokkaden (1987),A1, A2 and the following condition:

A4. There exists > 0, M > 0 and 0< ρ < 1 such that

E(|g(x) + εx,t |s) ≤ ρ|x|s for |x| > M

sup
|x|≤M

E(|g(x) + εx,t |s) < ∞ ,

implies the geometric ergodicity. Moreoverπ has a moment of orders.

A4 can be derived fromH1 andH4 with

H4. (i) r+(x) is bounded over compact sets.
(ii) |g(x)|+θ0r

+(x) ≤ ρ|x| for |x| > M for someM > 0 and 0< ρ < 1.

Putting all together we have the following result:

Proposition 3.2. UnderH1 , H2 , H3 andH4 anynarma (1,1) process is a
geometricallyα-mixing process.

4 Estimation in narma Processes

Let{Xt : 1 ≤ t ≤ T } be observations of a stationary stochastic process satisfying
the model defined through (3). In this section, we will introduce a family of
estimation procedures through an iterative algorithm and we will prove their
Fisher–consistency. Fisher–consistency is just a first step towards asymptotic
properties.

Denote

r(x) = E(u1 | X1 = x)

h(x) = E(X2 | X1 = x) = g(x) − θ0 r(x) .
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Thus, we have the identities

g(x) = h(x) + θ0r(x)

ut = (1 − θ0B)−1(Xt − g(Xt−1)) = (1 − θ0B)−1εt ,

whereB stands for the backward operator.
Thus, it follows easily thatg(x) minimizes

L1(a) = E
[
(Xt + θ0ut−1 − a)2 |Xt−1 = x

]
andθ0 minimizes

L2(θ) = E
[(

(1 − θB)−1εt

)2
]
.

This suggests to consider the simultaneous system of equations


min
a∈R

E
[
(Xt + θut−1 − a)2 |Xt−1 = x

]
= E

[
(Xt + θut−1 − gθ (x))2 |Xt−1 = x

]
min

θ∈(−1,1)
E

[(
(1 − θB)−1 (Xt − gθ (x))

)2
]

(5)

It is worthwhile noting thatgθ(x) = h(x) + θr(x).

The following proposition shows the Fisher–consistency of the solution of the
system of equations given by (5).

Proposition 4.1. Assume that the stationary model (3) is well identified, i.e.,
u1 �= r(X1) (which holds, for instance, if(ut , Xt) has a joint density). Then, we
have that(θ0, g) is the unique solution of (5).

Proof. Sincegθ(x) = h(x) + θr(x), we have that it will be enough to show
that

min
θ∈(−1,1)

E
[(

(1 − θB)−1 (Xt − h(Xt−1) − θr(Xt−1))
)2

]
= min

θ∈(−1,1)
L(θ) = L(θ0) . (6)

Note that

Xt − h(Xt−1) − θr(Xt−1) = Xt − h(Xt−1) − θ0r (Xt−1) + (θ0 − θ) r (Xt−1)

= Xt − g(Xt−1) + (θ0 − θ) r (Xt−1)

= (1 − θ0B) ut + (θ0 − θ) r (Xt−1)

= (1 − θB) ut + (θ0 − θ)
[−But + r (Xt−1)

]
.
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Then, if we denote byZt = ut−1 − r (Xt−1), we obtain

(1 − θB)−1
[
Xt − h (Xt−1) − θr (Xt−1)

] = ut + (θ − θ0)(1 − θB)−1Zt ,

which implies that

L(θ) = E
(
u2

t

) + (θ − θ0)
2 E

[(
(1 − θB)−1Zt

)2
]
,

sinceut is independent of{Xt−j : j ≥ 1}.
Now, (6) follows easily using thatP (ut − r(Xt) = 0) �= 1 which entails that

E
[(

(1 − θB)−1Zt

)2
]

> 0

and thusL(θ) > L(θ0) for θ �= θ0.

4.1 Iterative procedure

The system of equations (5) suggest the following iterative procedure to estimate
the functiong and the parameterθ .

Given an initial estimate,g(1)(x) of g(x), define the estimators through the
following procedure

i) Define

û
(1)
t = û

(1)
t (θ) = (1 − θB)−1

(
Xt − g(1) (Xt−1)

)
(7)

andθ(1) = arg min
θ∈(−1,1)

L(1)(θ) whereL(1)(θ) = 1

T

T∑
t=1

(
û

(1)
t (θ)

)2
.

ii) Given θ(j), the estimatorg(j+1) is defined as the nonparametric autore-
gression estimate

g(j+1)(x) =
T −1∑
t=1

wtT (x)
(
Xt+1 + θ(j)û

(j)
t (θ (j))

)
, (8)

where the local weightswtT may be taken, for instance, as

wtT (x) =
K

(
x − Xt

hT

)
T −1∑
t=1

K

(
x − Xt

hT

) .
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The kernelK : R → R is a density function with 0 mean and finite
variance and the bandwidthhT satisfieshT → 0, T hT → ∞ asT → ∞.
Define

û
(j+1)
t = û

(j+1)
t (θ) = (1 − θB)−1

(
Xt − g(j+1) (Xt−1)

)
(9)

and
θ(j+1) = arg min

θ∈(−1,1)
L(j+1)(θ)

where

L(j+1)(θ) = 1

T

T∑
t=1

(
û

(j+1)
t (θ)

)2
.

Iterate until convergence. Denotêg andθ̂ the resulting estimates.

Remark 4.1. Forecasting is one the important applications inarma models,
which is typically done, after the parameters have been estimated, by using
“estimated residuals” when moving averages are present. For ournarma (1,1)
model prediction may be done as follows

• For 2≤ τ ≤ t − 1, definêετ = Xτ − ĝ (Xτ−1), wherêg is an estimate of
the autoregression function and̂ετ = 0 otherwise.

• Given θ̂ an estimate of the moving average parameter, let
ûτ = (

1 − θ̂B
)−1

ε̂τ

• Predict the observation at timet asĝ (Xt−1) − θ̂ ût−1

4.2 An example

We will illustrate the iterative procedure through two simulated examples.
We have simulated two series following the model

Xt = g(Xt−1) + ut − θ0ut−1

where the random variablesut ∼ N(0, σ 2) are independent and identically
distributed; andut is independent of{Xt−1, Xt−2, . . . }.

In the first case, referred as a) in Figure 1,g(x) = 0.5x andθ = −0.1 while
in the second oneg(x) = 0.5 min(|x|, 1.345)sg(x) andθ = −0.6. In all cases,
we have used a Gaussian kernel withσ = 0.37037 and a bandwidthhT = 0.5.
For each data set we have three plots:a1) is a plot ofXt againstXt−1; a2) is a
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plot of the seriesXt while in a3) we plot the functiong(x). The sample size is
1000. The next three plots are the corresponding plots for the second model (b1)

to b3)). While the plots ina1) anda2) are very similar to those inb1) andb2) the
true underlyingg functions are different.

Figure 1: Generated data sets.

Figure 2 gives the estimated autoregression function for the first two steps
and the last one. For both models, in the first step, anarma (1,1) model was
fitted to provide the initial estimates of the autoregression function through the
autoregressive fitted parameter. For the linear model a)φ̂ = 0.4999, whileφ̂ =
0.3043 for model b). Thus, anarma fits the autoregression function asg(1) =
0.4999x for the linear model (truearma model), while it fits the autoregression
function asg(1) = 0.3043x in the nonlinear case. As expected in the linear case
the fit is accurate while in the nonlinear case, even the slope at the central part
(0.5) is estimated by 0.3043. The plots given in Figure 2 show the improvement
obtained in the estimation by the nonparametric procedure we have introduced.
Even in the linear case, the smoother does quite well. Table 1 gives the values
of θ(j) for different values ofj .
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Figure 2: Estimates of the autoregression function.

Step 1 2 3 4
Case a) −0.08315 −0.09352 −0.10032 −0.10488
Case b) −0.58908 −0.59867 −0.59739 −0.59619

Step 8 9 10 11
Case a) −0.11237 −0.11301 −0.11343 −0.11372
Case b) −0.59528 −0.59526 −0.59525 −0.59525

Table 1: Estimates for the parameterθ .
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