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Abstract. We review the hydrodynamics and discuss the shock, rarefaction fan and
contact discontinuity at a microscopic level for a one-dimensional totally asymmetric
k-step exclusion process. In particular we define a microscopical object that identifies
the shock in the decreasing case.
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1 Introduction and Notation

To study the so called long range exclusion process, Liggett (1980) introduced
a Feller non conservative approximation of it. A conservative version of this
dynamics, called k-step exclusion process, was investigated in Guiol (1999).
We summarize some of its features. It is described in the following way in
dimension 1.

Letk e N*:={1,2, ...}, X := {0, 1}Z bethestate space, and let { X, } ,cy bea
Markov chain on Z with transition matrix p(., .) and for whichP* (X = x) = 1.
The hypothesis sup,,., > ez P(x,y) < 4oo ensuresthat Ly is an infinitesimal
pregenerator:

Lfm= Y a&y.n[fa™) - fm). (1)
n(x)=Ln(y)=0
where f isacylinder function,

oy—1

ax, y,m) =E* | [ nX), 0y <010, <k
i=1
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istheintensity tomovefromx toy onconfigurationn, oy, = inf {n > 1: X,, = y}
isthefirst (non zero) arrival timeto site y of the chain starting at sitex and n*” is
configuration n where the states of sites x and y were exchanged.

In words if a particle at site x wants to jump it may go to the first empty
site encountered before returning to site x following the chain X, (starting at x)
provided it takes | ess than k attempts; otherwise the movement is cancelled.

By Hille-Yosida's theorem, the closure of L, generates a continuous Markov
semi-group Si () on C(X), the set of continuous functions on X, which corre-
sponds to the k-step exclusion process (17,),-0. A constructive way to define the
process is to adapt the graphical construction due to Harris (1972); we present
this construction in section 2. When k = 1, (n,),>0 reduces to the well-known
simple exclusion process (see Liggett (1985) and Liggett (1999) for a complete
study of thelatter). The k-step exclusion shares some of the properties of smple
exclusion: For instance, it is an attractive process.

Let 7, —resp. S— betheset of invariant measuresfor (1;),>o— resp. of trans-
lation invariant measures on X. If p(.,.) istranglation invariant and irreducible
then (Guiol (1999)):

(gkms)e = {Vot e [Ov l]},

where the index e mean extremal and v, is the Bernoulli product measure with
constant density «, i.e., the measure with marginal

ve{neX nx) =1} = a.

In Bahadoran et al. (2002), a constructive method, relying on the explicit con-
struction of Riemann solutions without assuming convexity of the flux function,
lead to Euler hydrodynamics of one-dimensional attractive processes with irre-
ducible jumps and product invariant measures. The k-step exclusion processisa
natural illustration, sinceits flux function, neither concave nor convex, givesrise
to non-standard Riemann solutions for the hydrodynamics: They present stable
increasing and decreasing shocks, rarefaction fans and contact discontinuities.

Inthispaper, weconsider the one-dimensional totally asymmetric k-step exclu-
sion process, for which weinvestigate anal ogues of these macroscopic structures
at amicroscopic level: |sthere a microscopic object corresponding to a shock,
a rarefaction fan or a contact discontinuity? (for the study of the microscopic
structure of shock for simple exclusion, look at Liggett (1999)). We give some
answers to this question. Our techniques rely on couplings and particular inter-
pretations of the process. Namely, we introduce an auxiliary process, the stack
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process (see section 3.1); and since we are in the totally asymmetric case the
process has a

Pushing interpretation 1. When a patrticle at some sikeis able to jump to an
empty sitey > x (observe thaty — x < k and all the sites betweenand y

are occupied), on the original system we interpret the dynamics as follows. All
particles between site (included) andy (excluded) are pushed of one unit to
the right, preserving the relative order of the particles.

In section 2 we present the graphical construction for the one-dimensional
k-step exclusion process and review its hydrodynamicsin thetotally asymmetric
case. Sections 3 to 6 analyse the microscopic counterparts to hydrodynamics
dictated by the flux function under Riemann initial condition. More precisely,
in section 3, for the convex part of the convex envel ope of the flux function, we
describe a microscopic object identifying the shock when initialy there is no
particle at the right of the origin. For this case we perform some simulations
confirming the idea that the rightmost particle identifies the shock. In section 4
for the the concave part of the convex envel ope of the flux function welook at the
shock when starting from the initial condition where all sites to the right of the
origin are occupied. In section 5 we study the rarefaction fan, and in section 6
the contact discontinuity.

2 Preliminaries

In the first part of this section we present the graphical construction for the
k-step exclusion process in dimension one associated to a finite range Markov
chain. The graphical representation is essential to understand how to simulate
the process. In the second part we describe the results of Bahadoran et al. (2002)
for the totally asymmetric k-step exclusion process.

2.1 Graphical Construction of the k-step exclusion process
This construction is an adaptation of those given by Ferrari (1992) for the sim-

(2000)). It isbased on agraphical construction for the (finite) long range exclu-
sion process (Ferrari, private communication It relies on coupling.

Recdll that p(., .) isthe transition matrix of a Markov chain with finite range
onZ. Let M be atwo-dimensional Poisson processon R x R* with rate 1. For
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al x € Z define afamily of partitions (/;*)1<; < of theinterval [0, 1) such that

L= {1” = [Z p(x, 2), Zp(x,z))] ;

yEZL <y =<y

and for any 1 < i < k partition ;' is a refining of partition /;* ; in such a
way that each element 7*1Yi-1 of I* | (withlength p(x, y1) ... p(yi—2, yi-1))
is partitioned into intervals (1Y), .7 with length p(x, y1) ... p(yi—1, ¥i)-
Observethat inthisway if x € [*%Y thenx € I*~Yifordl 1 < j <k.
Now define afamily of random times (t;'),en+ xez Such that for each x € Z

7y ==inf{t >0 : M([x,x+ 1) x[O,¢]) > O},
and
T, =inf{t > 7, ; « M([x,x+1) x(r;_4,t]) > 0}.

At each time z7 we draw from x a family of k arrows (a3, ..., a;") with
decreasing order of priority according to the following rule; if s := inf{u > 0
M([x,x +u) x {r;}) > 0} e %Y then the sequence of arrows with
decreasing priority is (a;" :=x — y1,ay" ;= x = ya,...,a;" == x — W).

We denote by P the distribution of the above configurations of arrows, we
call « such arandom graph; P is only determined by the Poisson process M.
This construction enables to compute the time evolution of our process by the
following argument due to Harris (1972): there exists atime g > 0 such that
P-a.s, al the connected components from time 0 to 7y in the random graph are
finite. Thisresult is adirect adaptation of Theorem 2.1. in Durrett (1995) (see
also Seppéldinen (2000)).

Thuswecan start fromaninitia configurationn € X at time0and we construct
(1:)o<t<1, 8Safunction of n and «v. In each finite component of the random graph
welabel the sequences of (k) arrowsin their order of appearance (intime). If the
first sequence of arrows starts at a site, say x, where a particle stands, then we
select the first arrow in that sequence that leads to a vacant site, say y, and the
particle jumps to site y; if there is no such arrow the jump is cancelled and the
particle stays at x (site x isconsidered vacant during the jump). Then we have a
second sequence of arrows and we repeat this procedure, until the last sequence
of arrows encountered in the component.

In thisway we have constructed the process up to time zo. We iterate the same
argument to construct the process up to time 2rp and soon.. . .
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2.2 Hydrodynamicsin the Riemann case

In this section, we particularize Theorem 2.1 of Bahadoran et al. (2002) for
the totally asymmetric k-step exclusion process. The limiting density profile at
time ¢ isthe (weak) entropy solution of equation

du  0Gr(u) 0

u(x, 0) = u(x),

where G, represents the flux of particles:
k
Ge(w) =Y jul (1 —u).
j=1

We claim that for any k£ > 2, G admitsaunique inflection point @ := a(k) in
(0, 1) and Gy, is convex on (0, @) and concave on (a, 1). Indeed:

Lemma 4.1 of Bahadoran et al. (2002) states that G, () has at most one
inflection point in (0, co). To seethat thisinflection point existsand isin (0, 1)
observe that G (u) isapolynomia inu, G¢(0) = G¢(1) =0,G;(0) =1>0
and G}(0) = 2 > 0. This means that G is strictly convex and increasing in
some neighborhood of 0. Then the only possibility, starting from u = 0 with
value 0, to reach the same value again at u = 1 isthe existence of an inflection
point in between. This aso shows the second part of the claim.

Let H,(u) = G, (u) denote the characteristic speed and let

_ G = Gu(p)

PR 3)

Sk[A; pl

be the shock speed.

Let i 1 and hy > bethe inverses of H; respectively restricted to (—oo, a) and
to (a, +00). For u < a we consider the upper convex envelope (G;)¢ of G, on
(u, +00), and we denote by u* := u*(k) the first point where (G,)¢ coincides
with G;. Inthesameway whenu > a, u, := u. (k) denotesthefirst point where
the lower convex envelope (Gy). of G, on (—oo, 1) coincideswith G.

For the k-step exclusion process, k > 2, the result of Bahadoran et al. (2002)
reducesto

Theorem 1. Letv € R, A, p # a, andu,_, be the product measure éhwith
densities\ for x < 0andp for x > 0, i.e., the product measure with marginals

A, x <O

m,p{nexin(X)=l}={ o x>0,

Bull Braz Math Soc, Vol. 33, N. 3, 2002



324 M.V. FREIRE, H. GUIOL, K. RAVISHANKAR AND E. SAADA

Then
tILTO Mo, p Tlor) Sk () = Vu,1)

at every continuity point of(., 1), wheret|,, is the spatial shift by vz |, the
integer part ofvz, andv,, 1) denotes the Bernoulli product measure with density
u(v, 1) defined by:

Case 1.1 < p < a: continuous solution, with a rarefaction fan

A, x < Hy(L);
u(x,) =3 hi1(x), Hi(X) <x < Hi(p);
P, Hk(P) < X.

Case 2.p < A < p* (p < a): entropy shock

A,ox = SlA; pls
ulx,l) =
. D) { P, x> S[x; pl.
Case 3.p < p* < A (p < a): contact discontinuity
A, x < H (W);
u(x,l) =1 h20x), H() <x < Hi(p%);
P, Hi(p™) < x.

Case 4.a < p < A: continuous solution, with a rarefaction fan

A, x < Hy(L);
ux,l) =1 h2(x), HQ) <x < Hi(p);
P, Hk(p) < X.

Case 5.0 > A > p, (p > a): entropy shock

A, x = 8I[A; ol
ulx,1l) =
. D { P, x> S[a; pl.
Case 6.0 > p, > A (p > a): contact discontinuity
A, x < H (L);
u(x,1)y =9 hea(x), Hi(A) <x < Hi(ps);
O, Hk(p*) < X.

In particular when k = 2, theflux function reads G (1) = u + u? — 2u® and has
oneinflection point a = 1/6. The characteristic speed is Ho(u) = 1+ 2u — 6u?
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Figure 1. Hydrodynamic behavior of the 2-step exclusion with Riemann initial
conditions, graph of the exact solution u(x /¢, 1) for different values of A and p.

and the shock speed reads Sy[A; p] = 14+ (A + p) — 2(A% + Ap + p?). Findly
hz1(x) = (1/6)(1 — v/7 — 6x), hp2(x) = (1/6)(1 + /7 — 6x) on (=00, 7/6)
andu* = u, = (1— 2u)/4.

Figure 1 showsthe six possible behaviors of the (self-similar) solution u (v, 1)
for the 2-step exclusion process. Cases 1 and 2 present respectively ararefaction
fan with increasing initial condition and a preserved decreasing shock. These
situations as well as cases 3 and 6 cannot occur for simple exclusion. Observe
asothat p > 1/2impliesp, < 0, whichleadsonly to cases4 and 5, and excludes

case 6 (going back to a simple exclusion behavior).

3 Shock in the convex part of the flux

We consider here Case 2 of Theorem 1 with aright density O, i.e., a decreasing
entropy shock: uo(x) = Al <qy, SOthat p = 0 < 1 < p*. We take the Pushing
interpretation 1 of the dynamics.
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3.1 The Stack Process

We introduce an auxiliary process to k-step exclusion, called the stack process.
Let n € {0, 1}* be agiven configuration of the k-step exclusion process. To it
we associate a stack configuratiorf € NZ in the following way: We label the
holesin n, thefirst holeto theleft of (or on) the originislabeled O-th hole, others
getting the natural order. Then £(¢), the height of the ¢-th stack, denotes the
number of particlesin n between the ¢-th and the (¢ + 1)-st hole.

The k-step exclusion dynamics on (7,),>o induces the following dynamics on
the stack process (&,),-0. Associate with each stack, say the ¢-th one, a Poisson
process of rate g(¢) := k A £(£). When its clock rings, with a probability
(1/8(£))Li50)=0) thetopmost j € {1,..., g(£)} particles on the ¢-th stack are
transferred to the bottom of the (¢ + 1)-st stack.

To study Case 2 of Theorem 1, we consider a k-step exclusion with two types
of particles: Particles n, of initial distribution 1, o, are first class particles, and
particles »’, of initial distribution 1o, are second class particles. 1t means
that particles n evolve as if they were alone in the system (they “do not see”
particlesn’): Wesummarizeinthefollowing thetwo possibleclassesof situations
where afirst class particle, (the leftmost) denoted by 1, ends its jump on a site
occupied by a second class particle, denoted by 2. An empty site is denoted by
0, x denotes 1 or 2, and & denotes 0, 1 or 2 (the total number of figured sites, in
each case, isk + 1).

11 12% % > 21 A1% %

Thestack process (&;),>0 will beassociatedto (1, +1;),>0. Thereforeitsinitial
distribution is product geometric with average height A /(1 — 1), and isinvariant
for the evolution of stacks. We will say that a stack is a first class stack if itis
either empty or contains only first class particles; otherwiseit is called a second
class stack.

We observethat the stacksto theleft of the origin areand remain at equilibrium
with a product geometric distribution with parameter A. Let N; be their flux
throughtheoriginuptotimer. Observethat thisistheflux crossing atagged hole
inthe k-step exclusion process. Thefollowing are straightforward consequences
of results in Ferrari (1986), Ferrari (1996). For the tagged hole in a totaly
asymmetric k-step exclusion process, or equivalently tagged particle Y(¢) in
a totally asymmetric (in the opposite direction) discrete k-range Hammersley
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process (¢;),>o0 (see Ferrari (1996) for an account on the discrete Hammersley
process; its k-range version restricts the size of the jJumps up to & sites), we have

L (&, Y(@®))=0 and (/)i=0 = (tyn) &) =0 @€ Markov processes.

2. v, isinvariant and trandation invariant for the process (this is Guiol
(1999)).

Thusv), isinvariant for (¢/),>0 Which saysthat the tagged hole sees equilibrium.
Now using the ergodicity of the flux through the origin we obtain,

k
L J
tﬂrJrnoo t Zl )L as. (4)

We denote by v, thevelocity of the shock (cf. (3)) Sk[4; O] = Gr(A)/A. Let X,
and S, be the number of first class and second class stacks respectivelp v, ¢
(i.e,intheregion {0, 1,2, ..., |vs]}). Then

Theorem 2.

X
lim =L = v, in probability.

t—>+o0o f

Proof. Wedenoteby M, thetotal number of particlesinthestacksin [0, [v,z]].
Since the number of particles in the stacks are independent geometric random
variables

tll—lrpoo vst ]_ — A as. ®)
Let Y, bethe position (in the n process) of the topmost particle on the right-most
occupied stack in [0, vsz]. M, + |vst] gives the number of holes and particles
in the stacks in the region [0, v,¢]. Since the bottom of O-th stack £(0) isat a
distance given by a geometric random variable from the origin at time zero, and
the hole in the n process corresponding to the bottom of the 0-th stack moves
by —N, intimet we have

Y, =M, + |vst]) — N, — G,

where G is ageometric random variable of parameter A. Since

A Gk()»)
Vg = 2%
T Z
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we have by (4) and (5)
im M =N _gas
t—>—+00 t
which implies
.Y
t_llr+noo — = vs aS. (6)

Recadll that S, isthe number of second class stacksin [0, v,¢]. Theresult would
follow if we can prove that S, /¢ — 0 in probability. First we observe that the
stacks in [0, vyt] to the right of the rightmost occupied stack (if there are any)
are all first class stacks since they are al empty stacks. Since S; is bounded by
the number of second class particlesin [0, v,¢], it isbounded by Z,, the number
of second class particles (in the  process) on or to the left of Y,. By (6) for al

§>0
Y, )
lim P(—l>vs+—)=0.
—+00 t 3

Let Z, = ZX(8) + Z2(5) where Z1(8) (Z?(8)) is the number of second class
particlesin Z N [(vy — §/3)¢, Y;] (Z N (—o0, (vy — 8/3)t)). Thisinturnimplies

1
lim P(Z’t((s) - 2_5> —o

t—+00 3

From the hydrodynamic limit we know that the empirical density of second
classparticlestotheleft of (v;—8/3)t (inthen process) goesto zeroin probability

ast — oo. Thisgivesus
Z20) §
lim P( ’()>—)=O
t——+00 t 3

thus
lim P (é > 5) =0
t—400 t
proving that S;/r — 0in probability. g

3.2 A lower bound for the speed of therightmost particle

Distribute particles according to u; o. Let W, be the position of the rightmost
particle, thatis W, = sup{x € Z : n,(x) = 1}.
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Corallary 3.

lim P(E > vs) =1
t—+400 t
Proof. Suppose there existse > 0 and § > 0 such that for any T > 0 there

existst > T such that
W,
P(U‘Y—Tt >8) > &.

Let Y, beasbefore, the position of thetopmost particlein the rightmost occupied
stack before v,¢. From (6) there exists Ty such that if ¢ > T

Thereforefort > T v Ty

8 8 8 €
P<YI—W, > §t> > P(YZ—W, > Et’ Y, —vst| < Et) > >
Let usdenoteby ¢! and & respectively the rightmost occupied stack in [0, v,]
and the stack containing the particlelocated at W, in the n process, which means
that in this proof we call a stack what we may find between two holes (e.g. we
consider either empty or occupied stacks). We want to show that with positive
probability a positive fraction of the occupied stacksin [0, v ] lies between &Y
and &Y. Since & isat or behind & this would imply that a positive fraction
of stacksin [0, v,z] are second class stacks with positive probability leading to
a contradiction of Theorem 2. Thisis equivaent to saying that the number R,
of nonempty blocks of particles between Y, and W, is greater than 8¢ for some
constant 8 > O with positive probability. Let D;, 0 < j < |ust], bethe number
of nonempty blocks of particlesin theinterval (j, j + é¢/2). A nonempty block
of particlesiscounted asbeingin (j, j + 8¢/2) if and only if the holes at the | eft
and right ends of the block arein [, | j + 8¢/2]]. Then:

O<j<lvst] 7/

) ) .
P(Y, - W, > Et, 1Y, — v5t] < Et, min D' > /St)

) 1)
§P<Yt_Wt>§t9 |Yt_Ust|§§t, Rt>,3t>- (7)
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Divide [0, v;t 4 6¢/2] into C intervals of size §t/4. Let B, 1 <i < C be
the number of nonempty blocks of particles in the i-th interval. Since for al
0<j < lustl, D;. containsa B; for some 1 < i < C,wehavefor any g > O:

D' B!
Pl mn — >p8]>P( mn —/ > 28
0<j<lvst] 8t/2 1<i<C §t/4

By law of large numbersfor independent geometric random variables (cf. (5)),
and because there is a hole before every block of particles, there exists M =
M(e/(4C)) such that for r > M,

Bl A A - €
Pl—/— > Z(—+1 >1— —
s8t/4 2\1-—A 4c
which implies

DY oa@-»n) . B' A(l-») £
P min > > P min > >1—-
O<j<lvs] 6t/2 4 1<i=C 8t /4 2 4

Thereforethereexistst > T v M v T; such that

P(y,—w > 2 Y, — v,t] < % min p - =M £
— W, > =1, |Y, — vgt| < =t, > ) > -,
! T2 ! 2 o<j<|v] 4 2 4

This proves, by (7), that for any T > Othereexistst > T such that

AM1—2)8
p(r > 2020) ¢
4 2') a

Thus the number S, of second class stacks in [0, v,7] is greater than gt =
A1 — A)8t/8. Since S, + X, = v,t, this contradicts Theorem 2. O

3.3 Simulations on the convex part of the flux function

To conclude this section we present some computer simulations for the 2-step
exclusion processwith Riemanninitial profilewithp =0 < A < p* = 1/4. The
simulation was programmed in Ox (version 2.20 for Al X, see Doornik (1999)).

As we have shown in the last paragraph, v, is a lower bound for the speed
of the rightmost particle W,. However the intuition indicates that it should be,
indeed, the correct limit. Loosely speaking if, by contradiction, we suppose that
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the rightmost particleisat a(long) distancein front of the shock then itsvel ocity
should be 1 (the speed of a non interacting particle). Thus as v, > 1 (for the
set of A we consider) the distance between the shock and this particle cannot be
maintai ned.

The following simulations confirm that impression. We simulate the process
and get some estimates for the mean velocity of the rightmost particle W,/ and
its variance

o?(t) == E(W, — EW,)2. (8)

The simulation

The original process (infinite system) is approximated by a finite system with
border conditions on amoving frame (following the shock). Aswetrest the case
with p = 0 we will not need a border condition to the right of the frame. Our
main worry isto keep “ enough space” between the rightmost particle and the left
border (where we put a reservoir of particles) so that the shock does not reach
the left border which ensures a good approximation of local equilibrium.

Thetotally asymmetric 2-step exclusion processisconstructed on aset of sites,
wecal theframe ¥, .= {L,,L; + 1, ..., R;} where Ly < 0 < Ry. Denote by
|, | the number of sitesin W,. On and to the left of site 0 particles are initially
distributed according to a Bernoulli product measure with parameter A. Sitesto
right of O areinitially empty.

The algorithm is as follows: At each step, say at time ¢;, we randomize an
exponentia randomvariable 7' with parameter |V, |+2. Wethensett; 1 = t;+T
and we draw uniformly asite x in{L,, —2,L,; — 1} U W¥,.. If x € ¥,, and is
occupied by aparticle then this particle goesto the first empty site it encounters
toitsrightin {x + 1, x + 2} (2-step exclusion rul€). If both sites are occupied
the movement is cancelled. If x = L,, — 2 or L,, — 1 respectively, a uniform
random variable U isdrawn on (0, 1); if U < A% or U < X respectively, then
a particle of the reservoir tries to enter into the system according to the 2-step
exclusion rule; otherwise nothing happens.

To (re)adjust the frame ¥, we proceed as follows. We take “pictures’ of
the system at each time interval, say 7, suitably fixed at the beginning of the
program. After each picture and before resuming the simulation, we check if
the left side and the right side of the frame are at least at a 27 distance from the
rightmost particle in the frame and setup the system. The first check guarantees
there is enough space between the reservoir and the rightmost particle and the
second check preventsthe rightmost particle of going out of the frame beforethe
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next picture.

For some fixed values of 1, we simulated the dynamics of 1,000 independent
instances of the 2-step exclusion process and observed the mean position of the
rightmost particle and its dispersion for ¢ varying from 0 to 15,000.

We choose to present some pictures for A = 0.2 at different times. ¢ =
0, 100, 200, 300, 400 and 500 with 250 independent instances for sake of
visualization.

For each time the first picture in Figure 2 presents the mean density of the
process. The curve in the middle is surrounded by a one standard deviation
interval. Initially we observe equilibrium at density 0.2 to the left of the origin
and no particles to the right. The second picture represents the distribution of
the position of the rightmost particle at timez.

Figure 3 shows the shock speed v,(L) = 14 A — 242 (the solid line) and
the rescaled simulated mean position (i.e., W (r)/¢) for different values of A for
t = 7,500 and ¢ = 15, 000. It gives aglance of the adequation between the real
curve of v, and the mean of the simulated velocity of the rightmost particle.

Thelower bound given in section 3.2 and the results of the simulation indicate
that the rightmost particleis agood candidate for a microscopic indicator of the
position of the shock for p = 0.

For the simple exclusion process (i.e., k = 1), in the stable shock case (i.e.,
increasing shock A < p), Ferrari & Fontes (1994) proved that the diffusion
coefficient lim, X2(¢)/t is constant, where %2(r) was the variance, at time ¢,
of the position of a second class particle originally at O; for A = 0 this second
class particle corresponds with the leftmost particle. Observethat in the case we
consider inthissection (i.e., decreasing stableshock for k = 2, withA < 1/4and
p = 0) the second class particle does not correspond to the rightmost particle
because it may jump back (even with the pushing interpretation).

The simulations for k = 2 and p = 0, make us suspect that o?(r) (cf. (8))
may also grow linearly, as shown in Figure 4. Here, o(¢) is estimated by the
empirical variance

1 & —\2
&) ==Y (Wi = W,)",
i=1

where K isthe number of independent realizations of the process and

K

W,=K71) W
i=1
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Figure 2: Evolution of the mean density and the mean position of the rightmost
particlesfor initial profile A = 0.2 and p = 0 from time O to 500.

4 Shock in the concave part of the flux

We treat here Case 5 of Theorem 1 with aright density p = 1, i.e., up(x) =

> p, = 1,.
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Figure 3: The velocity curve of the shock v, (1) = S3[A, 0] and the simulated
velocity of the rightmost particle W, /¢ for + = 7, 500 (above) an ¢+ = 15, 000

(below) in the convex part of the flux: A € (0, 1/4).

Theorem 4. Whenug(x) = Al <q + lix~0;, the rightmost hole identifies the
shock.

Proof. The motion of the rightmost hole does not depend on the distribution
of particles to the right of it; therefore it moves exactly as a tagged hole un-
der the equilibrium distribution v,. According to (4) the tagged hole speed is
— %1 jaJ which is exactly the shock speed S;[4; 1. O

Bull Braz Math Soc, Vol. 33, N. 3, 2002



MICROSCOPIC STRUCTURE OF THE k-STEP EXCLUSION PROCESS 335

14000/ [— L=0025xt — L=0.050x t
L | L=0075xt oo L=0100xt
[ |o—oL=0.125xt ++ L=0.150x t
L | L=0175xt ++ L=0.200x t
120001 |, | 0225 %1

10000
8000}
6000¢
4000+

20001

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

Figure 4: 62(t) for some values of A.

5 Therarefaction fan

We consider hereCases1and 4 of Theorem1l: A < p <a,anda < p < A. We
follow section 2 of Ferrari & Kipnis (1995). Under the initial distribution w;_,,
we put a second class particle at the origin, denote by X, its position at time ¢,
and by P the expectation of this process. We prove the

Theorem 5. Wheni < p <aora < p < A, X,/t converges in distribution
to a probability measure concentrated i, (1), H,(p)], absolutely continuous
w.r.t. the Lebesgue measure.

~ (X 1) —
IimP(—t>r) = —u(r,) p

t—00 t A— 1Y
hei(r) — .
= O TP g0y < < Hip)
A—p
0 otherwise
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wherei = 1in Case 1 and = 2in Case 4.

Proof. For agiven initial configuration n, J,,(n) is the flux of particles that
have jumped through the space-time line with velocity r at timez. We denote by
X7 the position at time ¢ of the particle starting originally at site x:

T =Y @) Lxes ) — )iy ©)

x<0 x>0

that we can also write, since in the pushing interpretation particles cannot jump
over each other,

I = Y @ lpgai — )@@ = L)
x<0 x>0
= Y 0Ly — Y nx)
X x>0
= Y n@-=) nx (10)
x>|r] x>0

We prove the result for Case 4.

We consider two different couplings of two versions of k-step exclusion pro-
cesses, starting respectively from ° of distribution ;. ,, and n* of distribution
T_1u5.,- We denote by E the expectation of a coupled processw.r.t. thisinitial
distribution zz. Thefirst coupling isthe basic coupling, under which we assume
that n°(x) = n*(x) for al x # 0, and with probability A — p, on O there is
a particle for n° and none for n*. This possible discrepancy between the two
marginals has a second class particle behavior, so that by (9)

f Eus 1) — s ARG, 1Y = O — pBX, > Lrt)) (1)

The second coupling is a “particle to particle coupling”, under which ' =
7_1n°. It meansthat we label particles of both configurations, in such away that
particles number ¢ for both configurations occupy sites distant by one (initially,
particle number O is the first one to the left -including it- of the origin); to keep
this situation during the evolution, when the clock rings for the ¢-th particle of
the first configuration, particles labeled ¢ for both configurations try to move.
Thisispossiblethanksto the pushing interpretation 1 under which particleskeep
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their relative order. Thisway, by (10),

/ By (%) — Ty (AT, 7Yy = / EGQ(Lrt] + 1) — n8O)dE(°. )

(12)
Putting together (11) and (12), and applying Theorem 1, Case 4 yieldsthe resullt.
The proof issimilar for Case 1, replacing t_1u;,, by tapts 5. 0

6 Contact discontinuity

We consider here Cases 3 and 6 of Theorem 1. p < p* < A (p < a), and
o0 > pe > A (p > a). We proceed asin the preceding section, to get the limiting
behavior of a second class particleinitially on site O:

Theorem 6. Whenp < p* < A (p <a)orp > p, > A (p > a), X,/t
converges in distribution to a probability measure which is a convex combination
of a measure absolutely continuous w.r.t. the Lebesgue measure, and of a Dirac
mass. For- a continuity point of«(., 1),

1 if r<H,)
o ~(X hei(r) — .
lim P (_’ > r) = hei) = p if Hy(A) <r < Hi(p;)
t—>00 t A— 1Y
0 otherwise
and
~(X P
lim P(—’ = Hk(pl-)> S
t—00 t A — 1Y

where in Case G, = 1, p1 = p,, and in Case 3} = 2, p, = p*.

Proof. For every continuity point » of u(., 1), the proof is the same as in
Theorem 5. If welook at Case 3 for r = Hi(p*), the result follows from

. ~(X
lim P (—’ > r) =0,
r— Hy(p*)t 1

_ ~ X hy2(Hi (p*)) — *_
lim P(Hk(k)<7t§r>:1— k2(Hi(p*)) p_q_ PP

r—s Hy (p*)~ A—p A—p
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