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The weak survival/strong survival phase transition
for the contact process on a homogeneous tree*

Steven P. Lalley and Thomas M. Sellke

Abstract. The contact process on a homogeneous tree of degree 3 or larger is known to
have two survival phases: weak and strong. In the weak survival phase, the “Malthusian
parameter” (the Hausdorff dimension of the set of ends of the tree in which the infection
survives) is less than half the Hausdorff dimension of the entire boundary. Itis shown that
if the expected infection time of a vertex is bounded by a constant times the probability
of infection, then the critical exponent for the Malthusian parameter is at I¢ast 1
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1 Introduction

The contact process on a homogeneous Trgef degreed + 1 > 3 is known
[10, 7, 13] to have three distinct phases: an extinction phase, a weak survival
phase, and a strong survival phase. The existence of two qualitatively different
survival phases is the most striking feature of the process, as the contact process
on the integer lattic&?, in any dimension, exhibits only one survival phase
(strong survival). Thus, the contact process on a homogeneous tree exhibits
a phase transition, from weak to strong survival, of a different character than
the phase transition for the contact process on the integer lattices. The purpose
of this paper is to speculate on the nature of this phase transition, and to show
how certain conjectured behavior of the expected total infection time in the weak
survival phase would delimit the critical exponent of the “Malthusian parameter”
Bd defined by (1) below.

In the weak survival phase, the contact process, when started from a single
infected site (by convention, theot vertexr of the tree), survives forever with
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positive probability, but with probability one eventually vacates every finite sub-
set of the tree. For any vertexother than the root, the probability of eventual
infection is less than one. This probability = u,, depends only on the distance

n = |x| fromr to x, and decays exponentially i the decay rate is

p = lim ulm, (1)

This rate is of interest in part because it determines the Hausdorff dimension
(relative to the natural metric on the space of ends of the tree — see [5] for details)
of thelimit set A (the set of ends of the tree in which the infection survives):

log(Bd)
log 2

HD(A) = (2)
almost surely on the event of survival. Equivalently, the subtree consisting of
vertices ever infected has branching numberfa (see [9] for the definition);
hence8d serves as a Malthusian parameter for the contact process.

It is known [5] that, in the weak survival phase,

B <1/Vd, (3)

and so the Hausdorff dimension of the limit getcan never be more than half
the Hausdorff dimension of the space of ends. Sifds left-continuous in

the infection rate parameter, it follows that the contact process survives only
weakly at the weak/strong survival transition, and thaét discontinuous at the
critical point. Itis not yet known i = 1/+/d at any values of the infection and
recovery rate parameters other than at the critical point, but it is known [4] that
if B < 1/+/d then an increase in the infection rate (or a decrease in the recovery
rate) will strictly increase the value @f.

Denote byx and$ the infection and recovery rates of the contact process.
Recall that, for ang > 0, the contact process with infection and recovery rates
€A andes is atime-changed version of the contact process with hatesls, and
observe that this time change has no effect on the limihsatthe parametes.

It is customary to sed = 1, and to leth vary; however, we shall find it more
convenent to fixa = 1, and to le#s vary. The critical points will be denoted by
8, andé,.: thus,8 < g, is the strong survival phasé, < § < §. is the weak
survival phase; andl > §. is the extinction phase. Our main conjecture is that
the critical exponent for the parameigmat the weak/strong survival transition
is 1/2:
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Conjecture 1.

| log(1/v/d — B(8)) 1
sl log(s —8,) 2

(4)

Notational Conventions: The set of infected sites at timén a contact process
started at time 0 with only the root vertex initially infected will be denoted by
& or ¢;. The values of constants will not be carefully delineated: tidumay
denote different constants from one inequality to the next.

2 Expected Total Infection Time

Weak survival differs from strong survival in that, with probability one, every
vertexx is eventually healthy, and so the total infection time at vertexfinite.

It does not necessarily follow that thexpectedtotal infection time is finite;
however, this must be the casefif < 1/v/d, because it is known [3] that if

B < 1/\/dthenP{r € &} decays exponentially in Because the contact process
survives only weakly at the critical point, and because the hitting probabjlity
decays exponentially im even at the critical point, it is natural to expect that the
conditional expectation of the total infection time for any vertex, given that it is
positive, remains bounded. Denote bgx) the total infection time at, that is,

J(x) = foo 1{x € £} dt. (5)
0

Conjecture 2. There exists a constaxt = C, depending only on the degree
d + 1 of the treeT,; such that, for every vertexand all values’ of the recovery
parameter such that > §,,,

E(J(x)[J(x) >0 =C. (6)

This conjecture is largely motivated by the fact that the analogous statement
is true for the isotropic, nearest-neighbor branching random waik,omwhose
behavior in the weak survival phase resembles in many other respects [8] that
of the contact process. In this case, thhat< oo follows from the fact that
G(R) < oo, WhereG(z) is the Green’s function of the underlying random walk
and R is its radius of convergence; th&t(R) < oo is a consequence of the
nonamenability off;, which precludes the possibility &—recurrence for any
nondegenerate random walk @p.
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The expected total infection time at a vertels comparable to several related
guantities. Recall that the contact process may be constructed frera@ation
structure a system of independent Poisson processes attached to vertices and
ordered pairs of neighboring vertices. The Poisson processes attached to vertices
have intensitys; their occurrences mark the times of recoveries from infection.
The Poisson processes attached to ordered pair9 of neighboring vertices
are of rate 1; their occurrences, which we shall gd#ction arrows or simply
arrows, mark the times at which infection may pass franto y. The set, of
infected sites at time in the contact process started in stgge= {r} consists
of those vertices such that there is a path (called enfiection trail) in the
percolation structure starting atat time 0 and terminating at at timez (this
path may cross arrows in the percolation structure, in the direction of the arrows,
but may not pass through recovery marks). Defifie(x) (respectivelyM ~(x))
to be the number of infection arrowswith head (respectively, tail) such that
there is an infection trail starting atat time O that passes through Similarly,
defineN (x) to be the number of recovery marksxathat mark the end of time
intervals in whichx € &,.

Lemma 3. There exist constanis,, C,, C3, C4 < oo, independent of the re-
covery rates, such that for every vertexand all values of > §, nears,,

E(J(x)|J(x) >0 = GGEWNX)[J(x) > 0)
< CGEM*(x)|J(x) > 0)
<GEM (x)[J(x) >0
< CGE(J(x)|J(x) > 0).

Proof. These inequalities follow by arguments very similar to those used in
[12]. O

Corollary 4. If Conjecture 2 is true, then there are constafits: C; < 1 <
C, < oo such that for every vertexand all values of > §, nearé,,,

C1" <u, <p"  and (7)
B < EN(x) < CopM. (8)

Proof. Sincethefunction, = u, issupemultiplicative in|x/, it follows from
Fekete’s subadditivity lemmaand (1) that< g*! forallx. Similarly, itis easily
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seen thatt M (x) is submultiplicative in|x|;, according to Theorem 2 of [12],
the exponential decay rate 8fM* (x) in |x| is alsoB, and SOE M+ (x) > BW!.
Now EM™(x) > u,, because in order thatbe infected at some time there must
be at least one infection arrow leadingxtoFinally, by Lemma 3, Conjecture 2
implies that, for a suitable finite constafit

EMT(x)1{J(x) > 0}) < CEL{J(x) > 0} = Cu,.

The inequalityEN (x) < C’u,, for a suitable constar@’ < oo, now follows
from Lemma 3. ]

3 Critical Exponent for the Malthusian Parameter

As noted earlier, it is as yet unknown whethg®@) < 1/+/d for all § > §,,
although this is believed to be the case, for the following reason: As proved
in [3] strict inequality8 < 1/+/d in (1) holds if and only ifP{r € &} decays
exponentially ins. Thus, if it were the case th@t = 1/./d for somes > §,,

then it would follow thatP{r € &} decays subexponentially inand that the
contact process stays in the weak survival regime whsmelaxed. This seems
unlikely. In any case, we may define

8, =max(s > 8, : B(8) =1/d). 9)

Theorem 1. If Conjecture 2 is true, then there is a finite const@nt C,; such
that for all § > §, nearé,,

1/v/d — B(5) < C\/s — 6,. (10)

Thus, if Conjecture 2 is true, and if there is a critical exponent for the decay
ratep at the critical poins,, then it cannot be less thagZ The proof outlined
below also suggests that2is the correct value, as the inequalities in the proof
are very likely approximate equalities.

The proof of Theorem 1 will make use of the following lemma, proved in [12].

Lemmab. The decay rat@ varies continuously with the recovery rate param-
eteré for § > §,,.
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Proof of Theorem 1. We shall estimate the changegrthat results when the
recovery rate is decreased t@l — ¢)8 for smalle. For this, we shall construct
versionsg, and¢, of the contact processes with initial statgs= ¢o = {r} and
recovery rateg and(1 — €)3§, respectively, using a common augmented perco-
lation structure. The base percolation structure, used for construgtimas
described in Section 2: the intensities of the arrow processes and the recovery
mark processes are 1 afdrespectively, and these processes are mutually in-
dependent Poisson processes. This base percolation structure is augmented by
attaching to each recovery mark (at every vertex) a Berneuliihndom variable;

these random variables are mutually independent, and independent of the arrow
and recovery mark processes. Those recovery marks for which the attached
Bernoulli takes the value 1 are color6édeen, and those not colore@rREEN are
coloredReD. The base percolation structure is now modified by removing all
the GREEN recovery marks, and a versignof the contact process with recovery
rate (1 — €)§ is obtained by proceeding in the usual manner, as described in
Section 2, but using the modified percolation structure. Since the set of recovery
marks obtained by removing ti&eeN marks is contained in the set of recovery
marks in the base percolation structure, every infection trail in the base perco-
lation structure remains an infection trail in the modified percolation structure;
therefore,

&<¢  Vi=0. (11)

Letxo = r, x1, x2, ... be the vertices along a fixed (but arbitrary) geodesic ray
emanating from the root of the tree, so thaf = n for eachn > 0. Denote by
u,(8) andu, (8§ — §¢) the hitting probabilities of vertex, for the processes
andg;, respectively. In view of (11), it must be the case that) < u,(§ — §¢),
and the discrepancy must be

Un(8 — 8€) —un(8) = P{xy € Ur=0r \ Usz08:} := P(Fy). (12)

Now in order that evenk,, occur, it is necessary that in theodifiedpercolation
structure (that is, the percolation structure obtained by removingteeN
recovery marks) there should be an infection tfafrom the root, starting at

t = 0, that ends at,, but that in thebasepercolation structure there should be

no such infection trail. On this event, the infection trainust pass through at
least oneGREEN recovery mark, because otherwise it would be an infection trail
in the base percolation structure. Thus, the discrepancy (12) is no larger than
the probability that there is an infection trdifrom (r, 0) to x,, in the modified

Bull Braz Math Soc, Vol. 33, N. 3, 2002



PHASE TRANSITION FOR THE CONTACT PROCESS ON A TREE 347

percolation structure that passes through at leasGemen recovery mark, and
so

Mn(‘S - 86) - Mn(S) = EKna (13)

wherek, is defined to be the number GReeN recovery marks in the augmented
percolation structure that lie on infection trails fram0) to x, on which there
are no earlieGREEN marks.

Lemma6. If Conjecture 2istrue, then there exists a consta@nt oo such that
for all values ofs > §, ande > Osuch thatt — de¢ > §,,andalln =1,2, ...,

EK, < Cenp"/(1—dp?), (14)

whereg = B(§ — ¢).

Observe that - d8%2 > 0 for all § > §,, by (3). Note also the affinity
of the inequalities (13)—(14), which relate the derivativg /ds to an expected
count, with Russo’s formula ([1], Section 2.4 and [11]) inercolation theory. Here,
however, the objects being counted cannot be interpreted as “pivotal” in the sense
of [1] and [11].

Before proving Lemma 6 we will show how it implies Theorem 1. First, we
show that the inequality (14) forces an upper bound on the derivatigeasth
respect ta:

Corollary 7. The derivativel8/ds exists at almost evedy> §,. Furthermore,
if Conjecture 2 is true, then there is a const@ht< co such that for almost all
8 > 8, nears,,

dg C
%S—l_dﬂz- (15)

Note: Thed attached tgs? on the right side of (15) is the degree of the tree
minus 1, whereas th&s on the left side indicate derivatives with respecé to

Proof. Sinceu, andp are monotone and continuousdn> §,, they are dif-
ferentiable at almost every value &f The inequalities (13) and (14) imply that
the derivative ofs, (8) with respect to t&, where it exists, must satisfy

du,

o5 = Cnpl/ (- dp?), (16)
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whereC’ = C/é, andC is as in Lemma 6. If Conjecture 2 holds, then by
Corollary 4 there is a positive constarguch thai,, > ¢g” for all valuess > 4,

nears, and alln > 1; hence, dividing both sides of inequality (16)/y, yields

dlogu,%/”< lold
45— 1—dp?

(17)

whereC” = C’/c. Integrating this over the intervgd,, §,] and lettingn — oo,
using (1), we obtain

BGD _ ., [ db
o956 << ), TaF (o)

Sinceg is continuous iré for § > §,,, and sincelf? < 1foralls > §,, inequality
(18) implies that the derivative of lg8, where it exists, is bounded above by
C”/(1 — dp?). By the chain rule, it follows that the derivative f where it
exists, is bounded above I8/ (1 — dp?), for a suitable constard. O

Proof of Theorem 1. Lety = dp? denote the Malthusian parameter. By
Corollary 7, if Conjecture 2 is true then for a suitable cons@nt oo,
/
dy _ €
ds — 1—vy

(19)

for almost every > §, nears,. This inequality may be integrated betwegn
andé, using the fact thay — 1 asé — 4§, (by definition ofé,). The result is
that, for all§ > §, nears,,

AL-py)?<C'6 -5, (20)

whereC” = C’/2. Inequality (10) now follows by taking square roots. [

Proof of Lemma 6. Recall thatkK,, is defined to be the number @REEN
recovery marks in the augmented percolation structure that lie on infection trails
from (r, 0) to x, on which there are no earli€greeNn marks. This may be
decomposed as a disjoint sum, by groupgiiRgen recovery marks according to
their locations in the tree: For each integer 0, defineH,, to be the set of all
verticesx such that the geodesic path frerto x passes through,, but notx,, ;1
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(recall thatxg, x1, x», . .. are the vertices along a fixed but arbitrary geodesic ray
emanating from the root), and 38}, = U<, H;. Then

K, = Z K7,
xeGy

whereK; is the number ofGREEN recovery marks at accessible by infection
trails in the base percolation structure starting-a@) and from which emanate
infection trails in the modified percolation structure terminating,at

Recall thatN (x) is the number of recovery marks in the base percolation
structure atc where infection trails starting dt, O) terminate. For each such
recovery mark, there is probabiligythat the mark will be colore@reen in the
Bernoulli thinning. Moreover, for each such mark, the conditional probability
that it initiates an infection trail in the modified percolation structure terminating
atx,, given the history of the percolation structure up to the time of the mark, is
ur (8 — 8¢), wherek is the distance from to x,,, and so is bounded above B
(wherepg = B(8 — 8¢)). Hence,

EK' = u,(8 — 8)e EN(x) < Y EN(x). (21)

If Conjecture 2 holds then, by Corollary 4, there is a constant oo such
that EN (x) < CB"! for every vertexx and all values$s > §,. Consequently,
by (21), EK* is bounded above bgeg ', wherel = |x| andk is the distance
fromx tox,. Now if x € H,, forsome 0< m < n, and if the distance from to
X, IS j,thenl + k = n + 2j. Since the number of verticase H,, at distance
j from x,, is at mostd/, it follows that

EK,= ) EK}

xeG,

S NTE

m=0xeH,,

<> i d/Cepm?

m=0 j=0
=) Cep"/(L—dp?)

m=0

< (n+1Cep"/(1—dp?).
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