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The weak survival/strong survival phase transition
for the contact process on a homogeneous tree*

Steven P. Lalley and Thomas M. Sellke

Abstract. The contact process on a homogeneous tree of degree 3 or larger is known to
have two survival phases: weak and strong. In the weak survival phase, the “Malthusian
parameter” (the Hausdorff dimension of the set of ends of the tree in which the infection
survives) is less than half the Hausdorff dimension of the entire boundary. It is shown that
if the expected infection time of a vertex is bounded by a constant times the probability
of infection, then the critical exponent for the Malthusian parameter is at least 1/2.
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1 Introduction

The contact process on a homogeneous treeTd of degreed + 1 ≥ 3 is known
[10, 7, 13] to have three distinct phases: an extinction phase, a weak survival
phase, and a strong survival phase. The existence of two qualitatively different
survival phases is the most striking feature of the process, as the contact process
on the integer latticeZd , in any dimension, exhibits only one survival phase
(strong survival). Thus, the contact process on a homogeneous tree exhibits
a phase transition, from weak to strong survival, of a different character than
the phase transition for the contact process on the integer lattices. The purpose
of this paper is to speculate on the nature of this phase transition, and to show
how certain conjectured behavior of the expected total infection time in the weak
survival phase would delimit the critical exponent of the “Malthusian parameter”
βd defined by (1) below.

In the weak survival phase, the contact process, when started from a single
infected site (by convention, theroot vertexr of the tree), survives forever with
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positive probability, but with probability one eventually vacates every finite sub-
set of the tree. For any vertexx other than the root, the probability of eventual
infection is less than one. This probabilityux = un depends only on the distance
n = |x| from r to x, and decays exponentially inn; the decay rate is

β := lim
n→∞ u1/n

n . (1)

This rate is of interest in part because it determines the Hausdorff dimension
(relative to the natural metric on the space of ends of the tree – see [5] for details)
of the limit set� (the set of ends of the tree in which the infection survives):

HD(�) = log(βd)

log 2
(2)

almost surely on the event of survival. Equivalently, the subtree consisting of
vertices ever infected has branching number log(βd) (see [9] for the definition);
hence,βd serves as a Malthusian parameter for the contact process.

It is known [5] that, in the weak survival phase,

β ≤ 1/
√

d, (3)

and so the Hausdorff dimension of the limit set� can never be more than half
the Hausdorff dimension of the space of ends. Sinceβ is left-continuous in
the infection rate parameter, it follows that the contact process survives only
weakly at the weak/strong survival transition, and thatβ is discontinuous at the
critical point. It is not yet known ifβ = 1/

√
d at any values of the infection and

recovery rate parameters other than at the critical point, but it is known [4] that
if β < 1/

√
d then an increase in the infection rate (or a decrease in the recovery

rate) will strictly increase the value ofβ.
Denote byλ and δ the infection and recovery rates of the contact process.

Recall that, for anyε > 0, the contact process with infection and recovery rates
ελ andεδ is a time-changed version of the contact process with ratesλ andδ, and
observe that this time change has no effect on the limit set� or the parameterβ.
It is customary to setδ = 1, and to letλ vary; however, we shall find it more
convenent to fixλ = 1, and to letδ vary. The critical points will be denoted by
δu andδc: thus,δ < δu is the strong survival phase;δu ≤ δ < δc is the weak
survival phase; andδ ≥ δc is the extinction phase. Our main conjecture is that
the critical exponent for the parameterβ at the weak/strong survival transition
is 1/2:
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Conjecture 1.

lim
δ↓δu

log(1/
√

d − β(δ))

log(δ − δu)
= 1

2
(4)

Notational Conventions: The set of infected sites at timet in a contact process
started at time 0 with only the root vertex initially infected will be denoted by
ξt or ζt . The values of constants will not be carefully delineated: thus,C may
denote different constants from one inequality to the next.

2 Expected Total Infection Time

Weak survival differs from strong survival in that, with probability one, every
vertexx is eventually healthy, and so the total infection time at vertexx is finite.
It does not necessarily follow that theexpectedtotal infection time is finite;
however, this must be the case ifβ < 1/

√
d, because it is known [3] that if

β < 1/
√

d thenP {r ∈ ξt} decays exponentially int . Because the contact process
survives only weakly at the critical point, and because the hitting probabilityun

decays exponentially inn even at the critical point, it is natural to expect that the
conditional expectation of the total infection time for any vertex, given that it is
positive, remains bounded. Denote byJ (x) the total infection time atx, that is,

J (x) =
∫ ∞

0
1{x ∈ ξt} dt. (5)

Conjecture 2. There exists a constantC = Cd depending only on the degree
d + 1 of the treeTd such that, for every vertexx and all valuesδ of the recovery
parameter such thatδ ≥ δu,

E(J (x) | J (x) > 0) ≤ C. (6)

This conjecture is largely motivated by the fact that the analogous statement
is true for the isotropic, nearest-neighbor branching random walk onTd , whose
behavior in the weak survival phase resembles in many other respects [8] that
of the contact process. In this case, thatC < ∞ follows from the fact that
G(R) < ∞, whereG(z) is the Green’s function of the underlying random walk
andR is its radius of convergence; thatG(R) < ∞ is a consequence of the
nonamenability ofTd , which precludes the possibility ofR−recurrence for any
nondegenerate random walk onTd .
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The expected total infection time at a vertexx is comparable to several related
quantities. Recall that the contact process may be constructed from apercolation
structure, a system of independent Poisson processes attached to vertices and
ordered pairs of neighboring vertices. The Poisson processes attached to vertices
have intensityδ; their occurrences mark the times of recoveries from infection.
The Poisson processes attached to ordered pairs(x, y) of neighboring vertices
are of rate 1; their occurrences, which we shall callinfection arrows, or simply
arrows, mark the times at which infection may pass fromx to y. The setξt of
infected sites at timet in the contact process started in stateξ0 = {r} consists
of those verticesy such that there is a path (called aninfection trail) in the
percolation structure starting atr at time 0 and terminating aty at timet (this
path may cross arrows in the percolation structure, in the direction of the arrows,
but may not pass through recovery marks). DefineM+(x) (respectively,M−(x))
to be the number of infection arrowsα with head (respectively, tail)x such that
there is an infection trail starting atr at time 0 that passes throughα. Similarly,
defineN(x) to be the number of recovery marks atx that mark the end of time
intervals in whichx ∈ ξt .

Lemma 3. There exist constantsC1, C2, C3, C4 < ∞, independent of the re-
covery rateδ, such that for every vertexx and all values ofδ ≥ δu nearδu,

E(J (x) | J (x) > 0) ≤ C1E(N(x) | J (x) > 0)

≤ C2E(M+(x) | J (x) > 0)

≤ C3E(M−(x) | J (x) > 0)

≤ C4E(J (x) | J (x) > 0).

Proof. These inequalities follow by arguments very similar to those used in
[12]. �

Corollary 4. If Conjecture 2 is true, then there are constants0 < C1 < 1 <

C2 < ∞ such that for every vertexx and all values ofδ ≥ δu nearδu,

C1β
|x| ≤ ux ≤ β |x| and (7)

β |x| ≤ EN(x) ≤ C2β
|x|. (8)

Proof. Since the functionux = u|x| issupermultiplicative in|x|, it follows from
Fekete’s subadditivity lemma and (1) thatux ≤ β |x| for allx. Similarly, it is easily
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seen thatEM+(x) is submultiplicative in |x|;, according to Theorem 2 of [12],
the exponential decay rate ofEM+(x) in |x| is alsoβ, and soEM+(x) ≥ β |x|.
Now EM+(x) ≥ ux , because in order thatx be infected at some time there must
be at least one infection arrow leading tox. Finally, by Lemma 3, Conjecture 2
implies that, for a suitable finite constantC,

E(M+(x)1{J (x) > 0}) ≤ CE1{J (x) > 0} = Cux.

The inequalityEN(x) ≤ C ′ux , for a suitable constantC ′ < ∞, now follows
from Lemma 3. �

3 Critical Exponent for the Malthusian Parameter

As noted earlier, it is as yet unknown whetherβ(δ) < 1/
√

d for all δ ≥ δu,
although this is believed to be the case, for the following reason: As proved
in [3] strict inequalityβ < 1/

√
d in (1) holds if and only ifP {r ∈ ξt} decays

exponentially int . Thus, if it were the case thatβ = 1/
√

d for someδ > δu,
then it would follow thatP {r ∈ ξt} decays subexponentially int and that the
contact process stays in the weak survival regime whenδ is relaxed. This seems
unlikely. In any case, we may define

δ∗ = max{δ ≥ δu : β(δ) = 1/
√

d}. (9)

Theorem 1. If Conjecture 2 is true, then there is a finite constantC = Cd such
that for all δ > δ∗ nearδ∗,

1/
√

d − β(δ) ≤ C
√

δ − δ∗. (10)

Thus, if Conjecture 2 is true, and if there is a critical exponent for the decay
rateβ at the critical pointδ∗, then it cannot be less than 1/2. The proof outlined
below also suggests that 1/2 is the correct value, as the inequalities in the proof
are very likely approximate equalities.

The proof of Theorem 1 will make use of the following lemma, proved in [12].

Lemma 5. The decay rateβ varies continuously with the recovery rate param-
eterδ for δ ≥ δu.
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Proof of Theorem 1. We shall estimate the change inβ that results when the
recovery rateδ is decreased to(1 − ε)δ for smallε. For this, we shall construct
versionsξt andζt of the contact processes with initial statesξ0 = ζ0 = {r} and
recovery ratesδ and(1 − ε)δ, respectively, using a common augmented perco-
lation structure. The base percolation structure, used for constructingξt , is as
described in Section 2: the intensities of the arrow processes and the recovery
mark processes are 1 andδ, respectively, and these processes are mutually in-
dependent Poisson processes. This base percolation structure is augmented by
attaching to each recovery mark (at every vertex) a Bernoulli-ε random variable;
these random variables are mutually independent, and independent of the arrow
and recovery mark processes. Those recovery marks for which the attached
Bernoulli takes the value 1 are coloredGreen, and those not coloredGreen are
coloredRed. The base percolation structure is now modified by removing all
theGreen recovery marks, and a versionζt of the contact process with recovery
rate (1 − ε)δ is obtained by proceeding in the usual manner, as described in
Section 2, but using the modified percolation structure. Since the set of recovery
marks obtained by removing theGreen marks is contained in the set of recovery
marks in the base percolation structure, every infection trail in the base perco-
lation structure remains an infection trail in the modified percolation structure;
therefore,

ξt ⊆ ζt ∀ t ≥ 0. (11)

Letx0 = r, x1, x2, . . . be the vertices along a fixed (but arbitrary) geodesic ray
emanating from the root of the tree, so that|xn| = n for eachn ≥ 0. Denote by
un(δ) andun(δ − δε) the hitting probabilities of vertexxn for the processesξt

andζt , respectively. In view of (11), it must be the case thatun(δ) ≤ un(δ − δε),
and the discrepancy must be

un(δ − δε) − un(δ) = P {xn ∈ ∪t≥0ζt \ ∪t≥0ξt} := P(Fn). (12)

Now in order that eventFn occur, it is necessary that in themodifiedpercolation
structure (that is, the percolation structure obtained by removing theGreen
recovery marks) there should be an infection trailI from the root, starting at
t = 0, that ends atxn, but that in thebasepercolation structure there should be
no such infection trail. On this event, the infection trailI must pass through at
least oneGreen recovery mark, because otherwise it would be an infection trail
in the base percolation structure. Thus, the discrepancy (12) is no larger than
the probability that there is an infection trailI from (r, 0) to xn in the modified
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percolation structure that passes through at least oneGreen recovery mark, and
so

un(δ − δε) − un(δ) ≤ EKn, (13)

whereKn is defined to be the number ofGreen recovery marks in the augmented
percolation structure that lie on infection trails from(r, 0) to xn on which there
are no earlierGreen marks.

Lemma 6. If Conjecture 2 is true, then there exists a constantC < ∞ such that
for all values ofδ > δu andε > 0 such thatδ − δε > δu, and alln = 1, 2, . . . ,

EKn ≤ Cεnβn/(1 − dβ2), (14)

whereβ = β(δ − δε).

Observe that 1− dβ2 > 0 for all δ > δ∗, by (3). Note also the affinity
of the inequalities (13)–(14), which relate the derivativedun/dδ to an expected
count, with Russo’s formula ([1], Section 2.4 and [11]) inercolation theory. Here,
however, the objects being counted cannot be interpreted as “pivotal” in the sense
of [1] and [11].

Before proving Lemma 6 we will show how it implies Theorem 1. First, we
show that the inequality (14) forces an upper bound on the derivative ofβ with
respect toδ:

Corollary 7. The derivativedβ/dδ exists at almost everyδ > δ∗. Furthermore,
if Conjecture 2 is true, then there is a constantC < ∞ such that for almost all
δ > δ∗ nearδ∗,

dβ

dδ
≤ C

1 − dβ2
. (15)

Note: Thed attached toβ2 on the right side of (15) is the degree of the tree
minus 1, whereas thed ’s on the left side indicate derivatives with respect toδ.

Proof. Sinceun andβ are monotone and continuous inδ > δ∗, they are dif-
ferentiable at almost every value ofδ. The inequalities (13) and (14) imply that
the derivative ofun(δ) with respect to toδ, where it exists, must satisfy

dun

dδ
≤ C ′nβn/(1 − dβ2), (16)
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whereC ′ = C/δ∗ andC is as in Lemma 6. If Conjecture 2 holds, then by
Corollary 4 there is a positive constantc such thatun ≥ cβn for all valuesδ ≥ δ∗
nearδ∗ and alln ≥ 1; hence, dividing both sides of inequality (16) bynun yields

d logu
1/n
n

dδ
≤ C ′′

1 − dβ2
, (17)

whereC ′′ = C ′/c. Integrating this over the interval[δ1, δ2] and lettingn → ∞,
using (1), we obtain

log
β(δ1)

β(δ2)
≤ C ′′

∫ δ2

δ1

dδ

1 − dβ2
. (18)

Sinceβ is continuous inδ for δ ≥ δ∗, and sincedβ2 < 1 for allδ > δ∗, inequality
(18) implies that the derivative of logβ, where it exists, is bounded above by
C ′′/(1 − dβ2). By the chain rule, it follows that the derivative ofβ, where it
exists, is bounded above byC/(1 − dβ2), for a suitable constantC. �

Proof of Theorem 1. Let γ = dβ2 denote the Malthusian parameter. By
Corollary 7, if Conjecture 2 is true then for a suitable constantC ′ < ∞,

dγ

dδ
≤ C ′

1 − γ
(19)

for almost everyδ > δ∗ nearδ∗. This inequality may be integrated betweenδ∗
andδ, using the fact thatγ → 1 asδ → δ∗ (by definition ofδ∗). The result is
that, for allδ > δ∗ nearδ∗,

(1 − γ )2 ≤ C ′′(δ − δ∗), (20)

whereC ′′ = C ′/2. Inequality (10) now follows by taking square roots. �

Proof of Lemma 6. Recall thatKn is defined to be the number ofGreen
recovery marks in the augmented percolation structure that lie on infection trails
from (r, 0) to xn on which there are no earlierGreen marks. This may be
decomposed as a disjoint sum, by groupingGreen recovery marks according to
their locations in the tree: For each integerm ≥ 0, defineHm to be the set of all
verticesx such that the geodesic path fromr tox passes throughxm but notxm+1
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(recall thatx0, x1, x2, . . . are the vertices along a fixed but arbitrary geodesic ray
emanating from the root), and setGm = ∪k≤mHk. Then

Kn =
∑
x∈Gn

Kx
n ,

whereKx
n is the number ofGreen recovery marks atx accessible by infection

trails in the base percolation structure starting at(r, 0) and from which emanate
infection trails in the modified percolation structure terminating atxn.

Recall thatN(x) is the number of recovery marks in the base percolation
structure atx where infection trails starting at(r, 0) terminate. For each such
recovery mark, there is probabilityε that the mark will be coloredGreen in the
Bernoulli thinning. Moreover, for each such mark, the conditional probability
that it initiates an infection trail in the modified percolation structure terminating
atxn, given the history of the percolation structure up to the time of the mark, is
uk(δ − δε), wherek is the distance fromx to xn, and so is bounded above byβk

(whereβ = β(δ − δε)). Hence,

EKx
n = uk(δ − δε)εEN(x) ≤ βkεEN(x). (21)

If Conjecture 2 holds then, by Corollary 4, there is a constantC < ∞ such
thatEN(x) ≤ Cβ |x| for every vertexx and all valuesδ > δu. Consequently,
by (21),EKx

n is bounded above byCεβk+l, wherel = |x| andk is the distance
from x to xn. Now if x ∈ Hm for some 0≤ m ≤ n, and if the distance fromx to
xm is j , thenl + k = n + 2j . Since the number of verticesx ∈ Hm at distance
j from xm is at mostdj , it follows that

EKn =
∑
x∈Gn

EKx
n

=
n∑

m=0

∑
x∈Hm

EKx
n

≤
∑
m=0

∞∑
j=0

djCεβn+2j

=
n∑

m=0

Cεβn/(1 − dβ2)

≤ (n + 1)Cεβn/(1 − dβ2).

�
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