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1 Introduction

One of the most exciting and important recent developments in Markov chain
Monte Carlo (MCMC) is perfect or exact simulation. Following the seminal
work by [19] many new perfect simulation ideas have appeared, particularly
for spatial point processes, cf. the survey in [17]; see also Wilson’s web site
(http://dimacs.rutgers.edu/∼dwilson/exact.html). The aims of this paper are to
review and compare the performance of some perfect simulation algorithms
which apply on a rather general class of point processes, viz. locally stable point
processes. For simplicity, apart from Section 8, we consider only finite point
processes.

We focus on algorithms based on dominated (or horizontal) coupling from
the past (CFTP) using spatial birth-and-death processes; alternative and efficient
perfect samplers have been developed for some special models, see [17] and
the references therein. In [14] dominated CFTP is treated in a general context
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and applied on locally stable point processes using either spatial birth-and-death
processes or a Metropolis-Hastings algorithm. In this paper we give an alternative
and self-contained exposition of the case where spatial birth-and-death processes
are used. A spatial birth-and-death process is a continuous time Markov process
where each transition consists in either adding a new point to the process (a birth)
or deleting an existing point from the process (a death). Background material
on spatial birth-and-death processes can be found in [18] and [16], but it is not
needed in the present paper. Extensions of the algorithms considered in this
paper are given in [4] using spatial jump processes. Another extension which
is not treated in this paper, is Wilson’s 2000a read-once version of CFTP. This
algorithm applies also on locally stable point processes, and it drastically reduces
the storage requirements.

The paper is organized as follows. Section 2 describes the setting for spatial
point processes used in this paper, and it is explained what is meant by local
stability. Section 3 specifies a coupling construction which is underlying the
perfect samplers considered later. Section 4 discusses a very simple perfect
simulation algorithm, and we show that it is too slow for practical purposes.
Section 5 describes a more efficient algorithm based on so-called upper and
lower processes [13, 14]. Section 6 describes an alternative algorithm using
so-called clans of ancestors [5]. Section 7 discusses some empirical findings
for the various perfect simulation algorithms. Section 8 concludes with some
comments on extensions to infinite point processes.

2 Background

Throughout this paper we consider a fairly general setting for a spatial point
processχ defined on a spaceS, equipped with aσ -algebraB which contains all
singleton sets, and a diffuse probability measureλ, i.e. {ξ} ∈ B andλ({ξ}) = 0
for all ξ ∈ S. For simplicity we assumeχ to be a finite subset ofS, though
everything in the sequel easily extend to the case whereχ is allowed to have
multiple points andλ is not necessarily diffuse.

The state space ofχ is the set of all finite point configurations� =⋃∞
i=0{x ⊆ S : n(x) = i}, wheren(x) denotes the number of points inx;

for i = 0 we have the empty point configurationx = ∅. We equip� with the
smallestσ -algebra making the mappingsnB(x) = n(x ∩ B) measurable for all
B ∈ B. Further,ν denotes a Poisson point process onS with intensity mea-
sureβλ, whereβ > 0 is a parameter. In other words, ifχ follows ν, thenn(χ)

is Poisson distributed with meanβ, and conditionally onn(χ) = i, thei points
in χ are independent and each point has distributionλ. Specifically one may
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think of S = [0, 1]2 as the unit square,B as the Borel sets, andλ as the uniform
distribution, in which caseν is a standard Poisson process. However, our general
setting covers many other cases, including situations whereχ can be interpret
as a multitype or marked point process, see e.g. [1] and [15].

We assume that the distribution ofχ is specified by an unnormalized densityφ

with respect toν, so thatφ is non-increasing in the following sense:

φ(x ∪ ξ) ≤ φ(x) for all x ∈ S andξ ∈ S \ x (1)

(we abuse the notation and writex ∪ ξ for x ∪ {ξ}, x \ η for x \ {η}, etc., when
x ∈ �, ξ ∈ S \ x, η ∈ x). This condition implies integrability ofφ with respect
to ν. Particularly, (1) is needed for the perfect simulation algorithms considered
in this paper.

For a moment consider any unnormalized densityφ with respect toν. Local
stability ofφ means that for some constantK > 0 and allx ∈ � and allξ ∈ S\x,

φ(x ∪ ξ) ≤ Kφ(x) (2)

[20]. This is a basic assumption in many papers: for example, [7] establishes
geometric ergodicity of a birth-death type Metropolis-Hastings algorithm for
locally stable point processes [8]; and [14] show that it is a sufficient condition
for applying dominated CFTP based on spatial birth-and-death processes and
Metropolis-Hastings algorithms. Local stability is in fact a rather weak condition
satisfied by most models considered in the statistical literature on spatial point
processes, cf. the discussion in [14]. The concept of local stability is extended
in [4] to cases where the dominating measureν is not necessary a Poisson process.

As K can be absorbed into the parameterβ we may without loss of generality
setK = 1 in (2), whereby (1) is obtained. Below we consider just two examples
where (1) is satisfied.

Example 1. Suppose thatλ is the uniform distribution onS = [0, 1]2 and

φ(x) = γ sR(x) (3)

taking 00 = 1, wheresR(x) = ∑
{ξ,η}⊆x 1l[||ξ − η|| ≤ R] is the number of

R-close pairs of points inx, and where 0≤ γ ≤ 1 andR > 0 are parameters.
This specifies a Strauss process on the unit square [21, 11]. Clearly,φ is locally
stable.
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Example 2. Let S andλ be specified as in Example 1, but let now

φ(x) = γ −λ(Ux)

whereUx = ∪ξ∈xball(ξ, R) is the union of closed balls with centersξ ∈ x and
of radiusR, whereR > 0 andγ > 0 are parameters. This is an area interaction
point process [22, 2]. The process is said to be attractive forγ > 1, and repulsive
for γ < 1, since

φ(x ∪ ξ)/φ(x) = γ −λ(Ux∪ξ \Ux) (4)

is increasing(γ > 1) or decreasing(γ < 1) in x. It follows from (4) that (1)
holds in the attractive case, but not in the repulsive case. Ifγ < 1 we therefore
redefineν as a Poisson process with intensity measure(β/γ πR2

)λ, and redefineφ
by

φ(x) = γ n(x)πR2−λ(Ux).

Then (1) is satisfied.

3 Coupling construction

Below we construct two time-stationary and reversible spatial birth-and-death
processesX = {Xt : t ∈ R}andD = {Dt : t ∈ R}with equilibrium distributions
given byXt ∼ φ (with respect toν) andDt ∼ ν. The two processes are coupled
so thatD dominatesX in the sense that

Xt ⊆ Dt for all t ∈ R. (5)

This is obtained by letting(D, X) be a continuous time Markov processes with
the following types of transitions: either a new point is added to bothD and
X, or a birth happens inD but not inX, or a point inX is deleted from both
D andX, or a point inD but not inX is deleted. The coupling construction is
underlying the perfect samplers in Sections 4–6.

We first specify howDt can be generated forwards in timet ≥ 0. For any
x ∈ � andt ≥ 0, if we condition on thatDt = x, andτ is the waiting time for
the next transition inD after timet , then

• τ is exponentially distributed with mean 1/(β + n(x));

• with probabilityβ/(β + n(x)) a birth happens inD at timet + τ :
draw a pointξt+τ ∼ λ and setDt+τ = x ∪ ξt+τ — for later use in the
coupling construction, generate also a “mark”Rt+τ ∼ Uniform[0, 1];
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• else a death happens inD at timet + τ :
draw randomly uniformly a pointηt+τ from x and setDt+τ = x \ ηt+τ .

Furthermore, the conditional distributions ofτ , the event of a birth or death, and
the generation of either(ξ, Rt+τ ) or η are assumed to be mutually independent
and independent of the previous history givenDt = x. In other words, a birth of
a new point inD happens with rateβ and follows the distributionλ, each point
in D dies with rate 1, and births and deaths inD are independent events.

It is easily verified that{Dt : t ≥ 0} is reversible with invariant distributionν,
and all the marks associated to the birth times are mutually independent and
independent of{Dt : t ≥ 0}. Hence we can easily start in equilibriumD0 ∼ ν,
and by reversibility,Dt is easily generated backwards in timet < 0 together
with the associated marks for (forwards) birthsDt = Dt− ∪ ξt , wheret− refers
to the situation just before timet . Moreover, it is not hard to verify thatD is
non-explosive and∅ is an ergodic atom at whichD regenerates, see Fig. 1.

0
t

X

D

Figure 1: Upper curve: the dominating spatial birth-and-death processD; lower
curve: the spatial birth-and-death processX. The horizontal axis is time and the
vertical line corresponds to the state space� with ∅ placed at the bottom. Each
timeDt = ∅, the jump process(D, X) regenerates.

We show next howXt can be coupled toDt forwards in timet ∈ R. Forx ∈ �

andξ ∈ S \ x, define

b(x, ξ) = φ(x ∪ ξ)/φ(x) (6)

(setting 0/0 = 0). By (1),b ≤ 1, andβb is a so-called Papangelou conditionally
intensity [10]. Consider a cycle ofD given by{Dt : τ1 ≤ t < τ2} whereτ1 and
τ2 are two successive times at whichD enters∅, i.e. Dτ1− 
= ∅, Dτ1 = ∅, and
τ2 = inf {t > τ1 : Dt− 
= ∅, Dt = ∅} (with probability one,D enters∅ infinite
often, and−∞ < τ1 < τ2 < ∞). Then setXτ1 = ∅ and constructXt forwards
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in time t ∈ (τ1, τ2), according to the following rules:

Dt = Dt− ⇒ Xt = Xt−

Dt = Dt− ∪ ξt ⇒ Xt =
{

Xt− ∪ ξt if Rt ≤ b(Xt−, ξt )

Xt− otherwise

Dt = Dt− \ ηt ⇒ Xt = Xt− \ ηt .

Using this coupling construction for all cycles ofD, (5) is obviously satisfied.
It follows immediately from the coupling construction thatX is a spatial birth-

and-death process with birth rateβb and death rate 1. Asφ satisfies the detailed
balance conditionφ(x)b(x, ξ) = φ(x ∪ ξ), we obtain thatX is reversible with
invariant (unnormalized) densityφ. Hence, since(D, X) is time-stationary,
Xt follows φ for any fixed timet ∈ R.

In the case whereφ(x) = αn(x) with 0 ≤ α ≤ 1, we have that(D, X) is
reversible,X and {Dt \ Xt : t ∈ R} are independent spatial birth-and-death
processes, and for any fixed timet ∈ R, Xt andDt \Xt are independent Poisson
processes with intensity measuresαβλ and(1 − α)βλ, respectively. However,
it is easily checked that(D, X) is in general not reversible, and apart from the
Poisson case above, it seems complicated to obtain a closed form expression for
the equilibrium distribution of(D, X).

4 The simple dominated CFTP algorithm

A jump in D happens whenDt 
= Dt−, in which caset is called a jump time.
In order to generate a simulation ofX0 ∼ φ we need only to consider the jump
chain (or embedded Markov chain) of{Dt : t < 0}, its associated marks for
forwards births, and the states ofX when{Dt : t < 0} jumps. This is described
in detail below.

Let . . . , Z−2, Z−1, Z0 denote the jump chain of{Dt : t < 0} so thatZ0 =
D0 ∼ ν. This can be generated backwards in time together with the associated
marks for forwards births as follows. Fori = 0, −1, −2, . . . ,

• with probabilityβ/(β + n(Zi)) make a backwards birth:
drawηi ∼ λ and setZi−1 = Zi ∪ ηi ;

• else make a backwards death:
draw randomly uniformlyξi ∈ Zi , setZi−1 = Zi \ ξi , and generate the
associated markRi ∼ Uniform[0, 1] for the forwards birthZi = Zi−1∪ξi .

Let N0 = {0, 1, 2, . . . } and define

T0 = inf {i ∈ N0 : Z−i = ∅}.
Bull Braz Math Soc, Vol. 33, N. 3, 2002
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Furthermore, define recursivelyY−T0, . . . , Y0, settingY−T0 = ∅ and using the
rules

Zi = Zi−1 ∪ ξi ⇒ Yi =
{

Yi−1 ∪ ξi if Ri ≤ b(Yi−1, ξi)

Yi−1 otherwise
(7)

Zi = Zi−1\ηi ⇒ Yi = Yi−1\ηi (8)

for i = −T0 + 1, . . . , 0. Let · · · < τ−2 < τ−1 < τ0 denote the jump times of
D before time 0. Then(Xτ−T0

, . . . , Xτ0) and(Y−T0, . . . , Y0) follow the same
distribution. Especially,Y0 ∼ φ, sinceXτ0 = X0 almost surely. This suggests
the following perfect sampler.

The simple dominated CFTP algorithm.

1. Generate backwardsZ0, . . . , Z−T0, starting withZ0 ∼ ν, and generate
the associated marksRi for forwards birthsZi = Zi−1 ∪ ξi ;

2. setY−T0 = ∅ and constructY−T0+1, . . . , Y0 as in (7)–(8);

3. returnY0 ∼ φ; see Fig. 2.

0
t−T0

Y

Z

Y0 ∼ κ

Z0 ∼ ν

Figure 2: Illustration of the simple dominated CFTP algorithm.

Proposition. The mean number of steps involved in the backwards construction
of the simple dominated CFTP algorithm is bounded from below by

ET0 ≥ exp(β) − 1/2. (9)

Proof. Let Z1, Z2, . . . denote the jump chain of{Dt : t > 0}. SetMi = n(Zi)

for i ∈ Z, T −
0 = T0, T +

0 = inf {i ∈ N0 : Mi = 0}, L = inf {i ∈ N : Mi+T +
0

= 0},
andL0 = T −

0 + T +
0 if M0 
= 0 andL0 = L otherwise. By time-stationarity,

EL0 ≥ EL = 1/π0, (10)
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whereπ denotes the invariant probability density function ofM. By reversibility,
T −

0 andT +
0 are identically distributed, so

2ET0 = E
(
T −

0 + T +
0

) = E
(
L01[M0 
= 0]). (11)

Further,

E
(
L01[M0 = 0]) = π0E(L0|M0 = 0) = π0EL = 1. (12)

Combining (10)–(12) we obtain that

ET0 ≥ (1/π0 − 1)/2.

Finally, by detailed balance ofM,

πiβ/(β + i) = πi+1(i + 1)/(β + i + 1)

so by induction

πi+1 = π0β
i(β + i + 1)/(i + 1)!, i ∈ N0,

whereby 1/π0 = 2 exp(β), and so (9) follows.

Remark. SinceET0 is at least exponentially growing inβ, the simple domi-
nated CFTP algorithm is infeasible for real applications of interest. For instance,
if β = 100, thenET0 ≥ e100 − 1/2 ≈ 2.7 × 1043.

5 Upper and lower processes

A much faster perfect simulation algorithm is given in [14], using upper and
lower processesUj = {Uj

j , . . . , U
j

0 } andLj = {Lj

j , . . . , L
j

0} which are started
at timesj = 0, −1, −2, . . . . For eachj , the upper and lower processes are
constructed as follows. Initially setU

j

j = Zj andL
j

j = ∅. Fori = j +1, . . . , 0,

if z = Zi−1, u = U
j

i−1, andl = L
j

i−1, use the rules

Zi = z\ηi ⇒ U
j

i = u\ηi and L
j

i = l\ηi, (13)

Zi = z ∪ ξi ⇒ U
j

i =
{

u ∪ ξi if Ri ≤ αmax(u, l, ξi)

u otherwise

and L
j

i =
{

l ∪ ξi if Ri ≤ αmin(u, l, ξi)

l otherwise,
(14)
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where

αmax(u, l, ξ) = max{b(x, ξ) : l ⊆ x ⊆ u} (15)

and

αmin(u, l, ξ) = min{b(x, ξ) : l ⊆ x ⊆ u}. (16)

Notice thatUj, Lj , Uj−1, Lj−1, . . . are coupled by the sameRi, ξi, ηi for i > j .
The construction in (13)–(16) ensures the sandwiching property

L
j

i ⊆ Yi ⊆ U
j

i ⊆ Zi, j ≤ i ≤ 0, (17)

the funneling property

L
j ′
i ⊆ L

j

i ⊆ U
j

i ⊆ U
j ′
i , j ≤ j ′ ≤ i ≤ 0, (18)

and the coalescence property

L
j

i = U
j

i ⇒ L
j

i′ = U
j

i′ for j ≤ i ≤ i ′ ≤ 0, (19)

see Fig. 3. The sandwiching property explains why theUj andLj are called upper
and lower processes: they bound the “target process”Y . The definitions (15)–
(16) seem natural as they provide the minimal upper and maximal lower processes
so that (17) is satisfied for all possible realizations of the marksRi . By (17)
and (19), once a pair of upper and lower processes have coalesced, they stay in
coalescence, and at time 0 they are equal toY0 ∼ φ.

0
t−4 −2−8−T0

Y

Z

Y0 ∼ κ

Z0 ∼ ν

Figure 3: Illustration of sandwiching, funnelling, and coalescence properties for
T0 = 12 andj = −2, −4, −8 in (17)–(19).

The time

T = inf {j ∈ N0 : U
−j

0 = L
−j

0 }
is called the true coalescence time for upper and lower processes. The funneling
property (18) suggests that instead of searching forT it may be advantageous
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to search for a larger coalescence time. Therefore, consider any sequence of
(possibly random) integers. . . j2 < j1 < 0 such that limk→∞ jk = −∞, and let

T{jk} = inf {−jk : U
jk

0 = L
jk

0 }
be the first time thatUj

0 = L
j

0 = Y0 when pairs of upper and lower processes
are started at timesj = j1, j2, . . . . Further, let

Tmin = inf {i ∈ N0 : Z−i ∩ Z0 = ∅}
be the time just before the first point inZ0 is born. For−Tmin < j ≤ 0, we have
thatUj

0 ⊇ Zj ∩ Z0 
= ∅ andL
j

0 ∩ Zj = ∅, so clearly

Tmin ≤ T ≤ T{jk} ≤ T0. (20)

For efficiency reasons a doubling scheme is usually used [19, 24], i.e.jk =
−2k−1n, wheren ∈ N is chosen by the user; then we writeTn for T{jk}. Typically
in applicationsTn � T0, cf. Section 7. Taking (20) into account, we propose to
replacen by Tmin in the doubling scheme; then we writeT∗ for T{jk}. See also
the empirical results in Section 7.

Given a sequence of (possibly random) integers. . . j2 < j1 < 0 such that
limk→∞ jk = −∞, we have the following perfect sampler, where we setj0 = 0.

The dominated CFTP algorithm based on upper and lower processes

1. GenerateZ0 ∼ ν;

2. repeat the following steps 3.–4. fork = 1, 2, . . . until Ujk

0 = L
jk

0 ;

3. generate backwardsZjk−1−1, . . . , Zjk
and generate the associated marks

Ri ∼ Uniform[0, 1] each timeZi \ Zi−1 
= ∅, jk < i ≤ jk−1;

4. generate forwards(Ujk

jk
, L

jk

jk
), . . . , (U

jk

0 , L
jk

0 ) as in (13)–(14);

5. returnU
−T{jk }
0 ∼ φ.

The calculation ofαmax andαmin is particularly simple in the following cases.
A point process is attractive if

b(x, ξ) ≤ b(y, ξ) whenever x ⊆ y, ξ 
∈ y, (21)

and repulsive if

b(x, ξ) ≥ b(y, ξ) whenever x ⊆ y, ξ 
∈ y. (22)
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For the Strauss and area interaction point processes (Examples 1 and 2), ei-
ther (21) or (22) is satisfied. In the attractive case (21),αmax(u, l, ξ) = b(u, ξ)

andαmin(u, l, ξ) = b(l, ξ), while in the repulsive case (22),αmax(u, l, ξ) =
b(l, ξ) andαmin(u, l, ξ) = b(u, ξ). Note that it is only in the attractive case that
Uj andLj are individual Markov chains.

It other situations it may be quite time consuming to calculateαmax andαmin

by (15) and (16). For instance, ifb(x, ξ) = ba(x, ξ)br(x, ξ) factorizes into two
terms, whereba(x, ξ) ≤ Ka is increasing inx, br(x, ξ) ≤ Kr is decreasing inx,
andKaKr ≤ 1, it may be convenient to redefineαmax andαmin by

αmax(u, l, ξ) = ba(u, ξ)br(l, ξ) and αmin(u, l, ξ) = ba(l, ξ)br(u, ξ).

Since (17)–(19) are satisfied with this choice ofαmax andαmin, the algorithm still
works.

Example 1 (continued): Perfect simulations of different Strauss processes
with γ = 1 (the Poisson case),γ = 0.5, andγ = 0 are shown in Fig. 4, using
the same dominating process (and associated marks) in all three cases. Due to
the thinning procedure in the algorithm, the point pattern withγ = 1 contains
the two others. The point pattern withγ = 0 does not contain the point pattern
with γ = 0.5, because the Strauss process is repulsive.

Figure 4: Simulation of a Strauss process onS = [0, 1]2, whenβ = 100,
R = 0.05, andγ = 1, 0.5, 0 (from left to right).

6 Clan of ancestors

In this section we consider an alternative algorithm due to [5]. For simplicity
we assume thatS is a metric space andφ has finite range of interaction, i.e.
there exists anR < ∞ such that for anyx ∈ � and ξ ∈ S\x, b(x, ξ) =
Bull Braz Math Soc, Vol. 33, N. 3, 2002
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b(x ∩ ball(ξ, R), ξ), where ball(ξ, R) denotes the ball with centerξ and radius
R. This is fulfilled in Examples 1 and 2.

In order to understand the following definitions it may be useful to consider
Fig. 5 and to keep in mind how the simple dominated CFTP algorithm (Section 4)
works. Forξ ∈ ∪i≤0Zi , let I (ξ) be the time at whichξ was born, i.e.I (ξ) = i

if ξ = ξi in (7). We call

an1(ξ) = ZI(ξ)−1 ∩ ball(ξ, R)

the first generation of ancestors ofξ , define recursively thej th generation of
ancestors ofξ by

anj (ξ) = ∪η∈anj−1(ξ)an1(η), j = 2, 3, . . . ,

and call an(ξ) = ∪j∈Nanj (ξ) the ancestors ofξ . If I (ξ) = i, thenYi−1 ∩
ball(ξ, R) ⊆ an(ξ), so the ancestors ofξ = ξi are the only points inZ which are
needed in (7) in order to determine whether or notξi ∈ Yi . HenceY0 depends
only onZ throughZC = C(Z0) ∪ Z0, where

C(Z0) = ∪ξ∈Z0an(ξ)

is called theclan of ancestors of Z0. Finally, let

TC = inf {i ∈ N0 : Z−i ∩ ZC = ∅}
specify the time interval in which the points inZC are living. ThenTC ≤ T0,
and Y0 is unaffected if we setY−TC

= ∅ and generateYi forwards in time
i ≥ −TC as usual, but considering only the transitions inZ−TC

∩ ZC, . . . ,

Z0 ∩ ZC .

The dominated CFTP algorithm based on the clan of ancestors

1. Generate backwardsZ0, . . . , Z−TC
, i.e. starting withZ0 ∼ ν;

2. setY−TC
= ∅ and generate forwardsY−TC+1, . . . , Y0 as in (7)– (8), but so

thatYi+1 = Yi is unchanged wheneverZi+1∩ZC = Zi ∩ZC is unchanged;

3. returnY0 ∼ φ.

It is not hard to see thatT ≤ TC , so

T ≤ TC ≤ T0. (23)

Note thatTC depends only onb throughR, and no monotonicity properties such
as (21) and (22) are required. The algorithm can easily be modified to perfect
Metropolis-Hastings simulation of locally stable point processes [14], and to
perfect Gibbs sampling of the [22] model [9] and related models [6]. The case
of the Widom-Rowlinson model turns out to be particularly simple.
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t

S

0−TC

Figure 5: Example of a clan of ancestors whenS is a line segment. The points
in D agree with the midpoints of the vertical edges of the rectangles. Each
horizontal edge of a rectangle shows the life time of the corresponding point inD.
The vertical edges are all of lengthR. Shaded rectangles represent members of
the clan.

7 Empirical findings

In this section we present some empirical findings for the dominated CFTP
algorithm based on upper and lower processes (Section 5) and the clan algorithm
(Section 6), respectively. The algorithms are applied on a Strauss process defined
on the unit square withβ = 100 andR > 0 (Example 1). Note that as the
interaction parameterγ increases, the interaction/repulsion between the points
in the Strauss process decreases. Below we consider three values ofγ : γ = 0
(a so-called hard core process),γ = 0.5, andγ = 1 (a Poisson process on the
unit square with rateβ = 100).

First we consider the algorithm based on upper and lower processes, using the
doubling scheme with eithern = 1 orn replaced byTmin. Recall thatT1 andT∗
denote the corresponding coalescence times, cf. Section 5. The number of steps
involved in the backward-forwards construction in the two cases are given by

N1 ≡ T1 + (1 + 2 + 4 + . . . + T1) = 3T1 − 1

and

Nmin ≡ T∗ + (Tmin + 2Tmin + 4Tmin + . . . + T∗) = 3T∗ − Tmin,

respectively. It makes sense to compareN1 andNmin because the “basic algo-
rithm” is the same in the two cases.

The left plot in Fig. 6 shows how the meansEN1 andENmin depend onR > 0
whenγ = 0. Each mean is estimated by the empirical average based on 500
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Figure 6: Various mean values related to the CFTP algorithms, where each mean
is estimated from 500 independent runs. Left plot:EN1 (full line) andENmin

(dotted line) versusR. Right plot: ETC (full line) andET∗ whenγ = 0 (upper
dotted line) andγ = 0.5 (lower dotted line) versusR.

independent runs of the algorithm. For all values ofR in the plot,ENmin < EN1,
but the difference decreases asR increases. Based on this and other results (not
shown here) we prefer to replacen by Tmin in the doubling scheme.

Next we compare the dominated CFTP algorithm based on upper and lower
processes and the clan algorithm. As these algorithms are not immediately
comparable, there is little sense in comparing the number of steps involved in
the backwards-forwards construction in the two algorithms. Instead we just
consider the meansET∗ andETC for R > 0 and eitherγ = 0 orγ = 0.5, though
this is of course not telling the whole story about which algorithm is the fastest.

The right plot in Fig. 6 showsET∗ and ETC versusR when γ = 0 and
γ = 0.5, respectively. Note thatTC does not depend onγ , and each mean in the
plot is estimated by the empirical average based on 500 independent runs of the
algorithm. All means in the plot are much smaller thanET0 ≥ e100−1/2, cf. (9).
As expected the means agree asR tends to 0, andET∗ decreases asγ increases.
For bothγ = 0 andγ = 0.5, it is only for rather small values ofγ that ET∗
is larger thanETC . The picture changes asγ tends to 1, since in the limitT∗
agrees withTmin which is smaller thanTC , cf. (20) and (23). Furthermore, asR

increases,ET∗ becomes much smaller thanETC .
We have also investigated empirically howETC andET∗ depend onβ, and

obtained similar conclusions as above. Further empirical results for the Strauss
process and other locally stable point processes can be found in [3].

Finally, all things considered our conclusion is that the dominated CFTP al-
gorithm based on upper and lower processes using the doubling scheme withn

replaced byTmin seems to be the best choice.
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8 Perfect simulation of infinite point processes

Often one considers point processes with infinitely many points contained in an
“infinite volume” such asRd . In order to avoid edge-effects, a perfect sample
within a bounded region may be achieved by extending simulations both back-
wards in time and space [12, 5, 6]. This is sometimes possible, for example
if b is sufficiently close to 1 and the interaction radiusR is sufficiently small.
The constructions in the abovementioned papers are rather straightforward, but
particularly the algorithm in [5] allows a detailed mathematical analysis. Such
coupling constructions may be of great theoretical interest, but in our opinion
they remain so far unpractical for applications of real interest.
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