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Abstract. This primer provides a self-contained exposition of the case where spatial
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cesses. Particularly, a simple dominating coupling from the past (CFTP) algorithm and
the CFTP algorithms introduced in [13], [14], and [5] are studied. Some empirical
results for the algorithms are discussed.
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1 Introduction

One of the most exciting and important recent developments in Markov chain
Monte Carlo (MCMC) is perfect or exact simulation. Following the seminal
work by [19] many new perfect simulation ideas have appeared, particularly
for spatial point processes, cf. the survey in [17]; see also Wilson’s web site
(http://dimacs.rutgers.edufiwilson/exact.html). The aims of this paper are to
review and compare the performance of some perfect simulation algorithms
which apply on a rather general class of point processes, viz. locally stable point
processes. For simplicity, apart from Section 8, we consider only finite point
processes.

We focus on algorithms based on dominated (or horizontal) coupling from
the past (CFTP) using spatial birth-and-death processes; alternative and efficient
perfect samplers have been developed for some special models, see [17] and
the references therein. In [14] dominated CFTP is treated in a general context
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352 KASPER K. BERTHELSEN AND JESPER M@LLER

and applied on locally stable point processes using either spatial birth-and-death
processes or a Metropolis-Hastings algorithm. Inthis paperwe give an alternative
and self-contained exposition of the case where spatial birth-and-death processes
are used. A spatial birth-and-death process is a continuous time Markov process
where each transition consists in either adding a new point to the process (a birth)
or deleting an existing point from the process (a death). Background material
on spatial birth-and-death processes can be found in [18] and [16], but it is not
needed in the present paper. Extensions of the algorithms considered in this
paper are given in [4] using spatial jump processes. Another extension which
is not treated in this paper, is Wilson’s 2000a read-once version of CFTP. This
algorithm applies also on locally stable point processes, and it drastically reduces
the storage requirements.

The paper is organized as follows. Section 2 describes the setting for spatial
point processes used in this paper, and it is explained what is meant by local
stability. Section 3 specifies a coupling construction which is underlying the
perfect samplers considered later. Section 4 discusses a very simple perfect
simulation algorithm, and we show that it is too slow for practical purposes.
Section 5 describes a more efficient algorithm based on so-called upper and
lower processes [13, 14]. Section 6 describes an alternative algorithm using
so-called clans of ancestors [5]. Section 7 discusses some empirical findings
for the various perfect simulation algorithms. Section 8 concludes with some
comments on extensions to infinite point processes.

2 Background

Throughout this paper we consider a fairly general setting for a spatial point
process, defined on a spacg equipped with ar-algebraB which contains all
singleton sets, and a diffuse probability measuree. {£} € B andi({é}) =0
for all £ € S. For simplicity we assumeg to be a finite subset af, though
everything in the sequel easily extend to the case wheieallowed to have
multiple points and. is not necessarily diffuse.

The state space of is the set of all finite point configuration® =
Ursolx € S : n(x) = i}, wheren(x) denotes the number of points in
for i = 0 we have the empty point configuration= . We equipQ2 with the
smallests-algebra making the mappings (x) = n(x N B) measurable for all
B € ‘B. Further,v denotes a Poisson point process$with intensity mea-
sureBi, whereg > 0 is a parameter. In other words,jffollows v, thenn(yx)
is Poisson distributed with meah and conditionally om(x) = i, thei points
in x are independent and each point has distributiorSpecifically one may

Bull Braz Math Soc, Vol. 33, N. 3, 2002



A PRIMER ON PERFECT SIMULATION FOR SPATIAL POINT PROCESSES 353

think of S = [0, 1]? as the unit square} as the Borel sets, aridas the uniform
distribution, in which case is a standard Poisson process. However, our general
setting covers many other cases, including situations wjesan be interpret
as a multitype or marked point process, see e.g. [1] and [15].

We assume that the distribution pfis specified by an unnormalized densjty
with respect ta, so thaty is non-increasing in the following sense:

Pp(xUE) <¢(x) forallx e Sandé € S\ x Q)

(we abuse the notation and writeJ £ for x U {&}, x \ n for x \ {n}, etc., when
x € Q,& € §\ x,n € x). This condition implies integrability ap with respect
tov. Particularly, (1) is needed for the perfect simulation algorithms considered
in this paper.

For a moment consider any unnormalized dengityith respect ta. Local
stability of¢ means that for some constant> O and allk € Q andallé € S\ x,

Pp(xUE) < Ko(x) 2

[20]. This is a basic assumption in many papers: for example, [7] establishes
geometric ergodicity of a birth-death type Metropolis-Hastings algorithm for
locally stable point processes [8]; and [14] show that it is a sufficient condition
for applying dominated CFTP based on spatial birth-and-death processes and
Metropolis-Hastings algorithms. Local stability is in fact a rather weak condition
satisfied by most models considered in the statistical literature on spatial point
processes, cf. the discussion in [14]. The concept of local stability is extended
in [4] to cases where the dominating measuienot necessary a Poisson process.

As K can be absorbed into the parametave may without loss of generality
setK = 1in(2), whereby (1) is obtained. Below we consider just two examples
where (1) is satisfied.

Example 1. Suppose that is the uniform distribution oi§ = [0, 1]? and

¢ (x) = y*rW 3)

taking @ = 1, wheresz(x) = Z{s,n}gx A[||€ — n|| < R] is the number of
R-close pairs of points i, and where O< ¥y < 1 andR > 0 are parameters.
This specifies a Strauss process on the unit square [21, 11]. Clg#ligcally
stable.
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Example2. LetS andx be specified as in Example 1, but let now

$x) =y

whereU, = Ugc,ball(&, R) is the union of closed balls with centegs= x and

of radiusR, whereR > 0 andy > 0 are parameters. This is an area interaction
point process [22, 2]. The process is said to be attractive ferl, and repulsive
fory < 1, since

P(x UE)/p(x) =y HUxe\U 4)

is increasing’y > 1) or decreasingy < 1) in x. It follows from (4) that (1)
holds in the attractive case, but not in the repulsive case.<f1 we therefore
redefiney as a Poisson process with intensity measﬂye”Rz)A, and redefing

by
b (x) = yn(x)rrsz)»(UX).

Then (1) is satisfied.

3 Coupling construction

Below we construct two time-stationary and reversible spatial birth-and-death
processeX = {X, : t € R}andD = {D, : t € R}withequilibrium distributions
given byX; ~ ¢ (with respect ta)) andD, ~ v. The two processes are coupled
so thatD dominatesX in the sense that

X, € D, forallr e R. (5)

This is obtained by lettingD, X) be a continuous time Markov processes with
the following types of transitions: either a new point is added to lintand
X, or a birth happens i® but not inX, or a point inX is deleted from both
D andX, or a point inD but not inX is deleted. The coupling construction is
underlying the perfect samplers in Sections 4-6.

We first specify howD, can be generated forwards in time> 0. For any
x € Q andt > 0, if we condition on thaD, = x, andr is the waiting time for
the next transition irD after timez, then

* 7 is exponentially distributed with mean @ + n(x));

 with probability 8/(8 + n(x)) a birth happens iD at timet + t:
draw a pointt,., ~ A and setD,,, = x U &, — for later use in the
coupling construction, generate also a “marg’, ; ~ Uniform[O, 1];
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* else a death happensinat timer + :
draw randomly uniformly a poing,, . from x and setD;, ; = x \ n;4+.

Furthermore, the conditional distributionsmfthe event of a birth or death, and
the generation of eithdg, R,,.) or n are assumed to be mutually independent
and independent of the previous history given= x. In other words, a birth of

a new point inD happens with ratg and follows the distribution., each point

in D dies with rate 1, and births and deathdirare independent events.

It is easily verified thaf D, : + > 0} is reversible with invariant distribution,
and all the marks associated to the birth times are mutually independent and
independent of D, : r > 0}. Hence we can easily start in equilibriuby ~ v,
and by reversibility,D; is easily generated backwards in time< O together
with the associated marks for (forwards) biribs= D,_ U &,, wheret— refers
to the situation just before time Moreover, it is not hard to verify thab is
non-explosive and is an ergodic atom at which regenerates, see Fig. 1.

>t

0

Figure 1: Upper curve: the dominating spatial birth-and-death prdeeksver
curve: the spatial birth-and-death procé&ssThe horizontal axis is time and the
vertical line corresponds to the state sp&ceith @ placed at the bottom. Each
time D, = ¢, the jump procesgD, X) regenerates.

We show next howk, can be coupled t®, forwards intime € R. Forx € Q
and¢ € S\ x, define

b(x,8) =¢(xUE)/¢(x) (6)

(setting 0 = 0). By (1),b < 1, andBb is a so-called Papangelou conditionally
intensity [10]. Consider a cycle db given by{D, : 11 <t < 1} wherer; and
7, are two successive times at whi¢hentersf, i.e. D,,_ # ¢, D, = ¢, and
7, =inf{r > ry : D,_ # @, D, = @} (with probability one,D entersy infinite
often, and—oco < 11 < 12 < 00). Then setX,, = ¥ and construck, forwards
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intimet € (1, 72), according to the following rules:
D,=D,_ = X, =X,_
X._UE ifR <b(X,_,&)
X,_ otherwise
Di=D;,_\n = X,=X,_\n.

Using this coupling construction for all cycles bBf, (5) is obviously satisfied.

It follows immediately from the coupling construction thais a spatial birth-
and-death process with birth rg8®é and death rate 1. Ag satisfies the detailed
balance conditio (x)b(x, §) = ¢(x U &), we obtain thafX is reversible with
invariant (unnormalized) density. Hence, sincgD, X) is time-stationary,
X, follows ¢ for any fixed timer € R.

In the case where(x) = o«"® with 0 < « < 1, we have thatD, X) is
reversible,X and{D, \ X, : t € R} are independent spatial birth-and-death
processes, and for any fixed time R, X, andD, \ X, are independent Poisson
processes with intensity measurg®. and(1 — «)BA, respectively. However,
it is easily checked thatD, X) is in general not reversible, and apart from the
Poisson case above, it seems complicated to obtain a closed form expression for
the equilibrium distribution of D, X).

Dt:Dt—UEt = X, =

4 Thesimpledominated CFTP algorithm

A jump in D happens whem, # D,_, in which case is called a jump time.
In order to generate a simulation &f, ~ ¢ we need only to consider the jump
chain (or embedded Markov chain) @b, : ¢+ < 0}, its associated marks for
forwards births, and the statesX¥fwhen{D; : ¢t < 0} jumps. This is described
in detail below.

Let...,Z_5, Z_1, Zy denote the jump chain diD; : ¢+ < 0} so thatZ, =
Do ~ v. This can be generated backwards in time together with the associated
marks for forwards births as follows. Foe= 0, -1, -2, ...,

 with probability 8/(8 4+ n(Z;)) make a backwards birth:
drawn; ~ A and setZ,_, = Z; U n;;

» else make a backwards death:
draw randomly uniformhg; € Z;, setZ;, 1 = Z; \ &;, and generate the
associated marR; ~ Uniform[0, 1] for the forwards birtt¥Z; = Z;_1U§&;.

LetNg = {0, 1, 2, ...} and define
To = Inf{l eNg:Z_; = @}
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Furthermore, define recursivel, r,, ... , Yo, settingY_z, = ¥ and using the
rules

Yi— U i |f Ri <pb Yi— L&
Zi=Z7Zi1U§ = Y= 1U§ —_( 1. §i) 7
Yi_1 otherwise

Zi=Zi_1\ni = Yi=Yi_1\n (8)
fori = -To+1,...,0. Let--- < 75 < 7_1 < 10 denote the jump times of
D before time 0. TheanLTO, ooy Xg) and(Y_g, ... , Yp) follow the same

distribution. Especiallyyy ~ ¢, sinceX,, = X almost surely. This suggests
the following perfect sampler.

The simple dominated CFTP algorithm.
1. Generate backwards, ..., Z_g,, starting withZ, ~ v, and generate
the associated marl® for forwards birthsZ; = Z;,_; U &;;
2. setY_z, = ¥ and construc¥_rz,1, ... , Yo as in (7)—(8);
3. returnYy ~ ¢; see Fig. 2.

7Z
/ Y H\/ \/ ZO v
///—>4>/ I N Yo~k
— -
T 0

Figure 2: lllustration of the simple dominated CFTP algorithm.

Proposition. The mean number of steps involved in the backwards construction
of the simple dominated CFTP algorithm is bounded from below by

ETo > exp(B) — 1/2. )
Proof. LetZ,, Z,, ... denote the jump chain¢D, : r > 0}. SetM; = n(Z;)

fori e Z, Ty =To, Ty =inf{i e Ng: M; =0}, L = inf{i e N: M, 7+ = 0},
andLo =T, + TOJr if My # 0andLg = L otherwise. By time-stationarity,

ELy>EL = 1/]‘[0, (10)
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wherer denotes the invariant probability density functioof By reversibility,
T, and7y" are identically distributed, so

2BTy = E(Ty + Ty') = E(Lol[Mo # 0]). (11)

Further,
E(Lol[Mo = 0]) = moE(Lo|Mo = 0) = moEL = 1. (12)
Combining (10)—(12) we obtain that
ETy > (1/7mo — 1) /2.
Finally, by detailed balance aff,
mip/(B+i) =mina(@+1D/(B+i+1)

so by induction

mi=mof (B+i+ /G + D!, ieN,

whereby ¥Ymg = 2 exp(8), and so (9) follows.

Remark. SinceET; is at least exponentially growing i, the simple domi-
nated CFTP algorithm is infeasible for real applications of interest. For instance,
if 8 =100, therETy > ¢ —1/2 ~ 2.7 x 10%,

5 Upper and lower processes

A much faster perfect simulation algorithm is given in [14], using upper and

lower processe/ = {U7, ... ,UJ}andL/ = {L’, ..., L]} which are started
attimes; = 0,-1,-2,.... For eachj, the upper and lower processes are
constructed as follows. Initiallysé}t} =7 andLj. =§. Fori=j+1,...,0,

if =2, 1,u=U/,,andl = L/_,, use the rules

1

Zi=z\m = U ' =u\np; and L] =I\n, (13)
Zi=7Uf = Ul = uUg  if R < omax(u, 1, &)
l [ ' u otherwise
and L/ — l U Si If Ri =< amin(uv l? SZ) (14)
' l otherwise
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where

omax(u, [, &) = max{b(x,§) : 1 S x C u} (15)
and

Amin(t, 1, £) = min{b(x, ) : 1 C x C u). (16)

Notice that//, L/, U/=1, L/~ ... are coupled by the san, &;, n; fori > j.
The construction in (13)—(16) ensures the sandwiching property

Licy,cu/cz, j<i<o, (17)
the funneling property
LicLlculcu/, j<j<i=<o (18)
and the coalescence property
Ll=U' = L,=U) forj<i<i <0 (19)

see Fig. 3. The sandwiching property explains whylthendL’ are called upper

and lower processes: they bound the “target procEssThe definitions (15)—

(16) seem natural as they provide the minimal upper and maximal lower processes
so that (17) is satisfied for all possible realizations of the m#&ksBy (17)

and (19), once a pair of upper and lower processes have coalesced, they stay in
coalescence, and at time 0 they are equabte- ¢.

Z

/\/\ » /o~ U

/// r '/ \/>‘4"' YE) ~ K
A

—To -8 —4 —

\\

o
o

: >
Figure 3: lllustration of sandwiching, funnelling, and coalescence properties for
To=12 andj = -2, —4, —8in (17)—(19).
The time
T =inf{j e No: Uy’ = Lg'}

is called the true coalescence time for upper and lower processes. The funneling
property (18) suggests that instead of searchingfarmay be advantageous
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to search for a larger coalescence time. Therefore, consider any sequence of
(possibly random) integers. j, < ji1 < 0 such thatlim_, , jx = —o0, and let

T = inf{—ji : U = L¥)

be the first time thaU({ = Lé = Yo when pairs of upper and lower processes
are started at timegs= ji, j», .... Further, let

be the time just before the first point#y is born. For—Tmin < j < 0, we have
thatU 2 Z;, N Zo # YandL{N Z; = ¢, so clearly

Thin =T =< T{jk} < Tp. (20)

For efficiency reasons a doubling scheme is usually used [19, 24]ji.e.
—21n, wheren € Nis chosen by the user; then we writgfor 77 ;,,. Typically
in applicationsT,, « Ty, cf. Section 7. Taking (20) into account, we propose to
replacen by Tmin in the doubling scheme; then we write for 7,,,. See also
the empirical results in Section 7.

Given a sequence of (possibly random) integersi> < j; < 0 such that
lim,_ - jx = —o0, we have the following perfect sampler, where wejget 0.

The dominated CFTP algorithm based on upper and lower processes

1. Generat&Zg ~ v;
2. repeat the following steps 3.—4. foe= 1, 2, ... until UJ* = LY;

3. generate backwards;, ,_1, ..., Z; and generate the associated marks
R; ~ Uniform[0, 1] eachtimeZ; \ Z;_1 # 0, jix <i < ji_1;
4. generate forwardd@//*, L), ... (Ug", L}) as in (13)~(14);

5. returnU, ' ~ ¢.

The calculation obrmax andamn is particularly simple in the following cases.
A point process is attractive if

b(x,&) <b(y,&) whenever xCy, &€y, (21)
and repulsive if
b(x,&) = b(y,&§)  whenever xCy,&¢y. (22)
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For the Strauss and area interaction point processes (Examples 1 and 2), ei-
ther (21) or (22) is satisfied. In the attractive case (@h)x(u, [, &) = b(u, &)
andamin(u, 1, &) = b(, &), while in the repulsive case (22¢max(u, [, &) =
b(l, &) andamin(u, 1, £) = b(u, £). Note that it is only in the attractive case that
U’/ andL/ are individual Markov chains.

It other situations it may be quite time consuming to calculatg andomin
by (15) and (16). For instance,#fx, £§) = b,(x, )b, (x, &) factorizes into two
terms, whereé, (x, £) < K, isincreasing i, b, (x, §) < K, is decreasing in,
andK,K, < 1, it may be convenient to redefing,ax andomin by

amax(ut, 1, &) = by(u,§)b,(1,§) and amin(u, 1, §) = ba(l,§)b; (u, §).

Since (17)—(19) are satisfied with this choicexgfx andomin, the algorithm still
works.

Example 1 (continued): Perfect simulations of different Strauss processes
with y = 1 (the Poisson case), = 0.5, andy = 0 are shown in Fig. 4, using

the same dominating process (and associated marks) in all three cases. Due to
the thinning procedure in the algorithm, the point pattern wite: 1 contains

the two others. The point pattern with= 0 does not contain the point pattern

with y = 0.5, because the Strauss process is repulsive.

+

% S S
. oy N + o+ 4 +  ++
+ + 7 + 7 + 7
+ + + + + +
T AR T AR + *
" S ; " T " oL+ ++
ot + o4 + oL T+ + oL T+
L i + * L o + I A
+ s + + + + + + +
H + + + +
i I fo+ 4 YOl + + + . + +
n * +r + + +r + . + g
+ e + + +
=+ =+ + =+ +
i Tor i + + ot
+ + + + + +
+ + +
-+ - w7t 4| |t - + 4| |+ + + +
+ 5 7
+ i+ + + +
E¥RLs + 4 + + + 4 +F +

Figure 4: Simulation of a Strauss process $nr= [0, 1]2, when = 100,
R =0.05, andy = 1, 0.5, 0 (from left to right).

6 Clan of ancestors

In this section we consider an alternative algorithm due to [5]. For simplicity
we assume thaf is a metric space and has finite range of interaction, i.e.
there exists arR < oo such that for anyw € Q andé e S\x, b(x,&) =
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b(x Nball(&, R), &), where ballé, R) denotes the ball with centérand radius
R. This is fulfilled in Examples 1 and 2.

In order to understand the following definitions it may be useful to consider
Fig. 5 andto keep in mind how the simple dominated CFTP algorithm (Section 4)
works. Foré € U;-0Z;, let I (¢) be the time at whicl§ was born, i.el(§) =i
if £ =& in (7). We call

an'(§) = Z; -1 Nballé, R)

the first generation of ancestors &f define recursively thgth generation of
ancestors of by

an](s) = Uneanj—l@)anl(n), ] = 2, 3, ey
and call a¢) = U;cyar (£) the ancestors of. If 1(§) = i, thenY;_; N
ball(¢, R) C an(&), so the ancestors §f= &; are the only points it which are
needed in (7) in order to determine whether or §iot Y;. HenceY, depends
only on Z throughZ. = C(Zy) U Zy, where
C(Zo) = Ugezoan(§)
is called theclan of ancestors of Z,. Finally, let
Tc = Inf{l eNg:Z_NZc =0}

specify the time interval in which the points Ky are living. ThenT < T,
and Yy is unaffected if we set_;. = ¢ and generatd; forwards in time
i > —T¢ as usual, but considering only the transitions2nz. N Zc, ...,
ZoN Zc.

Thedominated CFTP algorithm based on the clan of ancestors
1. Generate backwards, ... , Z_g., i.e. starting withZy ~ v;

2. setY_r. = ¢ and generate forwards 7.1, ... , Ypasin (7)—(8), but so
thatY;,1 = Y; isunchanged whenevé&r,.NZ- = Z;NZ¢ isunchanged,;

3. returnYgy ~ ¢.
It is not hard to see that < T, so
T <Te<To (23)

Note thatT¢ depends only oh throughR, and no monotonicity properties such

as (21) and (22) are required. The algorithm can easily be modified to perfect
Metropolis-Hastings simulation of locally stable point processes [14], and to

perfect Gibbs sampling of the [22] model [9] and related models [6]. The case
of the Widom-Rowlinson model turns out to be particularly simple.
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T 0

Figure 5: Example of a clan of ancestors witis a line segment. The points

in D agree with the midpoints of the vertical edges of the rectangles. Each
horizontal edge of a rectangle shows the life time of the corresponding pd@ntin
The vertical edges are all of length Shaded rectangles represent members of
the clan.

7 Empirical findings

In this section we present some empirical findings for the dominated CFTP
algorithm based on upper and lower processes (Section 5) and the clan algorithm
(Section 6), respectively. The algorithms are applied on a Strauss process defined
on the unit square witl8 = 100 andR > 0 (Example 1). Note that as the
interaction parameter increases, the interaction/repulsion between the points
in the Strauss process decreases. Below we consider three values et 0
(a so-called hard core procesg)= 0.5, andy = 1 (a Poisson process on the
unit square with rat@ = 100).

First we consider the algorithm based on upper and lower processes, using the
doubling scheme with either = 1 orn replaced byl,. Recall thatT; andT,
denote the corresponding coalescence times, cf. Section 5. The number of steps
involved in the backward-forwards construction in the two cases are given by

N1£T1+(1+2+4++T1)=3T1—1
and
Nmin = Ty + (Thin + 2Tmin + 4Tmin + ... + T,) = 3T — Tmin,

respectively. It makes sense to compakeand Ny, because the “basic algo-
rithm” is the same in the two cases.

The left plot in Fig. 6 shows how the meafia/; andE Ny, depend orR > 0
wheny = 0. Each mean is estimated by the empirical average based on 500
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1076
104

A
106 5*10A3
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0.0 0.05 0.10 0.0 0.05 0.10 0.15

Figure 6: Various mean values related to the CFTP algorithms, where each mean
is estimated from 500 independent runs. Left plBty; (full line) and ENmin
(dotted line) versuk. Right plot: ET¢ (full line) andIET, wheny = 0 (upper
dotted line) and’ = 0.5 (lower dotted line) versug.

independent runs of the algorithm. For all value®ah the plot,ENmin < ENj,
but the difference decreasesRincreases. Based on this and other results (not
shown here) we prefer to replagédy Trin in the doubling scheme.

Next we compare the dominated CFTP algorithm based on upper and lower
processes and the clan algorithm. As these algorithms are not immediately
comparable, there is little sense in comparing the number of steps involved in
the backwards-forwards construction in the two algorithms. Instead we just
consider the mearsT, andET. for R > 0 and eithely = 0 ory = 0.5, though
this is of course not telling the whole story about which algorithm is the fastest.

The right plot in Fig. 6 show&7, and E7. versusR wheny = 0 and
y = 0.5, respectively. Note th&f- does not depend gn, and each mean in the
plot is estimated by the empirical average based on 500 independent runs of the
algorithm. All means in the plot are much smaller ti#y > ¢°—1/2, cf. (9).

As expected the means agreeratends to 0, and T, decreases gsincreases.
For bothy = 0 andy = 0.5, it is only for rather small values of thatET,
is larger thanET,. The picture changes astends to 1, since in the limif,
agrees withlmin, which is smaller tharf, cf. (20) and (23). Furthermore, &
increaseskET, becomes much smaller th&T..

We have also investigated empirically hd@¥- andET, depend orB, and
obtained similar conclusions as above. Further empirical results for the Strauss
process and other locally stable point processes can be found in [3].

Finally, all things considered our conclusion is that the dominated CFTP al-
gorithm based on upper and lower processes using the doubling scheme with
replaced by, seems to be the best choice.
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8 Perfect simulation of infinite point processes

Often one considers point processes with infinitely many points contained in an
“infinite volume” such aR?. In order to avoid edge-effects, a perfect sample
within a bounded region may be achieved by extending simulations both back-
wards in time and space [12, 5, 6]. This is sometimes possible, for example
if b is sufficiently close to 1 and the interaction radiRss sufficiently small.

The constructions in the abovementioned papers are rather straightforward, but
particularly the algorithm in [5] allows a detailed mathematical analysis. Such
coupling constructions may be of great theoretical interest, but in our opinion
they remain so far unpractical for applications of real interest.
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