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Learning Markov chainsin fractal compression
of image data

LauraM. Morato and Paola Siri

Abstract. Inarecent paper [17] we proposed a stochastic algorithm which generates
optimal probabilities for the decompression of an image represented by the fixed point
of an IFS system (SAOP). We show here that such an algorithm isin fact a non trivial
example of Generalized Random System with Complete Connections. We aso exhibit
ageneralization which could represent the solution to the inverse problem for an image
with grey levels, if afixed set of contraction mapsis available.
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1 Introduction

This paper is concerned with the problem of compressing image data, by means
of Iterated Function Systems or of Iterated Function Systems with Probability
(IFS or IFSP systems).

If an image is represented by a compact subset of the unit square, one says
that it is exactly compressed by an |FS system (or that it is generated by an IFS
system) if there exists a set of maps on the unit square, contractive with respect to
the Euclidean metrics, such that the operator obtained by their “superposition”,
called the Iterated Function System operator, has such a subset as fixed point.
Then, the set of points generated by the iterative application of the |FS operator
to any initial compact subset of the unit square, asymptotically reproduces the
image.

We can a so associate a probability to every assigned contraction map and, in
place of iteratively applying the IFS operator, we apply, at every step, only one
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370 LAURA M. MORATO AND PAOLA SIRI

map, chosen according to the corresponding probability. The resulting random
walk on the unit square and the IFS system with the assigned probabilities are
respectively called Chaos-Game and IFSP system.

An IFSP system can in principle generate an image with grey levels, if the
frequency of the visitsin the various points of the image by the Chaos-Gameis
roughly interpreted as their grey level.

In case of a black and white image, as it is, in fact, when the image itself is
represented by asubset of the unit square, the best choice of the set of probabilities
isthat by which thefrequenciesof thevisitsinthevarious pixelsof theunit square
by the Chaos-Game reproduce, as well as possible, the uniform distribution on
the subset representing the image.

With such a set of optimal probabilities, a computer simulation of the Chaos-
Gamegeneratestheimageassociated to the IFSsystemin thefastest way, because
the possibility of visiting twiceapixel isapproximately the samefor al the points
of theimage (it is exactly the same if the maps are not overlapping).

In arecent paper [17], we faced this problem and proposed a stochastic algo-
rithm to compute such optimal probabilities for an arbitrary IFS system on the
pixels space (SAOP).

Aswewill describein Section 5, SAOP can be extended to the case with grey
levels, in the sense that, given a fixed set of contraction maps and an image
represented by agrey level function (afunction which associatesto any point its
grey level, with zero for the white and onefor the black), the algorithm computes
the probabilitiesto be assigned to the maps, in order to get the best approximation
of the above mentioned grey level function, through the frequency of the visits
in the pixels by the associated Chaos-Game.

As aconsequence, this extension of SAOP represents a solution to the inverse
problem of finding the best IFSP system which approximates the image, for a
given set of available maps.

The probabilistic description of SAOP is non-trivial and in fact it turns out to
be a quite complicated example of Random System with Complete Connections.
In particular, the set of probabilities associated to the maps evolves in time
according to a Learning Markov Chain.

Theplan of the paper isthefollowing: in Section 2 werecall the basi c aspectsof
the IFSand | FSP systems and the construction of SAOP. In Section 3we mention
the definitions concerning the Random Systems with Complete Connectionsand
formalize SAOP as aparticular one of them. In Section 4 we report some results
on convergence of the algorithm. In Section 5 we briefly discuss the inverse
problem and introduce a generalization of SAOP to the case of grey levels.
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Finally, in Section 6 some comments about possible developements are given.

2 |FSsystemsand SAOP algorithm

Let (X, d) be the complete metric space representing the “base space’: we
identify it with thefinite pixelsspace, i.e. afinitesubset of Z2, withthe Euclidean
metrics;, let w = (w1, wa, ..., wy) denote the set of discretized contraction
maps which describe the image, defined on X: the pair (X, w) iscalled an IFS
(Iterated Fuction System).

We associate with the IFS system a set of probabilitiesp = (p1, ..., pn),
pi >0, Z,N:l pi = 1, where p; represents the probability for the map w; to be
chosen. The new system (X, w, p) iscalled an IFSP (Iterated Function System
with Probability).

Let A be the attractor of the system, i.e. the image we want to recon-
struct, compressed by means of the maps (w1, wo, ... , wy); A € K(X), where
(K (X), h) isthe complete metric space of compact subsets of X, with the Haus-
dorff metrics. Since the maps (wy, wo, ... , wy) ae contractive, then A isthe
unique fixed point of the IFS operator W (-) = UIN=1 w; (-) defined on K (X) (see
[2] and [3]).

In order to decompressit, the algorithm whichistipically used isthe so-called
Chaos Game, that, roughly speaking, can be described by the following steps:

* fix astarting point xo € X;

* choose amap w; with probability p;;

* apply the map w; to xp, obtaining anew point x; = w; (xo) € X;

» choose anew map, independently with respect to the first;

e iterate n times and get the sequence of points xq,...,x,: the set
{xo, ..., x,} a@pproximates A.

Formally, given an appropriate probability space (2, F, P), for example the
canonica trgjectory space, we define the Chaos-Game as a Random Walk
(Xn)2o0nX: let (Z,)2, bei.i.d. random variables, such that

PlZ,=il=p;, Vi=1...N,

then, assuming that the initial value is randomly chosen, the process (X)), is
defined by
Xo ~ U(X),
{ Xny1=wgz,(X,), Yn >0,
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where U (X) isthe uniform distribution on X.
(X,)52 is of course an homogeneous Markov chain with state space X and
itstransition matrix P, whose elements are defined by

P =PlXpa=x1X, =x1= > pi ¥x,x €X.

krwg (x;)=x;

Under our assumptions, by Elton’s theorem [7],

m

1
lim —Zéxn,x =7, as Vxe X,

mtoo m -

where (7,),ex IS the only invariant probability measure for the transition ma-
trix P. Indeed one could easily seethat A isaclosed recurrent classfor (X,)0,
and that X \ A containsonly transient states (see [16]). The result follows then
by standard results of Markov chains theory.

SAOP (Stochastic Algorithm for the Optimization of Probabilities) decom-
presses the image A, optimizing, in the meanwhile, the probabilities associated
to the single maps.

Itsbasicideaconsistsin using the Chaos-Game, with afixed set of probabilities,
which isimproved whenever an error occurs, in the following way:

« choose an initial distribution p® = (p%, ..., p%);

« start with the Chaos-Game;

* stop when asite already visited is reached for the second time;

* giveapenalty to the map which made the mistake, reducingits probability;

 consider a new distribution p in which the map is penalized, and one of
the othersis randomly rewarded;

¢ use the Chaos-Game again and iterate.

Formally, wehaveaprocesson X, (X,,)%°_,, the Time Dependent Chaos-Game

m=1’
(TDCQG), consisting of a sequence of different Chaos-Games.

In the following, we will assume all random variables defined on a suitable
fixed probability space (2, F, P).

We now give a mathematical description of SAOP, following [17], but with
slightly different notations, which will be useful later to provethat it satisfies the
assumptions characterizing a Random System with Complete Connections. We
will proceed by induction.
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Initial step: theinitial probabilities p° & Block 1. Let usfix aninitial set
of probabilities p® = (pJ, ..., p), for example p? = +, Vi = 1...N, and
consider (29> ,, i.i.d. random variables such that

PZ°=i]=p°, Vi=1...N.
The corresponding Chaos-Game is defined by the process (X1)> ., where:

n’n=11

X1~ U(X),
Xy =wzp(Xy), Vo> 1,

and U (X) isthe uniform distribution on X.
The length of Block 1 is represented by the stopping time

Ao=inf{h >2:31 <k < hst X} =X}
Inductivestep: theprobabilitiesp’/ & Block j+1. Supposethat probabilities
p/~1 and Block j are already defined and let

Aj=inf{h >2:31 <k <hst X] = X}), 1)

be the length of Block ;.
Let us also consider the random variable ¢;, denoting the map chosen to be
rewarded in Block j + 1:

o ifz{h=i

Plci =i]l= 2
6 =1] +=  otherwise. @
We can then consider the new set of probabilitiesp/ = (pj, ... , pJ) where,
with fixed A € (0, 1),
pit-a itz =i,
pl=1 p/t itz A0+ 3)

. J
pi a0tz A =i
If the map which failed is w;, its probability is reduced of the fixed quantity A,
while if another one made the mistake, its probability isincreased of A if w; is
chosen to be rewarded, it is unchanged otherwise.
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Let us consider also (Z4)>, i.i.d. random variables such that

Pz =i]=p/, Vi=1...N; (4)
the Chaos-Game is now (X4 )2 ,, where:
Xt~ U,
1 j+1 ©)
X, 1= wZ_’{(Xn ), Vn > 1.
The length of Block j + 1 isthen given by
A =inflh >2:31 <k < hst. X7 = x/™, (6)
The TDCG (X,,)%°_,, is then defined by:
Xm = X;iz—T_/_l’ ifm e {Tj,;[ +1,..., Tj},
where
To =0, _
Tj = Z{:lki, Vji>1

TDCG isasort of regenerative time-dependent process and it isaMarkov chain
(aRandom Walk on X)), for afixed choice of the sequences (p")o° , and (,,)52 ;.

The process which describes the corresponding evolution of the probabilities
is

Y;=p/, Vj >0, (7)

whereitsvalue at step j isthe set of probabilities used in the stochastic interval
[T; + 1, T;11] (for more details, see [17]).

3 SAOP asa Random System with Complete Connections

In this section we will show how SAOP can be seen as a non-trivial example of
Random System with Complete Connections.
First of al, werecall the basic notions of the theory of Dependence with Com-
plete Connections, exhaustively surveyed in [12], by losifescu and Grigorescul.
The mentioned theory was introduced in 1935, by Onicescu and Mihoc [19],
and studied afterwards by the Romanian school, with Ciucu, Theodorescu,
losifescu and others (see, for example, [5], [13]). It is anon-trivial extension
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of Markovian Dependence theory, and it was aso investigated by Doeblin and
Fortet [6] and by Harris[11].

Examples of Random Systems with Complete Connections are stochastic
learning models, urn models, partially observed random chains, decision models
and others.

Definition 3.1. An homogeneolR®andom System with Complete Connections
or RSCC is a quadruple((V, V), (H, ), u, P} where

(i) (V,V)and(H, H) are arbitrary measurable spaces;

(i) u:VxH— Visa(V®H, V)-measurable map;

(iii) P is a transition probability function frondV, V) to (H, #{), i.e. a real
valued function defined ovi x #{, such thatP (v, -) is a probability on
(H,H) foranyv € V, and P(-, A) is a random variable oriV, V) for
anyA € H.

A generaization of this definition is due to Le Calvé and Theodorescu [14]:
Definition 3.2. An homogeneouSener alized Random System with Complete
Connectionsor GRSCC is a quadruple{(V, V), (H, #), 1, P} where

(i) (V,V)and(H, 7{) are arbitrary measurable spaces;
(i) ITis a transition probability function froniV x H, V ® H) to (V,V);
(iiiy P is a transition probability function fronaV, V) to (H, ).

In both cases an existence theorem was proved: we state here only the one

concerning the GRSCC.

Theorem 3.3. For agiven homogeneous GRSCC and an arbitrarily fixed V,

there exist a probability space&, F, P), a sequencés, ), of H-valued ran-
dom variables and a sequengg,);> , of V-valued random variables, both de-
fined onQ, such that:

(i) forany A € #H, B € 'V andn > 1 we have,

P[no € B] = 84,(B),

P& € Al = P(vo, A),

P§,1 € Alé1, ... &m0, -+ s Ml = Py, A), P—a.s.,

Pnnt1 € Blé1, - Env1s M0s - -+ 5 Ma] = (s §nva, B), P—aus,;
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(i) the sequenceén,);’, is an homogeneous Markov Chain, whose transition
probability functionQ and infinitesimal generatol. are given by the
equations

(v, B):/ IT(v, x, B)P (v, dx), (8)
H

forallv e V andB € V, and

Lfw) = / FO)O, dv) = / F ) / (v, x, dv) P(v, dx), (9)
\% 1% H

for all f boundedV-measurable functions ovi.

The sequence (£,):2 ; is caled the Generalized Chain with Complete Con-
nections (GCCC) or Generalized Chain of Infinite Order (this second term
was coined by Harris [11]), while (n,):2, isthe Markov Chain associated to

the GRSCC. Noticethat whilen, . ; dependsbothon, and &, .1, thelaw of &, 1
depends only on n,,.

Weshall seethat SAOPisan exampleof GRSCC, where, roughly speaking, the
sequence of Blocksisa GCCC and the sequence of probabilitiesisthe associated
Markov Chain.

Wefirst particul arize the two measurabl e spaces, introduced in Definition 3.2:
V={peE": Y pi=1,wheeE ={0,A,..., (M —DA,1},A =1,
M eN;V =PV);and H = X"+ where Ny isthe number of pixelsof X;
H = P(H).

Thetwo chains, (1,):°, and (§,)52,, defined on (2, /F, P) with values on the
above defined spaces, are respectively:
M = Yn
Sﬂ = n = (Xn,... ’XZ,,’XZ,,—Q—l"“ ’XnNX+1)'
Moreover theinitial condition p® € V for (1,)°%,, isgiven.
Notice that £, is the realization of the n'” Chaos-Game, i.e. the Chaos-Game
which is ruled by the (n — 1)"” set of probabilities p"~2, in the time interval

[1, Nx + 1]. Of courseg, it is not necessary to consider the Chaos-Game as
indefinitely evolving, because the n'" Block stopsat time A, < Ny + 1.

Observe that, by construction, both

P[Xn+1 € A|Y}’lv sy Y07 Xn; I Xl]
= P[Xy.1€ AIY,]:= P(Y,, A), VA € H (10)
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and
]P)[Yn+l € B|Yn9 cee YOa Xn+l» cee Xl]
= P[Yu41 € BIY,, Xpq1l ;== TI(Y,, X112, B), VB €V (11)
hold (i.e. (i) of Theorem 3.3).

In order to define completely the GRSCC wefinally give the expression of the
transition probability functions IT and P.

To define P(p, X), Vp € V, X € H, |let us observe that the sets
Appi=XeH:  x; #x;, Vi, j=1...1—1,x =xu},

V1<m <1 < Nx + 1, formapartition of H.
Then, using the independence of (Z)°,, weget, Vx"! € A,,;, 1 <m <[ <
Nx +1,
P(p,x™") P[xm = mew = p] = [xl = x’"~l| =p]

IP)[XNX+1 NX+1|XNX = XNX» Yo =p]

— N_lx ) l_[ Z e | = ax™ p). (12)

h=1 kwg (" hH= Xlrzn+11

Let us now construct TI(p, X™!, q), Vp,q € V, x™ € A5, 1 <m <1 <
Nx + 1. Let us observe that
(P, X", @) = P[Y,11 = qlXpe1 = X", Y, = p] # 0
only if g = p(, j), forsomei # j € {1... N}, where
Pk ifk#i,j

pe(i, j)=3 pi—A ifk=i
pi+A ifk=j.

Then
(p, X", p(i, j)) = P[Y i1 = PG, j)[Xpsr = X", Y, = pl
= P[Y1=pG, j)IX1=X"",Yo=p]
PIZ) 1 =i.51=jIX1=x""Yo=p]
= Plo=j1Z}, 1 =i]-P[Z), =ilXs=X""Yo=p]
1 PIZ°, =i, X1 =x"Yq=0p] 1 4™, p)
N—-1  P[Xy=xm!|Yo=p] TN—1 akxm p)
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where
a' (x™ p) = P[22, =i,X1=X""|Yo=p]

1 (13
= Ny 1_[ Z Pk pil{w,(x, D »zl}
h#l-1 k:lx)k(xzn‘]):xznjr]l
Notice that
x> l’ p) Za (Xml (14)
So far we have proved that
1 ai( m,lﬁ ) . _ . .
. V1w 1d=pGa, )
M(p,x™", q) = forsomei # j =1...N, (15)
0, otherwise.

Remark 3.4. By condition (ii) of Theorem 3.3, (Y )32, isaMarkov Chain and
its transitions can be immediately computed: if q # p(i, j) Vi £ j =1..
then Q(p, q) = 0, otherwise

Q(p,q) =Y T(P,x q) - PP, X

XeH

_ 1 a'(x,p) 1 ;
_ZN—l'a(x,p)'a(X’p)_N—l 2 d'x.p).

XeH XeH

(16)

Ontheother hand we can easily computethemdirectly (in[17] wealready proved
that the process (Y )2 isan homogeneous Markov Chain and weidentified the
transitions of its components (Y/)°,,i = 1...N). Infact, if q = p(, j), for
somei # j =1...N,then

Q(p, p(i, /) = PIY 1 = p(i, HIYy = p]
=PIY1=pG, j)IYo=pl=PIZ) ;=i &= j|Yo=p] 17

=Pl1=jlZ) _1=i]-P[Z) _,=ilYo=p]= -a'(p),

N-1
where

a'(p)=PIZ)_,=i.[Yo=pl=) a'(x.p). (18)

XxeH
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4 Resultsand conjectures

In [17] we proved a result on the convergence of the associated Markov Chain
(Yn)52, to an optimal set of probabilities. This guaranteesthat, even if we start
with a bad set of probabilities, the algorithm finds, in a reasonable number of
iterations, the set which decompresses the image in the fastest way.

The convergence resultsin [17] can be summarized as follows:

Definition 4.1. The set of probabilitiep* = (p3, ..., py) is optimal for the
corresponding Chaos-Game if

. 1
d'(pt) = .Vi=1..N. (19)

whered' is defined by (18).

The motivation of this definition comes from the fact that if every map makes
mistakes with the same frequence of the others, then the corresponding Chaos-
Game will be able to reconstruct theimage A asfast as possible. Infact, in such
a case, it produces approximately a uniform frequency of visits in the various
points of the image.

Theorem 4.2. At least one optimal set of probabilities for a Chaos Game exists.

Proof (outline). The proof is based on the fact that a = (a*,... ,a") isa
continuous function from a simply connected subset of R into itself. In fact
it can be written as an homogeneous polynomia with maximum degree Ny
(see (13) and (18)). Continuity turns to be enough to conclude that a point p*
satisfying (19) exists (proved by induction on N). O

Definition 4.3. We say that SAOBonverges almost surely to an optimal set
of probabilities p* = (p7, ..., py) if Ya > 0,3n € N, s.t.

lim (1— }P’|: () (Y. e B%(p*)}}) =0 (20)

n<n<k
with the same order a4, where
By(p") = [p; —a pi+al x - X [py —a, py +al
andk is any integer greater thaa.

Theorem 4.4. If the optimal set of probabilities belongs ¥ and is strictly
unique, then SAOP converges almost surely, in the sense of the previous defini-
tion.
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Proof (outline). The proof is based on the fact that (Y’iARi Cpi=1...N,
are super or submartingales (it depends on the starting point), where R’ is the
stopping time RY = inf{n > 0 : a'(Y,) = %}. Properly using martingale
inequalities and the strong Markov property of (Y,)>° ,, we get thethesis. [

In[17], we & so conjectured the uniqueness of the optimal set of probabilities,
after having performed several simulations with a different number of maps.

It could beinteresting to face this problem in connection with theirreducibility
property for the associated Markov Chain in the limit of A going to zero.

5 Thelnverse Problem and SAOP for grey levels

L et usnow consider animage represented by agrey level function £ onthe pixels
space X, i.e.

0:X > E={0,A,...,(M—1A,1 C[0,1]

where £(x) is the grey level of the pixel x, and, in particular, £(x) = 1 and
£(x) = 0 correspond to black and white.

Suppose a given set E of N contraction maps is available; then solving the
inverse prablem, for the image represented by ¢ (and the given set E), consists
in finding a set of probabilities (p1, ... , py) (Most of them could in general be
equal to zero) such that the frequency of the visits in the various pixels by the
associated Chaos-Game approximates ¢ as well as possible. Thisis equivalent
to selecting the “suitable” contraction maps (with the associated probabilities)
among the available ones. (For theliterature about the inverse problem in image
compression see, for example, [1], [8], [9], [10], [15], [20], [21].)

To do this, we modify SAOP, penalizing the “bad map” of a quantity which
now depends on the pixel where the mistake occurs: if the pixel is black, we do
not care how many timesit is visited and the map is not penalized at al; on the
other hand, if the pixel iswhite, the map isdrastically penalized and temporarily
eliminated.

Let usfixthe N mapsw = (wy, ... , wy) and the corresponding probabilities
p = (p1,...py). Weconstruct the new Time Dependent Chaos-Gamefollowing
theoriginal structure of SAOP, but with adifferent evolution for the probabilities.

Suppose the length of Block j is A; as in the classical SAOP: the set of
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probabilitiesp/ = (p, ..., pl) isnow

j—1 j—1 . j-1 .
Pl 1A=ty ApiTh itz =1,

pl=1r" ' if 2] 2 i g #,
Pl A=) AplTT ifZ] 7 =k, ¢ =i, for somek i
(21)

1

wherex = X {i isthe pixel inwhich the mistake occurs (i.e. the pixel visited for
the second time).

We can consider also the new version of SAOP as an example of GRSCC.

Repeating the arguments used in Section 3, we get the same measurabl e spaces
(V,V)and (H, H). Also the transition probability function P(p, A),Vp € V,
A € #H, does not change.

Thedifferenceentersintheexpressionof I(p, x, B),Vp e V,x € H,B € V.
In fact, in this case, we have

H(p, Xm’l, Q) = ]P[Yn+l = Q|Xn+1 = Xm,l, Yn = p] 7+_ 0
only if g = p(i, j, y), forsomei # j € {1... N}, where
Pk if k#i )

pi+ty if k=,

and only for the particular value y = (1 — E(x,’”*’)) A pi.
Then, if g = p(, j,y),forsomei # j=1...N,Vy € E,

(P, X, p(i, j, ) = PIY1 = PG, j, )X = X", Yo = p] =
PIZ) =i 6= jIXi=x"",Yo=p]-1

1 dx".p
N—1 aml p) ~o=a-tamm:

{y=(L—e(" ) Api}

Then
L ) ai(X""[,p) ) . _ ..
. N1 aoerTp)  Ty=a-eyapy  TA=PE ) VY €E,
I(p, x™", q) = forsomei #j=1...N,
0 otherwise.

(22)
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Also in this case, we can find, by (16), the transition probability function
Q(p,q) ¥p, g € V, corresponding to the associated Markov Chain (Y ).

Ifq#pG j.y),vVi#j=1...N, y € E,then Q(p, q) =0, otherwise

Q. a) = Y T(p.x.q) P{p.X)

xeH
1 a'(x, p)

= . N PP . - X,

Z N—1 ap) y=(A—eeapi} - o 8))

xeH

1 i
T N-1 > a0 P) - Lymaecumnn)
XeH

6 Comments and outlook

The agorithms described above are in their simplest form. Indeed various em-
pirical modifications can beintroduced in SAOPin order to increase the vel ocity
of convergence[4].

Asfar astheinverseproblemisconcerned, the proposed SAOPwith grey levels
isjust afirst step. In fact, if one works with afixed finite set of available maps,
it will tipically occur that some part of the image is not, even approximately,
reproduced.

Some sel ection algorithms for the case of an apriori unlimited set of randomly
generated affine contraction maps are outlined in [18].
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