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Abstract. In a recent paper [17] we proposed a stochastic algorithm which generates
optimal probabilities for the decompression of an image represented by the fixed point
of an IFS system (SAOP). We show here that such an algorithm is in fact a non trivial
example of Generalized Random System with Complete Connections. We also exhibit
a generalization which could represent the solution to the inverse problem for an image
with grey levels, if a fixed set of contraction maps is available.
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1 Introduction

This paper is concerned with the problem of compressing image data, by means
of Iterated Function Systems or of Iterated Function Systems with Probability
(IFS or IFSP systems).

If an image is represented by a compact subset of the unit square, one says
that it is exactly compressed by an IFS system (or that it is generated by an IFS
system) if there exists a set of maps on the unit square, contractive with respect to
the Euclidean metrics, such that the operator obtained by their “superposition”,
called the Iterated Function System operator, has such a subset as fixed point.
Then, the set of points generated by the iterative application of the IFS operator
to any initial compact subset of the unit square, asymptotically reproduces the
image.

We can also associate a probability to every assigned contraction map and, in
place of iteratively applying the IFS operator, we apply, at every step, only one
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map, chosen according to the corresponding probability. The resulting random
walk on the unit square and the IFS system with the assigned probabilities are
respectively called Chaos-Game and IFSP system.

An IFSP system can in principle generate an image with grey levels, if the
frequency of the visits in the various points of the image by the Chaos-Game is
roughly interpreted as their grey level.

In case of a black and white image, as it is, in fact, when the image itself is
represented by a subset of the unit square, the best choice of the set of probabilities
is that by which the frequencies of the visits in the various pixels of the unit square
by the Chaos-Game reproduce, as well as possible, the uniform distribution on
the subset representing the image.

With such a set of optimal probabilities, a computer simulation of the Chaos-
Game generates the image associated to the IFS system in the fastest way, because
the possibility of visiting twice a pixel is approximately the same for all the points
of the image (it is exactly the same if the maps are not overlapping).

In a recent paper [17], we faced this problem and proposed a stochastic algo-
rithm to compute such optimal probabilities for an arbitrary IFS system on the
pixels space (SAOP).

As we will describe in Section 5, SAOP can be extended to the case with grey
levels, in the sense that, given a fixed set of contraction maps and an image
represented by a grey level function (a function which associates to any point its
grey level, with zero for the white and one for the black), the algorithm computes
the probabilities to be assigned to the maps, in order to get the best approximation
of the above mentioned grey level function, through the frequency of the visits
in the pixels by the associated Chaos-Game.

As a consequence, this extension of SAOP represents a solution to the inverse
problem of finding the best IFSP system which approximates the image, for a
given set of available maps.

The probabilistic description of SAOP is non-trivial and in fact it turns out to
be a quite complicated example of Random System with Complete Connections.
In particular, the set of probabilities associated to the maps evolves in time
according to a Learning Markov Chain.

The plan of the paper is the following: in Section 2 we recall the basic aspects of
the IFS and IFSP systems and the construction of SAOP. In Section 3 we mention
the definitions concerning the Random Systems with Complete Connections and
formalize SAOP as a particular one of them. In Section 4 we report some results
on convergence of the algorithm. In Section 5 we briefly discuss the inverse
problem and introduce a generalization of SAOP to the case of grey levels.
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Finally, in Section 6 some comments about possible developements are given.

2 IFS systems and SAOP algorithm

Let (X, d) be the complete metric space representing the “base space”: we
identify it with the finite pixels space, i.e. a finite subset of Z

2, with the Euclidean
metrics; let w = (w1, w2, . . . , wN) denote the set of discretized contraction
maps which describe the image, defined on X: the pair (X, w) is called an IFS
(Iterated Fuction System).

We associate with the IFS system a set of probabilities p = (p1, . . . , pN),
pi > 0,

∑N
i=1 pi = 1, where pi represents the probability for the map wi to be

chosen. The new system (X, w, p) is called an IFSP (Iterated Function System
with Probability).

Let A be the attractor of the system, i.e. the image we want to recon-
struct, compressed by means of the maps (w1, w2, . . . , wN); A ∈ K(X), where
(K(X), h) is the complete metric space of compact subsets ofX, with the Haus-
dorff metrics. Since the maps (w1, w2, . . . , wN) are contractive, then A is the
unique fixed point of the IFS operator W(·) = ⋃N

i=1 wi(·) defined on K(X) (see
[2] and [3]).

In order to decompress it, the algorithm which is tipically used is the so-called
Chaos Game, that, roughly speaking, can be described by the following steps:

• fix a starting point x0 ∈ X;

• choose a map wi with probability pi ;

• apply the map wi to x0, obtaining a new point x1 = wi(x0) ∈ X;

• choose a new map, independently with respect to the first;

• iterate n times and get the sequence of points x0, . . . , xn: the set
{x0, . . . , xn} approximates A.

Formally, given an appropriate probability space (�,F, P), for example the
canonical trajectory space, we define the Chaos-Game as a Random Walk
(Xn)

∞
n=0 on X: let (Zn)

∞
n=0 be i.i.d. random variables, such that

P[Zn = i] = pi, ∀i = 1 . . . N,

then, assuming that the initial value is randomly chosen, the process (Xn)
∞
n=0 is

defined by {
X0 ∼ U(X),

Xn+1 = wZn
(Xn), ∀n ≥ 0,
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where U(X) is the uniform distribution on X.
(Xn)

∞
n=0 is of course an homogeneous Markov chain with state space X and

its transition matrix P, whose elements are defined by

pij := P[Xn+1 = xj |Xn = xi] =
∑

k:wk(xi )=xj

pk, ∀xi, xj ∈ X.

Under our assumptions, by Elton’s theorem [7],

lim
m↑∞

1

m

m∑
n=1

δXn,x = πx, a.s. ∀x ∈ X,

where (πx)x∈X is the only invariant probability measure for the transition ma-
trix P. Indeed one could easily see that A is a closed recurrent class for (Xn)

∞
n=0,

and that X \ A contains only transient states (see [16]). The result follows then
by standard results of Markov chains theory.

SAOP (Stochastic Algorithm for the Optimization of Probabilities) decom-
presses the image A, optimizing, in the meanwhile, the probabilities associated
to the single maps.

Its basic idea consists in using the Chaos-Game, with a fixed set of probabilities,
which is improved whenever an error occurs, in the following way:

• choose an initial distribution p0 = (p0
1, . . . , p0

N);

• start with the Chaos-Game;

• stop when a site already visited is reached for the second time;

• give a penalty to the map which made the mistake, reducing its probability;

• consider a new distribution p in which the map is penalized, and one of
the others is randomly rewarded;

• use the Chaos-Game again and iterate.

Formally, we have a process onX, (X̃m)∞
m=1, the Time Dependent Chaos-Game

(TDCG), consisting of a sequence of different Chaos-Games.

In the following, we will assume all random variables defined on a suitable
fixed probability space (�,F, P).

We now give a mathematical description of SAOP, following [17], but with
slightly different notations, which will be useful later to prove that it satisfies the
assumptions characterizing a Random System with Complete Connections. We
will proceed by induction.
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Initial step: the initial probabilities p0 & Block 1. Let us fix an initial set
of probabilities p0 = (p0

1, . . . , p0
N), for example p0

i = 1
N

, ∀i = 1 . . . N , and
consider (Z0

n)
∞
n=1, i.i.d. random variables such that

P[Z0
n = i] = p0

i , ∀i = 1 . . . N.

The corresponding Chaos-Game is defined by the process (X1
n)

∞
n=1, where:{

X1
1 ∼ U(X),

X1
n+1 = wZ0

n
(X1

n), ∀n ≥ 1,

and U(X) is the uniform distribution on X.
The length of Block 1 is represented by the stopping time

λ1 = inf{h ≥ 2 : ∃1 ≤ k < h s.t. X1
k = X1

h}.

Inductive step: the probabilities pj & Block j+1. Suppose that probabilities
pj−1 and Block j are already defined and let

λj = inf{h ≥ 2 : ∃1 ≤ k < h s.t. X
j

k = X
j

h}, (1)

be the length of Block j .
Let us also consider the random variable ζj , denoting the map chosen to be

rewarded in Block j + 1:

P[ζj = i] =
{

0 if Z
j−1
λj −1 = i,

1
N−1 otherwise.

(2)

We can then consider the new set of probabilities pj = (p
j

0 , . . . , p
j

N) where,
with fixed � ∈ (0, 1),

p
j

i =




p
j−1
i − � if Z

j−1
λj −1 = i,

p
j−1
i if Z

j−1
λj −1 	= i, ζj 	= i,

p
j−1
i + � if Z

j−1
λj −1 	= i, ζj = i.

(3)

If the map which failed is wi , its probability is reduced of the fixed quantity �,
while if another one made the mistake, its probability is increased of � if wi is
chosen to be rewarded, it is unchanged otherwise.
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Let us consider also (Z
j
n)

∞
n=1 i.i.d. random variables such that

P[Zj
n = i] = p

j

i , ∀i = 1 . . . N; (4)

the Chaos-Game is now (X
j+1
n )∞

n=1, where:{
X

j+1
1 ∼ U(X),

X
j+1
n+1 = w

Z
j
n
(X

j+1
n ), ∀n ≥ 1.

(5)

The length of Block j + 1 is then given by

λj+1 = inf{h ≥ 2 : ∃1 ≤ k < h s.t. X
j+1
k = X

j+1
h }. (6)

The TDCG (X̃m)∞
m=1, is then defined by:

X̃m = X
j

m−Tj−1
, if m ∈ {Tj−1 + 1, . . . , Tj },

where {
T0 = 0,

Tj = ∑j

i=1 λi, ∀j ≥ 1.

TDCG is a sort of regenerative time-dependent process and it is a Markov chain
(a Random Walk onX), for a fixed choice of the sequences (pn)∞

n=0 and (λn)
∞
n=1.

The process which describes the corresponding evolution of the probabilities
is

Yj = pj , ∀j ≥ 0, (7)

where its value at step j is the set of probabilities used in the stochastic interval
[Tj + 1, Tj+1] (for more details, see [17]).

3 SAOP as a Random System with Complete Connections

In this section we will show how SAOP can be seen as a non-trivial example of
Random System with Complete Connections.

First of all, we recall the basic notions of the theory of Dependence with Com-
plete Connections, exhaustively surveyed in [12], by Iosifescu and Grigorescu.

The mentioned theory was introduced in 1935, by Onicescu and Mihoc [19],
and studied afterwards by the Romanian school, with Ciucu, Theodorescu,
Iosifescu and others (see, for example, [5], [13]). It is a non-trivial extension
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of Markovian Dependence theory, and it was also investigated by Doeblin and
Fortet [6] and by Harris [11].

Examples of Random Systems with Complete Connections are stochastic
learning models, urn models, partially observed random chains, decision models
and others.

Definition 3.1. An homogeneousRandom System with Complete Connections
or RSCC is a quadruple{(V ,V ), (H,H ), u, P } where

(i) (V ,V ) and(H,H ) are arbitrary measurable spaces;

(ii) u : V × H → V is a (V ⊗H ,V )-measurable map;

(iii) P is a transition probability function from(V ,V ) to (H,H ), i.e. a real
valued function defined onV ×H , such thatP(v, ·) is a probability on
(H,H ) for anyv ∈ V , andP(·, A) is a random variable on(V ,V ) for
anyA ∈ H .

A generalization of this definition is due to Le Calvé and Theodorescu [14]:

Definition 3.2. An homogeneousGeneralized Random System with Complete
Connections or GRSCC is a quadruple{(V ,V ), (H,H ), �, P } where

(i) (V ,V ) and(H,H ) are arbitrary measurable spaces;

(ii) � is a transition probability function from(V × H,V ⊗H ) to (V ,V );

(iii) P is a transition probability function from(V ,V ) to (H,H ).

In both cases an existence theorem was proved: we state here only the one
concerning the GRSCC.

Theorem 3.3. For a given homogeneous GRSCC and an arbitrarily fixedv0 ∈ V ,
there exist a probability space(�,F, P), a sequence(ξn)

∞
n=1 of H -valued ran-

dom variables and a sequence(ηn)
∞
n=0 of V -valued random variables, both de-

fined on�, such that:

(i) for anyA ∈ H , B ∈ V andn ≥ 1 we have,

P[η0 ∈ B] = δv0(B),

P[ξ1 ∈ A] = P(v0, A),

P[ξn+1 ∈ A|ξ1, . . . , ξn, η0, . . . , ηn] = P(ηn, A), P − a.s.,

P[ηn+1 ∈ B|ξ1, . . . , ξn+1, η0, . . . , ηn] = �(ηn, ξn+1, B), P − a.s.;
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(ii) the sequence(ηn)
∞
n=0 is an homogeneous Markov Chain, whose transition

probability functionQ and infinitesimal generatorL are given by the
equations

Q(v, B) =
∫

H

�(v, x, B)P (v, dx), (8)

for all v ∈ V andB ∈ V , and

Lf (v) =
∫

V

f (v′)Q(v, dv′) =
∫

V

f (v′)
∫

H

�(v, x, dv′)P (v, dx), (9)

for all f boundedV -measurable functions onV .

The sequence (ξn)
∞
n=1 is called the Generalized Chain with Complete Con-

nections (GCCC) or Generalized Chain of Infinite Order (this second term
was coined by Harris [11]), while (ηn)

∞
n=0 is the Markov Chain associated to

the GRSCC. Notice that while ηn+1 depends both on ηn and ξn+1, the law of ξn+1

depends only on ηn.

We shall see that SAOP is an example of GRSCC, where, roughly speaking, the
sequence of Blocks is a GCCC and the sequence of probabilities is the associated
Markov Chain.

We first particularize the two measurable spaces, introduced in Definition 3.2:
V = {p ∈ EN : ∑N

i=1 pi = 1}, where E = {0, �, . . . , (M − 1)�, 1}, � = 1
M

,
M ∈ N; V = P(V ); and H = XNX+1, where NX is the number of pixels of X;
H = P(H).

The two chains, (ηn)
∞
n=0 and (ξn)

∞
n=1, defined on (�,F, P) with values on the

above defined spaces, are respectively:

ηn := Yn

ξn := Xn := (Xn
1 , . . . , Xn

λn
, Xn

λn+1, . . . , Xn
NX+1).

Moreover the initial condition p0 ∈ V for (ηn)
∞
n=0, is given.

Notice that ξn is the realization of the nth Chaos-Game, i.e. the Chaos-Game
which is ruled by the (n − 1)th set of probabilities pn−1, in the time interval
[1, NX + 1]. Of course, it is not necessary to consider the Chaos-Game as
indefinitely evolving, because the nth Block stops at time λn ≤ NX + 1.

Observe that, by construction, both

P[Xn+1 ∈ A|Yn, . . . , Y0, Xn, . . . , X1]
= P[Xn+1 ∈ A|Yn] := P(Yn, A), ∀A ∈ H (10)
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and

P[Yn+1 ∈ B|Yn, . . . , Y0, Xn+1, . . . , X1]
= P[Yn+1 ∈ B|Yn, Xn+1] := �(Yn, Xn+1, B), ∀B ∈ V (11)

hold (i.e. (i) of Theorem 3.3).

In order to define completely the GRSCC we finally give the expression of the
transition probability functions � and P .

To define P(p, x), ∀p ∈ V, x ∈ H , let us observe that the sets

Am,l := {x ∈ H : xi 	= xj , ∀i, j = 1 . . . l − 1, xl = xm},
∀1 ≤ m < l ≤ NX + 1, form a partition of H .

Then, using the independence of (Z0
k )

∞
k=1, we get, ∀xm,l ∈ Am,l , 1 ≤ m < l ≤

NX + 1,

P(p, xm,l) = P[Xn+1 = xm,l|Yn = p] = P[X1 = xm,l|Y0 = p]
= P[X1

1 = x
m,l
1 ] · P[X1

2 = x
m,l
2 |X1

1 = x
m,l
1 , Y0 = p] · · ·

· · · P[X1
NX+1 = x

m,l
NX+1|X1

NX = x
m,l
NX , Y0 = p]

= 1

NX
·

NX∏
h=1


 ∑

k:wk(x
m,l
h )=x

m,l
h+1

pk


 := α(xm,l, p). (12)

Let us now construct �(p, xm,l, q), ∀p, q ∈ V , xm,l ∈ Am,l , 1 ≤ m < l ≤
NX + 1. Let us observe that

�(p, xm,l, q) = P[Yn+1 = q|Xn+1 = xm,l, Yn = p] 	= 0

only if q = p(i, j), for some i 	= j ∈ {1 . . . N}, where

pk(i, j) =



pk if k 	= i, j

pi − � if k = i

pj + � if k = j.

Then

�(p, xm,l, p(i, j)) = P[Yn+1 = p(i, j)|Xn+1 = xm,l, Yn = p]
= P[Y1 = p(i, j)|X1 = xm,l, Y0 = p]
= P[Z0

λ1−1 = i, ζ1 = j |X1 = xm,l, Y0 = p]
= P[ζ1 = j |Z0

λ1−1 = i] · P[Z0
l−1 = i|X1 = xm,l, Y0 = p]

= 1

N − 1
· P[Z0

l−1 = i, X1 = xm,l|Y0 = p]
P[X1 = xm,l|Y0 = p] = 1

N − 1
· ai(xm,l, p)

α(xm,l, p)
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where

ai(xm,l, p) := P[Z0
l−1 = i, X1 = xm,l|Y0 = p]

= 1

NX
·
∏

h	=l−1


 ∑

k:wk(x
m,l
h )=x

m,l
h+1

pk


pi1{wi(x

m,l
l−1)=x

m,l
l

}. (13)

Notice that

α(xm,l, p) =
N∑

i=1

ai(xm,l, p). (14)

So far we have proved that

�(p, xm,l, q) =




1
N−1 · ai (xm,l ,p)

α(xm,l ,p)
, if q = p(i, j)

for some i 	= j = 1 . . . N,

0, otherwise.

(15)

Remark 3.4. By condition (ii) of Theorem 3.3, (Yn)
∞
n=0 is a Markov Chain and

its transitions can be immediately computed: if q 	= p(i, j) ∀i 	= j = 1 . . . N ,
then Q(p, q) = 0, otherwise

Q(p, q) =
∑
x∈H

�(p, x, q) · P(p, x)

=
∑
x∈H

1

N − 1
· ai(x, p)

α(x, p)
· α(x, p) = 1

N − 1
·
∑
x∈H

ai(x, p).

(16)

On the other hand we can easily compute them directly (in [17] we already proved
that the process (Yn)

∞
n=0 is an homogeneous Markov Chain and we identified the

transitions of its components (Y i
n)

∞
n=0, i = 1 . . . N). In fact, if q = p(i, j), for

some i 	= j = 1 . . . N , then

Q(p, p(i, j)) = P[Yn+1 = p(i, j)|Yn = p]
= P[Y1 = p(i, j)|Y0 = p] = P[Z0

λ1−1 = i, ζ1 = j |Y0 = p]
= P[ζ1 = j |Z0

λ1−1 = i] · P[Z0
λ1−1 = i|Y0 = p] = 1

N − 1
· ai(p),

(17)

where

ai(p) := P[Z0
λ1−1 = i, |Y0 = p] =

∑
x∈H

ai(x, p). (18)
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4 Results and conjectures

In [17] we proved a result on the convergence of the associated Markov Chain
(Yn)

∞
n=0 to an optimal set of probabilities. This guarantees that, even if we start

with a bad set of probabilities, the algorithm finds, in a reasonable number of
iterations, the set which decompresses the image in the fastest way.

The convergence results in [17] can be summarized as follows:

Definition 4.1. The set of probabilitiesp∗ = (p∗
1, . . . , p∗

N) is optimal for the
corresponding Chaos-Game if

ai(p∗) = 1

N
, ∀i = 1 . . . N, (19)

whereai is defined by (18).

The motivation of this definition comes from the fact that if every map makes
mistakes with the same frequence of the others, then the corresponding Chaos-
Game will be able to reconstruct the image A as fast as possible. In fact, in such
a case, it produces approximately a uniform frequency of visits in the various
points of the image.

Theorem 4.2. At least one optimal set of probabilities for a Chaos Game exists.

Proof (outline). The proof is based on the fact that a = (a1, . . . , aN) is a
continuous function from a simply connected subset of R

N into itself. In fact
it can be written as an homogeneous polynomial with maximum degree NX
(see (13) and (18)). Continuity turns to be enough to conclude that a point p∗
satisfying (19) exists (proved by induction on N ). �

Definition 4.3. We say that SAOPconverges almost surely to an optimal set
of probabilities p∗ = (p∗

1, . . . , p∗
N) if ∀α > 0, ∃n̄ ∈ N, s.t.

lim
�→0

(
1 − P

[ ⋂
n̄≤n≤k

{Yn ∈ Bα
N(p∗)}

])
= 0 (20)

with the same order as�, where

Bα
N(p∗) = [p∗

1 − α, p∗
1 + α] × · · · × [p∗

N − α, p∗
N + α]

andk is any integer greater than̄n.

Theorem 4.4. If the optimal set of probabilities belongs toEN and is strictly
unique, then SAOP converges almost surely, in the sense of the previous defini-
tion.
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Proof (outline). The proof is based on the fact that (Y i
n∧Ri )

∞
n=0, i = 1 . . . N ,

are super or submartingales (it depends on the starting point), where Ri is the
stopping time Ri = inf{n > 0 : ai(Yn) = 1

N
}. Properly using martingale

inequalities and the strong Markov property of (Yn)
∞
n=0, we get the thesis. �

In [17], we also conjectured the uniqueness of the optimal set of probabilities,
after having performed several simulations with a different number of maps.

It could be interesting to face this problem in connection with the irreducibility
property for the associated Markov Chain in the limit of � going to zero.

5 The Inverse Problem and SAOP for grey levels

Let us now consider an image represented by a grey level function � on the pixels
space X, i.e.

� : X → E = {0, �, . . . , (M − 1)�, 1} ⊂ [0, 1]
where �(x) is the grey level of the pixel x, and, in particular, �(x) = 1 and
�(x) = 0 correspond to black and white.

Suppose a given set � of N contraction maps is available; then solving the
inverse problem, for the image represented by � (and the given set �), consists
in finding a set of probabilities (p1, . . . , pN) (most of them could in general be
equal to zero) such that the frequency of the visits in the various pixels by the
associated Chaos-Game approximates � as well as possible. This is equivalent
to selecting the “suitable” contraction maps (with the associated probabilities)
among the available ones. (For the literature about the inverse problem in image
compression see, for example, [1], [8], [9], [10], [15], [20], [21].)

To do this, we modify SAOP, penalizing the “bad map” of a quantity which
now depends on the pixel where the mistake occurs: if the pixel is black, we do
not care how many times it is visited and the map is not penalized at all; on the
other hand, if the pixel is white, the map is drastically penalized and temporarily
eliminated.

Let us fix the N maps w = (w1, . . . , wN) and the corresponding probabilities
p = (p1, . . . pN). We construct the new Time Dependent Chaos-Game following
the original structure of SAOP, but with a different evolution for the probabilities.

Suppose the length of Block j is λj as in the classical SAOP: the set of
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probabilities pj = (p
j

1 , . . . , p
j

N) is now

p
j

i =




p
j−1
i − [(1 − �(x)) ∧ p

j−1
i ] if Z

j−1
λj −1 = i,

p
j−1
i if Z

j−1
λj −1 	= i, ζj 	= i,

p
j−1
i + [(1 − �(x)) ∧ p

j−1
k ] if Z

j−1
λj −1 = k, ζj = i, for some k 	= i

(21)

where x = X
j

λj
is the pixel in which the mistake occurs (i.e. the pixel visited for

the second time).

We can consider also the new version of SAOP as an example of GRSCC.
Repeating the arguments used in Section 3, we get the same measurable spaces

(V ,V ) and (H,H ). Also the transition probability function P(p, A), ∀p ∈ V ,
A ∈ H , does not change.

The difference enters in the expression of �(p, x, B), ∀p ∈ V , x ∈ H , B ∈ V .
In fact, in this case, we have

�(p, xm,l, q) = P[Yn+1 = q|Xn+1 = xm,l, Yn = p] 	= 0

only if q = p(i, j, y), for some i 	= j ∈ {1 . . . N}, where

pk(i, j, y) =



pk if k 	= i, j

pi − y if k = i

pj + y if k = j,

and only for the particular value y = (1 − �(x
m,l
l )) ∧ pi .

Then, if q = p(i, j, y), for some i 	= j = 1 . . . N , ∀y ∈ E,

�(p, xm,l, p(i, j, y)) = P[Y1 = p(i, j, y)|X1 = xm,l, Y0 = p] =
P[Z0

λ1−1 = i, ζ1 = j |X1 = xm,l, Y0 = p] · 1{y=(1−�(x
m,l
l ))∧pi } =

1

N − 1
· ai(xm,l, p)

α(xm,l, p)
· 1{y=(1−�(x

m,l
l ))∧pi }.

Then

�(p, xm,l, q) =




1
N−1 · ai (xm,l ,p)

α(xm,l ,p)
· 1{y=(1−�(x

m,l
l ))∧pi } if q = p(i, j, y) ∀y ∈ E,

for some i 	= j = 1 . . . N,

0 otherwise.
(22)
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Also in this case, we can find, by (16), the transition probability function
Q(p, q) ∀p, q ∈ V , corresponding to the associated Markov Chain (Yn)

∞
n=0.

If q 	= p(i, j, y), ∀i 	= j = 1 . . . N, y ∈ E, then Q(p, q) = 0, otherwise

Q(p, q) =
∑
x∈H

�(p, x, q) · P(p, x)

=
∑
x∈H

1

N − 1
· ai(x, p)

α(x, p)
· 1{y=(1−�(xl))∧pi } · α(x, p)

= 1

N − 1
·
∑
x∈H

ai(x, p) · 1{y=(1−�(xl))∧pi }

6 Comments and outlook

The algorithms described above are in their simplest form. Indeed various em-
pirical modifications can be introduced in SAOP in order to increase the velocity
of convergence [4].

As far as the inverse problem is concerned, the proposed SAOP with grey levels
is just a first step. In fact, if one works with a fixed finite set of available maps,
it will tipically occur that some part of the image is not, even approximately,
reproduced.

Some selection algorithms for the case of an a priori unlimited set of randomly
generated affine contraction maps are outlined in [18].
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