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Strong consistency of kernel estimators for
Markov transition densities*

C. C. Y. Dorea

Abstract. Let P(x, dy) = t (x, y)ν(dy) be the transition kernel of a Markov chain,
where t (x, y) is a density with respect to a σ -finite measure ν on (E,E) , with E ⊂ Rd.

In this note, we propose a general class of estimates for t (x, y) that are strongly consistent
and that extend the classical results for continuous densities on Rd .
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1 Introduction

For estimating a density function p(x), Rosenblatt (1956) and Parzen (1962)
studied a general class of consistent estimatorspn(x) as a kernel weighted average
over the empirical distribution Fn(·),

pn(x) =
∫ +∞

−∞
1

h
K(

x − y

h
)dFn(y) = 1

nh

n∑
k=1

K(
x − Xk

h
), (1)

where the kernel K(·) and the window h = hn > 0 are suitably chosen, and
X1, X2, . . . , Xn are independent random variables with a common density p(x).
The d-variate case can be obtained by replacing 1/nh by 1/nhd, see, for example,
Prakasa Rao (1983).

Roussas (1969) extended the use of kernel estimators for real-valued and
strictly stationary Markov chains {Xn}n≥1 that possess a continuous transition
density t (x, y) and a stationary density p(·),

P(x, A) =
∫

A

t (x, y)dy and
∫

A

p(z)dz =
∫ +∞

−∞
P(x, A)p(x)dx.
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Under above setting there are in the literature several papers. The usual as-
sumptions are: strict stationarity, that is, X1 has density p(·); and ergodicity
conditions or some mixing conditions with decay requirements (see, for ex-
ample, Roussas (1991)). Under somehow weaker conditions, namely, Harris
recurrence, Athreya and Atuncar (1998) also studied this problem.

In this note, we consider the problem of kernel estimates for Markov chains
that possess transition densities with respect to a σ -finite measure ν on (E,E)

where E ⊂ Rd and E is a σ -field of subsets of E. That is, the transition kernel
is given by

P(Xk+1 ∈ A|Xk = x) = P(x, A) =
∫

A

t (x, y)ν(dy), ∀ x ∈ E, ∀ A ∈ E
(2)

and

P m+n(x, A) =
∫

A

P n(y, A)P m(x, dy).

The kernel K(·) of the estimator (1) can be replaced by a family of weight
functions W(h, x, ·)

pn(x) = 1

n

n∑
k=1

W(h, x, Xk), h = hn (3)

and for the transition density t (x, y) we can define the estimators

tn(x, y) =

n∑
k=1

W(h, x, Xk)W(h, y, Xk+1)

n∑
j=1

W(h, x, Xj)

. (4)

Our main result, Theorem 1, gives sufficient conditions for the strong consis-
tency of tn(x, y) . Also, it extends the classical results for densities on Rd and
for discrete probability transitions with finite state space (cf. Remark 4 (b)).

2 Preliminaries and Main Result

Let {Xn}n≥1 be a Markov chain with transition kernel (2) and let p(·) be a
stationary density, that is,∫

A

p(x)ν(dx) =
∫

E

P n(y, A)p(y)ν(dy), ∀ A ∈ E, n = 1, 2, . . . . (5)
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Note that if the chain is ergodic, then for

P∞(A) =
∫

A

p(y)ν(dy) (6)

we have P n(x, ·) → P∞(·) under some appropriate norm. We shall use the total
variation norm ‖ · ‖, that is, for a signed measure µ

‖µ‖ = sup
A∈E

µ(A) − inf
B∈E µ(B).

Definiton 1. We say that the chain is uniformly ergodicif there exists a prob-
ability P∞ on E such that

sup
x∈E

‖P n(x, ·) − P∞(·)‖ −→
n→∞ 0.

Condition 1. (a) The chain is uniformly ergodic with stationary density p(·).
(b) For h = hn > 0 and γh(x) = ν{y : |y − x| ≤ h} we have

lim
n→∞ hn = 0 and lim

n→∞ γh(x) = γ (x) < ∞. (7)

(c) W(h, x, ·) is a density with respect to ν and satisfies : given δ > 0 for
Wδ(h, x, y) = W(h, x, y)1{z:|z−x|>δ}(y) we have

lim
n→∞ Wδ(h, x, y) = 0 and Wδ(h, x, y) ≤ Kδ(x) < ∞. (8)

Moreover, for n large

γh(x)W(h, x, y) ≤ L(x) < ∞. (9)

Remark 1. In the classical case when ν is the Lebesgue measure we have
γh(x) = h and γ (x) = 0. The weight function is taken to be

W(h, x, y) = 1

h
K(

x − y

h
)

where the kernel K(·) is a density function satisfying regularity conditions that
includes lim|z|→∞ |z|K(z) = 0. And this justifies assumptions (8) and (9). Also, to

assure consistency of pn(x) it is further required that x is a continuity point of
p(·). This leads us to the following definition.
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Definition 2. For a real-valued function g on E we say that x is a ν-continuity
point of g, or x ∈ Cν(g), if, given ε > 0 there exists δ > 0 such that

ν {y : |y − x| ≤ δ, |g(y) − g(x)| > ε} = 0.

Lemma 1. (Campos and Dorea (2001)). Letg be an integrable function and
x ∈ Cν(g). Assume that Condition 1(b) and 1(c) hold then

lim
h→0

∫
E

W(h, x, y)g(y)ν(dy) = g(x). (10)

Remark 2. (a) If W(h, x, ·) is just an integrable function, not necessarily a
density, then (10) becomes

lim
h→0

|
∫

E

W(h, x, y)g(y)ν(dy) − g(x)

∫
E

W(h, x, y)ν(dy)| = 0. (11)

(b) If g is an integrable function on Ed and W satisfies the corresponding
hypotheses then we also have (11) with νd = ν × . . . × ν in place of ν.
In particular, if W ′(h, (x, y), (u, v)) = W(h, x, u)W(h, y, v) and γ ′

h(x, y) =
ν2{(u, v) : |(y, v) − (x, y)| ≤ h} then W ′ is a density with respect to ν2 and
lim
h→0

γ ′
h(x, y) = γ (x, y) < ∞ since

γ h√
2
(x)γ h√

2
(y) ≤ γ ′

h(x, y) ≤ 2γh(x)γh(y).

Moreover, for W ′
δ(h, (x, y), ·) = W ′(h, (x, y), ·)1{|(u,v)−(x,y)|>δ}(·) we have

W ′
δ(h, (x, y), (u, v)) ≤ W δ√

2
(h, x, u) + W δ√

2
(h, y, v)

so that (8) holds. Also, (9) is satisfied since

γ ′
h(x, y)W ′(h, (x, y), (u, v)) ≤ 2L(x)L(y).

Thus, if (x, y) ∈ Cν2(g) we have

lim
h→0

∫
E2

W(h, x, u)W(h, y, v)g(u, v)ν2(dudv) = g(x, y). (12)

Define

Fk = σ(X1, . . . , Xk) and F∞
k = σ(Xk, Xk+1, . . . ). (13)
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Lemma 2. Assume that Condition 1(a) holds and letη be a bounded andF∞
k -

measurable function. Then there exist constantsβ and0 ≤ ρ < 1 such that
∣∣∣∣E(η|Fj ) −

∫
ηdP∞

∣∣∣∣ ≤ βρk−j , j = 1, 2, . . . , k (14)

whereP∞ is defined by (6).

Remark 3. Take η = 1A with A ∈ F∞
k then E(η|Fj ) = P k−j (Xj , A) and

from (14) we have |P k−j (Xj , A) − P∞(A)| ≤ βρk−j . It follows that

‖P n(x, ·) − P∞(·)‖ ≤ βρη. (15)

In fact, Theorem 16.0.2 from Meyn and Tweedie (1994) shows that a uniformly
ergodic chain converges at a geometric rate (15). Thus Lemma 2 can be proved
by applying standard convergence arguments.

Lemma 3. (Devroye (1991)). Let G0 = {∅, E} ⊂ G1 ⊂ . . . ⊂ Gn be
a sequence of nestedσ -algebras. LetU be aGn-measurable and integrable
random variable and define the Doob martingaleUk = E(U |Gk). Assume that
there exist aGk−1-measurable random variablesVk and constantsak such that
Vk ≤ Uk ≤ Vk + ak. Then givenε > 0

P (|U − EU | ≥ ε) ≤ 4 exp

{
− 2ε2∑n

k=1 a2
k

}
. (16)

Theorem 1. Let x ∈ Cν(p) with p(x) > 0 and let(x, y) ∈ Cν2(t). Assume
that

∑
n≥1

exp{−nγ 2
h (x)γ 2

h (y)α} < ∞, ∀ α > 0 (17)

and thatW(h, x, ·) andW(h, y, ·) satisfy Condition 1. Then

P( lim
n→∞ tn(x, y) = t (x, y)) = 1. (18)
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Remark 4. (a) In the independent case it is assumed that x is a continuity point
of p(·) and that

∑
exp{−n h2

nα} < ∞, and this justifies assumption (16).

(b) In Roussas (1991), for transition densities with respect to the Lebesgue
measure, the strong consistency (18) is proved assuming continuity of p(·) and
existence of bounded second order derivatives of t (·, ·).

3 Proof of the Results

Proof of Theorem 1. (i) Define

pn(x) = 1

n

n∑
k=1

W(h, x, Xk) and gn(x, y) = 1

n

n∑
k=1

W(h, x, Xk)W(h, y, Xk+1).

To prove (18) enough to show

P( lim
n→∞ pn(x) = p(x)) = 1 and P( lim

n→∞ qn(x, y) = p(x)t (x, y)) = 1. (19)

so that (18) follows.
(ii) First, we show the asymptotic unbiasedness of pn and qn. Since p(·) is a

stationary density we have X1, X2, . . . identically distributed and by Lemma 1,

E(pn(x)) =
∫

E

W(h, x, y)p(y)ν(dy) −→
n→∞ p(x). (20)

Similarly, by (2)

E(qn(x, y)) = E(W(h, x, X1)W(h, y, X2))

=
∫

E2
W(h, x, u)W(h, y, v)p(u)t (u, v)ν2(dudv).

Since x ∈ Cν(p) and (x, y) ∈ Cν2(t) we have from (12)

lim
n→∞ E(qn(x, y)) = p(x)t (x, y). (21)

(iii) To prove the first part of (19) enough to show that given ε > 0 there exits
αε > 0, independent of n such that

P(|pn(x) − E(pn(x))|) ≤ 4 exp{−nγ 2
h (x)αε}. (22)

By (20) we have P(|E(pn(x)) − p(x)| ≥ ε) = 0 for n large. Since
∑
n≥1

exp(−nγ 2
h (x)αε) < ∞
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we have by Borel-Cantelli lemma the desired convergence.
To prove (22), let µn = γh(x)E(W(h, x, Xk) and for s ≥ 0 define

As(Xj) =
∑
r≥s

[
E

(
γh(x)W(h, x, Xj+r ) |Fj

) − µn

]
.

That As(Xj) is well-defined follows from (9) and (14)

|As(Xj)| ≤
∑
r≥s

βρr = A < ∞. (23)

Note that A0(Xj ) − A1(Xj ) = γh(x)W(h, x, Xj ) − µn and that

U =
n∑

j=2

[
A0(Xj ) − A1(Xj−1)

]

= nγh(x) [pn(x) − E(pn(x))] − [A0(X1) − A1(Xn)] .

We will show that U satisfies the hypotheses of Lemma 3 with Gk = Fk, Vk =
E(U |Gk−1) − 2A and ak = 4A. Since EU = 0 we have

P
(|pn(x) − E(pn(x))| ≥ ε

) = P
(|U + [A0(X1) − A1(Xn)| ≥ nγh(x)ε

)

≤ P

(
|A0(X1) − A1(Xn)| ≥ nγh(x)ε

2

)
+ P

(
|U − EU | ≥ nγh(x)ε

2

)
.

Since |A0(·) − A1(·)| is bounded, the first term is 0 for n large. From (16) we
have

P

(
|U | ≥ nγh(x)ε

2

)
≤ 4 exp

{
− nγ 2

h (x)ε2

8A2

}

and (22) follows. It remains to verify the hypotheses of Lemma 3. Clearly,
U is Gn-measurable and Vk is Gk−1-measurable. Now, for k > j we have
E(As(Xj)|Gk) = As(Xj) and for k ≤ j

E(As(Xj )|Gk) =
∑
r≥s

E
{
E(γh(x)W(h, x, Xj+r )|Fj ) − µn |Gk

}

=
∑
r≥s

[
E(γh(x)W(h, x, Xj+r |Fk) − µn

] = Aj+k+s(Xk).
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Thus, for 2 ≤ k ≤ n

Uk = E(U |Gk) =
k−1∑
j=2

[
A0(Xj ) − A1(Xj−1)

] + A0(Xk) − A1(Xk−1)

+
n∑

j=k+1

[
Aj−k(Xk) − Aj−1+k+1(Xk)

]

=
k∑

j=2

[
A0(Xj ) − A1(Xj−1)

]
.

Moreover, by (23)

Uk−1 − 2A ≤ Uk ≤ Uk−1 + 2A

and

Vk ≤ Uk ≤ Vk + 4A.

(iv) The proof of the second part of (19) uses the same type of arguments as
in (iii). It is enough to show that given ε > 0 there exists βε > 0 such that

P(|qn(x, y) − E(qn(x, y))| ≥ ε) ≤ 4 exp{−nγ 2
h (x)γ 2

h (y)βε}. (24)

Let ρn = γh(x)γh(y)E{W(h, x, Xk)W(h, y, Xk+1)} and for s ≥ 0 and j ≥ 1
define

Bs(Fj+1) =
∑
r≥s

[
E(γh(x)γh(y)W(h, x, Xj+r )W(h, y, Xj+1+r ) |Fj+1) − ρn

]
.

To verify that Bs(·) is well-defined we have for s < 2

|Bs(Fj+1)| ≤ 2L(x)L(y) + |Bs+1(Fj+1)|.
And using (15) for s ≥ 2

Bs(Fj+1) =
∑
r≥s

∫
E2

γh(x)γh(y)W(h, x, u)W(h, y, v)

[P r−1(Xj+1, du) − P∞(du)]P(u, dv)

|Bs(Fj+1)| ≤ L(y)
∑
r≥s

∫
E

γh(x)W(h, x, u)|P r−1(Xj+1, du) − P∞(du)|

≤ L(x)L(y)
∑

r

βρr .
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Let B such that |Bs(Fj+1)| ≤ B < ∞ . Write

U =
n∑

j=2

[B0(Fj+1) − B1(Fj )]

= nγh(x)γh(y)[qn(x, y) − E(qn(x, y))] − [B0(F2) − B1(Fn+1)].
For Gk = Fk+1 we have

Uk = E(U |Gk) =
k∑

j=2

[
B0(Fj+1) − B1(Fj )

]
.

And the hypotheses of Lemma 3 are verified by taking Vk = Uk−1 − 2B and
ak = 4B. �
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