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Strong consistency of kernel estimators for
Markov transition densities*

C.C.Y. Dorea

Abstract. Let P(x,dy) = t(x, y)v(dy) be the transition kernel of a Markov chain,
wherer (x, y) isadensity with respect to ac -finite measure v on (E, ) , with E C R¢.
Inthisnote, weproposeagenera classof estimatesfor 7 (x, y) that arestrongly consistent
and that extend the classical results for continuous densities on R .
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1 Introduction

For estimating a density function p(x), Rosenblatt (1956) and Parzen (1962)
studied ageneral classof consistent estimators p,, (x) asakernel weighted average
over the empirical distribution F},(-),

Tl x—y 1< x — Xk
pal) =f_oo PR DR = 53 KT @
where the kernel K(-) and the window # = h, > 0 are suitably chosen, and
X1, X2, ..., X, areindependent random variableswith acommon density p(x).
Thed-variate case can beobtained by replacing 1/nh by 1/nh¢, see, for example,
Prakasa Rao (1983).

Roussas (1969) extended the use of kernel estimators for real-valued and
strictly stationary Markov chains {X,},>1 that possess a continuous transition
density 7 (x, y) and a stationary density p(-),

+o00

P(x,A) = / t(x, y)dy and /p(z)dz 2/ P(x,A)p(x)dx.
A A _

[e¢]
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Under above setting there are in the literature severa papers. The usual as-
sumptions are: strict stationarity, that is, X; has density p(-); and ergodicity
conditions or some mixing conditions with decay reguirements (see, for ex-
ample, Roussas (1991)). Under somehow weaker conditions, namely, Harris
recurrence, Athreya and Atuncar (1998) also studied this problem.

In this note, we consider the problem of kernel estimates for Markov chains
that possess transition densities with respect to a o -finite measure v on (E, £)
where E ¢ R? and F isao-field of subsets of E. That is, the transition kernel
is given by

P(Xk+1€A|Xk:x):P(x,A):/t(x,y)v(dy), VxeE, VAeE
A
2

and
Pm+”(x,A) :/ P'(y, A)P"(x,dy).
A

The kerndl K () of the estimator (1) can be replaced by a family of weight
functions W (h, x, -)

n

1
) = =3 Wik, x, X0), h=hy 3
k=1

and for the transition density ¢ (x, y) we can define the estimators

Y Wk, x, X)W (h, y, Xis1)
(x, y) = =—— : 4
> Wh.x. X))

j=1

Our main result, Theorem 1, gives sufficient conditions for the strong consis-
tency of #,(x, y) . Also, it extends the classical results for densities on R¢ and
for discrete probability transitions with finite state space (cf. Remark 4 (b)).

2 Preliminariesand Main Result

Let {X,},>1 be a Markov chain with transition kernel (2) and let p(-) be a
stationary density, that is,

/p(x)v(dx) :f P'(y, A p(y)v(dy), YVAeZE, n=212,.... (5
A E
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Notethat if the chain is ergodic, then for

Po(A) = / pOIV(dy) (®)
A

wehave P"(x, -) — Ps(-) under some appropriate norm. We shall usethetotal
variation norm || - ||, that is, for a signed measure 1

Il = sup u(A) — inf w(B).
AcE Bef

Definiton 1. We say that the chain is uniformly ergodidf there exists a prob-
ability P,, on E such that

SUp [P (x, ) = Poc ()l —. 0.

xekE
Condition 1. (a) Thechainisuniformly ergodic with stationary density p(-).
(b) Forh = h, > 0and y,,(x) = v{y : |y — x| < h} we have

limha,=0 and Ilim y,(x) =y () < oo. @)

n—oo

(c) W(h,x,-) isadensity with respect to v and satisfies : given§ > 0 for
Wg(h, X, y) = W(h, X, y)l{z;|zfx‘>5}(y) we have

lim Ws(h,x,y) =0 and W;s(h, x,y) < Ks(x) < oo. (8)

Moreover, for n large

Ya@)W(h, x,y) < L(x) < oo. (9)

Remark 1. In the classical case when v is the Lebesgue measure we have
vu(x) = h and y (x) = 0. The weight function is taken to be

X=y
h

where the kernel K (-) isadensity function satisfying regularity conditions that
includes‘ Ilim |z|K (z) = 0. And thisjustifies assumptions (8) and (9). Also, to
Z|—> 00

1
W(h,x,y) = EK( )

assure consistency of p,(x) it isfurther required that x is a continuity point of
p(+). Thisleads usto the following definition.
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Definition 2. For area-valued function g on E we say that x isav-continuity
pointof g, or x € C,(g), if, given ¢ > Othereexists > 0 such that

vi{y:ly—x| <4, lg(y)—gx)|>e}=0.

Lemmal. (Camposand Dorea(2001)). Letg be an integrable function and
x € C,(g). Assume that Condition 1(b) and 1(c) hold then

llqing/ W(h, x, y)g(y)v(dy) = g(x). (10)
—YJE

Remark 2. (a) If W(h, x, -) isjust an integrable function, not necessarily a
density, then (10) becomes

fim | [ Wb, 3)g(@n) = 5 [ Wb pvidyl =0. @
n— E E

(b) If g is an integrable function on E¢ and W satisfies the corresponding
hypotheses then we also have (11) with vY = v x ... x v in place of v.
In particular, if W/(h, (x,y), (u,v)) = W(h,x,u)W(h,y,v) and y,(x,y) =
v2{(u,v) : [(y,v) — (x,y)| < h}then W’ is a density with respect to v? and
lim y;(x, y) = y(x, y) < oo since

v (YL () < Vi (6, y) < 2y () va(y).
Moreover, for Wi(h, (x, y), ) = W'(h, (x, ¥), ) Ljw.v)—(x.y>5 () We have
Wa(hv (X, y)a (uv U)) S W%(hv X, M) + W%(hv )’» U)
so that (8) holds. Also, (9) is satisfied since

Ve, MW (R, (x, ), (u, v)) < 2L(x)L(y).

Thus, if (x, y) € C,2(g) we have

Lirrg) W(h, x,u)W(h, y, v)g(u, v)v2(dudv) = g(x, y). (12
Define
fk:O'(XL... , Xi) and _TI?OZO'(X](,X/(+1,...). (13)
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Lemma2. Assume that Condition 1(a) holds and#ebe a bounded ang°-
measurable function. Then there exist const@wnd0 < p < 1 such that

<BpI, j=1,2,... k (14)

)E(nm) - [ nar.
whereP, is defined by (6).

Remark 3. Taken = 1, with A € F° then E(n|F;) = P*/(X;, A) and
from (14) we have | PX=/ (X ;, A) — Px(A)| < Bp*~/. 1t follows that

I1P"(x, ) = P (Ol = Bp". (15)

In fact, Theorem 16.0.2 from Meyn and Tweedie (1994) shows that a uniformly
ergodic chain converges at a geometric rate (15). Thus Lemma 2 can be proved
by applying standard convergence arguments.

Lemma 3. (Devroye (1991)). LetGyo = {0,E} C G1. C ... C G, be
a sequence of nestedalgebras. LetU be aG,-measurable and integrable
random variable and define the Doob martingéle = E(U|G,). Assume that
there exist aG;_i-measurable random variablég and constantg, such that
Vi < Uy < Vi + a. Then givere > 0

2¢?
P(U-EU| > ¢) <4exp — =r—51. (16)
k=19

Theorem 1. Letx € C,(p) with p(x) > 0and let(x, y) € C,2(¢). Assume
that

> expl—nyZ(0)yi(y)a} < oo, Ya >0 (17)

n>1

and thatW (h, x, -) and W (h, y, -) satisfy Condition 1. Then

P(lim t,(x,y) =t(x,y)) =1 (18)
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Remark 4. (@) Intheindependent caseit isassumed that x isacontinuity point
of p() andthat ) " exp{—n hia} < oo, and thisjustifies assumption (16).

(b) In Roussas (1991), for transition densities with respect to the Lebesgue
measure, the strong consistency (18) is proved assuming continuity of p(-) and
existence of bounded second order derivativesof (-, -).

3 Proof of the Results
Proof of Theorem 1. (i) Define

n

1 1
Pa(0) =23 W x, Xi) and g (6, y) = = 3 Wk, x, X)W (h, , Xisa).
k=1 k=1

To prove (18) enough to show
PClim p,(x) = p(x)) =1 and P(lim g,(x,y) = p(x)r(x, y)) = 1. (19)

so that (18) follows.
(i) First, we show the asymptotic unbiasedness of p, and ¢,,. Since p(-) isa
stationary density we have X1, Xo, ... identicaly distributed and by Lemma 1,

E(pa(x)) =/EW(h,x,y)p(y)V(dy)H—go px). (20)
Similarly, by (2)
E(‘In(x, Y)) = E(W(haanl)W(hv }’»XZ))

= / W(h, x, )W (h, y, v) pu)t(u, v)v>(dudv).
E2
Sincex € C,(p) and (x, y) € C,2(¢) we have from (12)
im E(gn(x, ) = p(0)1(x, y). (21)

(iii) To provethefirst part of (19) enough to show that given ¢ > 0 there exits
o > 0, independent of n such that

P(Ipn(x) — E(pp(x))]) < dexpl—nyf(x)ac}. (22)

By (20) we have P(|E(p,(x)) — p(x)| > €) = 0 for n large. Since

Y exp(—nyf(xac) < oo

n>1
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we have by Borel-Cantelli lemma the desired convergence.
To prove (22), let u,, = y,(x) E(W(h, x, X;) andfors > 0O define

AdX) =Y [E (W0, x, Xj1) | Fi) = ] -
That A,;(X ;) iswell-defined follows from (9) and (14)
A (X)I <) Bo" = A < 0. ()

r>s

Notethat Ag(X;) — A1(X;) = yu(x)W(h, x, X;) — 1, and that

U=> [Ao(X)) — Ar(X; )]

j=2
= ny(x) [pn(x) - E(pn(x))] - [AO(Xl) - Al(Xn)] .

We will show that U satisfies the hypotheses of Lemma 3 with G, = Fi, Vi =
E(U|Gk-1) — 2A and q, = 4A. Since EU = 0 we have

P(Ipa(x) — E(py(x))| = €) = P(|U + [Ao(X1) — Ar(X,)| = ny,(x)e)
nyp(x)e nyp(x)e
2 2 )

=< P(IAo(Xl) — A1(X,)| = ) + P(IU —EU| =

Since|Ag(-) — A1(+)] isbounded, thefirst term is O for n large. From (16) we
have

nyn(x)e ny(x)e?
P(IUlz > >s4eX|o{——’;3A2 }

and (22) follows. It remains to verify the hypotheses of Lemma 3. Clearly,
U is G,-measurable and V. is G;_;-measurable. Now, for k > j we have
E(A;(X))|G) = Ay(X;) andfor k < j

E(A;(X)IGr) = ZE{E(Vh(x)W(h»vajJrr)LTj)_,Uvn|6k}

r=s

= Z [Evn W, x, X | Fi) — tn] = Ajias (Xo).

r=s
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Thus,for2 <k <n

T
L

Uc=EU|Gy) = [Ao(X;) — A1(X;—D)] + Ao(Xy) — A1(Xy—1)
J

|l
N

+ Z [Ajc(X0) = Aj1tk10x0]
jok+

k
= [Ao(X ;) — Ar(X;-D)].
j=2
Moreover, by (23)
U1 —2A < Uy < Up_1 +2A
and
Vi < Ux < Vi +4A.

(iv) The proof of the second part of (19) uses the same type of arguments as
in (iii). It is enough to show that given ¢ > 0 there exists 8. > 0 such that

P(lga(x, y) = E(gu(x, )| = €) < 4exp{—ny;(x)y;(MB). (24

Let p, = yu (YW E{W (h, x, X)W (h, y, Xi1)} andfors > Oand j > 1
define

By (Fj+1) = Z [En @)W (h, x, X2 )W (R, y, Xj140) | Fjs1) — pa] -

r=s

To verify that B, (-) is well-defined we have for s < 2

|Bs(Fj+0| = 2L(x)L(y) + | Bsa(Fj+1)l-
Andusing (15) fors > 2

B(Fjs1) = Zsz ViYW (B, x, )W (h, y, v)

r=s

[P""Y(X 11, du) — Pos(du)] P (u, dv)

B (F)l < LO)Y. f Ya(OW (h,x, )] P""H(X j41. dut) — Po(du)]
E

r>s

< LOILG) Y o'
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Let B suchthat |B,(F;+1)| < B < oo . Write

U = Y [Bo(Fj+1) — BuF)]

j=2
= nyn)VnWIgn(x, y) — E(gn(x, y)] — [Bo(F2) — Bi(Fus)]-

For G, = Firy1 We have

k
U= EUIG) = Y [Bo(Fjs1) — Bu(F))-
j=2

And the hypotheses of Lemma 3 are verified by taking V, = U;_; — 2B and
ay = 4B. O
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