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Sommerfeld condition for a Liouville equation
and concentration of trajectories
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Abstract. We analyse the concentration of trajectories in a Liouville equation set in the
full space with a potential which is not constant at infinity. Our motivation comes from
geometrical optics where it appears as the high freqency limit of Helmholtz equation.
We conjecture that the mass and energy concentrate on local maxima of the refraction
index and prove a result in this direction. To do so, we establish a priori estimates in
appropriate weighted spaces and various forms of a Sommerfeld radiation condition for
solutions of such a stationary Liouville equation.
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1 Introduction

We consider the stationary Liouville equation on the density fα(x, ξ) with x,
ξ ∈ R

d ,

αfα + ξ · ∇xfα + 1

2
∇xV (x) · ∇ξfα = �(x, ξ). (1.1)

Much of our results refer to the mass density
∫

Rd fαdξ and to the energy density∫
Rd

|ξ |2
2 fαdξ . Our purpose is to study the behavior of solutions as the absorption

parameter α vanishes in the case where the potential V (index at infinity in
geometrical optics) is not constant at infinity. More precisely, we establish
uniform estimates in appropriate weighted spaces of Morrey type, and we show
a radiation condition that we express in various ways.
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44 BENOÎT PERTHAME AND LUIS VEGA

The solution is also directly related to the system of ordinary differential equa-
tions

Ẋ(t, y) = ζ(t, y),

ζ̇ (t, y) = 1
2∇xV

(
X(t, y)

)
.

Our results strongly depend on its Hamiltonian structure which implies
|ζ(t, y)|2 = V

(
X(t, y)

)
, and on the the large time behaviour of the solutions

which concentrate on critical points of V . However, our motivation for studying
this problem comes from geometrical optics. More precisely this equation can
be derived as the high frequency limit of a Helmholtz equation for a smoothly
varying media as proved in Benamou et al [3] and Castella et al [4]. At this level
it may be useful to notice that another high frequency limit exists for random
media which writes (see Ryzhik et al [17], Erdös and Yau [8], Poupaud and
Vasseur [15] at least for the evolution case)

αfα + ξ · ∇xfα +
∫

Rd

K(ξ, ξ ′)[f (ξ) − f (ξ ′)]dξ ′ = 0,

but the existence of a limit and the related uniqueness theory seems to rely on
different methods.

Several mathematical features are in common between (1.1) and Helmholtz
equation. Specially a priori estimates, uniform in α, are not obvious and cannot
be obtained in usual Lebesgue spaces. In Perthame and Vega [13] such estimates
in Morrey-Campanato spaces were derived for Helmholtz equation with the right
space scale which makes them ‘uniform’in frequency. Therefore the method also
yields estimates for equation (1.1) which are uniform in α > 0 (see Theorem
2.1). The only point here is to translate in terms of the phase space variables the
manipulations made in the single variable x for Helmholtz equation.

More deep is to understand the uniqueness condition at infinity, so-called
Sommerfeld radiation condition. It expresses that no rays (or no mass, or no
energy) are incoming. Roughly it says that, in the limit α = 0+, we have
f (x, ξ) = 0 for x ·ξ ≤ 0 and |x| large. The question is to give a precise meaning
to this statement and in particular to take into account possible variations of V

at infinity as we do here. We establish that it can be written as

1

R

∫
{|x|≤R}

∫
ξ∈Rd

|ξ − x

|x|V
1/2|2f (x, ξ)dxdξ → 0 as R → ∞. (1.2)
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SOMMERFELD CONDITION FOR A LIOUVILLE EQUATION 45

This is a little surprising because several authors have proved an alternative
condition which involves the phase in a natural way. It is given by




1
R

∫
{|x|≤R}

∫
ξ∈Rd |ξ − ∇φ(x)|2f (x, ξ)dxdξ → 0 as R → ∞,

|∇φ| = V 1/2 in R
d,

(1.3)

see Agmon et al [1], Saito [18] or for different applications Zhang [19], Ei-
dus [6], [7]. And, following the classical theory of Hamilton-Jacobi equation,
∇φ �≡ x

|x|V
1/2. In fact the compatibility between the two conditions is explained

by a concentration of trajectories (characteristics), and thus of f , on critical
points of V where the two quantities coincide. This fact was discovered in [14]
for Helmholtz equation and we extend it here to (1.1) in Theorem 2.1, equation
(2.10). Notice however that a similar statement can be given directly for trajec-
tories (differential equation) for large times rather than in the limit α → 0. This
was done by Herbst [9]. Here, we develop the same theory with PDE methods
and we state various asymptotic forms relating the limits as α → 0+ and as
R → ∞ in expressions like the above Sommerfeld radiation condition.

The outcome of this paper is as follows. We first state our precise assumptions
and results. Then, in the last two sections, we prove these results. The last
section is devoted to a uniqueness proof based on our Sommerfeld condition.

2 Main results

For the sake of simplicity we restrict ourselves to the case where the potential
V is positively homegeneous of degree 0 as considered in Herbst [9], although
the extension to assumptions in the spirit of [13], [14] is possible. Hence, we
assume throughout this paper that

α > 0, (2.1)

V = V (
x

|x|) ∈ C2(Sd−1), V > 0, (2.2)




�(x, ξ) = σ(x)δ

(
ξ = x

|x|V (x)1/2

)
,

σ (x) ≥ 0, σ �≡ 0, σ ∈ C1
comp(Rd).

(2.3)
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We also use the following notations

ξ t (x, ξ) = ξ − x

|x|2 x · ξ, (2.4)

∇xV = ∇ωV

|x| , ω = x

|x| . (2.5)

We begin with the problem set with α > 0 and establish uniform a priori
bounds that are used later to study the limit α → 0.

Theorem 2.1. (A priori bounds). There is a unique nonnegative, locally
bounded, measure fα, solution to (1.1) and it satisfies, with right hand sides
independent of α,

α

∫
R2d

fα(x, ξ)dxdξ =
∫

Rd

σ (x)dx := M, (2.6)

fα is supported by {|ξ |2 = V (x)}, (2.7)

∫
R2d

|ξ t |2
|x| fα(x, ξ)dxdξ ≤ ‖V ‖1/2

L∞M, (2.8)

1

R

∫
{|x|≤R}

∫
ξ∈Rd

|ξ |2fα(x, ξ)dxdξ ≤ ‖V ‖1/2
L∞

∫
Rd

σ (x)dx, (2.9)

∫
R2d

|∇ωV |2
|x| fα(x, ξ)dxdξ ≤ C(V, D2V ) M (see remark 2). (2.10)

Remark 2.1. To see why estimate (2.10) is relevant we point out that, in the
limit α → 0+ (see also Theorem 2.3), there holds∫

R2d

1

1 + |x|f (x, ξ)dxdξ = ∞.

This can be seen from estimate (2.14) below, which implies that for R large
enough ∫

{R≤|x|≤2R}

∫
Rd

1

|x|f (x, ξ)dxdξ ≥ M

4‖V 1/2‖L∞
.
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In the case V = Constant , say V = 1, this can also be computed directly from
the representation formula (3.1) which gives

∫
R2d

1

|x|f (x, ξ)dxdξ =
∫ ∞

0

∫
Rd

σ (y)

1 + |y| + t
dy dt = ∞.

We obtain here uniform (in α) estimates which use the norm

sup
R>0

1

R

∫
{|x|≤R}

∫
ξ∈Rd

| . . . |dxdξ

and specially that preservs the right space homogeneity. These are typical of
Helmholtz equations, see Agmon and Hörmander [2], [13], [14] and have been
used recently in the context of dispersive equations, see Kenig, Ponce and Vega
[11], and in the context of kinetic equations, see Lions and Perthame [12]. This
space homogeneity is also the reason why they allow, in the context of Helmholtz
equations, uniformity in the frequency [3]. The extra decay provided in estimate
(2.10) is fundamental to establish the Sommerfeld condition in its simple form
(1.2) i.e. without refering to the phase as in (1.3).

The limit measure f (x, ξ) obtained for α → 0+ satisfies the Liouville equation

ξ · ∇xf + 1

2
∇xV (x) · ∇ξf = �(x, ξ). (2.11)

In order to establish uniqueness (see section 5) for the above equation a condition
of Sommerfeld radiation type is needed. Indeed, even with V ≡ 0 there are
infinitely many solutions given for instance by f = F(x − ξ

|ξ |2 x · ξ) for any
smooth function F . It is given in our next result.

Theorem 2.2. (Sommerfeld radiation condition). Uniformly in α we have as
R → ∞,

1

R

∫
{|x|≤R}

∫
ξ∈Rd

|ξ − x

|x|V
1/2|2fα(x, ξ)dxdξ → 0.

And also, as α → 0,

α

∫
R2d

|ξ − x

|x|V
1/2|2 fα(x, ξ)dxdξ → 0.

Notice that (2.10) indicates that fα concentrates along the critical points of V .
Our next result says that in fact the mass concentrates rather on high values of
V .
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Theorem 2.3. (Asymptotics α → 0). As α ↓ 0+ we have fα ↑ f and therefore
f satisfies the a priori bounds in theorem 2.1; moreover, additionally to the
statements in Theorem 2.2,

α

∫
R2d

|ξ t |2 fα(x, ξ)dxdξ → 0, α

∫
R2d

|∇ωV |2 fα(x, ξ)dxdξ → 0, (2.12)

α

∫
R2d

V (x)1/2fα(x, ξ)dxdξ →
∫

Rd

V (x)1/2 σ(x)dx

+
∫

R2d

|ξ t |2
|x| f (x, ξ)dxdξ,

(2.13)

1

R

∫
{R≤|x|≤2R}

∫
Rd

V (x)1/2f (x, ξ)dxdξ →
∫

R2d

σ (x)dx := M, (2.14)

1

R

∫
{R≤|x|≤2R}

∫
Rd

V (x)f (x, ξ)dxdξ →
∫

Rd

V (x)1/2 σ(x)dx

+
∫

R2d

|ξ t |2
|x| f (x, ξ)dxdξ.

(2.15)

The limits (2.13) compared to (2.6), and (2.15) compared to (2.14), express
that the mass f (x, ξ)dxdξ not only concentrates on extrema of V (see (2.10)),
but for large values of x it goes rather to larger values of V compared to the
source. Indeed, except very special situations when the source is only supported
by extrema of V , we always have

∫
R2d

|ξ t |2
|x| f (x, ξ)dxdξ > 0.

3 Proof of Theorem 2.1 and Theorem 2.2

Proof of Theorem 2.1. The existence of a unique measure solution fα is a
classical matter. It is given through the characteristics

Ẋ(t, y) = ζ(t, y), X(0, y) = y,

ζ̇ (t, y) = 1
2∇xV

(
X(t, y)

)
, ζ(0, y) = y

|y|V
1/2(y).

The formula is now

fα(x, ξ) =
∫ ∞

0

∫
Rd

e−αtδ

(
x − X(t, y)

)
δ

(
ξ − ζ(t, y)

)
σ(y)dydt. (3.1)
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To prove (2.6), we just integrate in x and ξ equation (1.1) or the representation

formula (3.1). To prove (2.7), we multiply (2.6) by
(
|ξ |2 − V (x)

)2
. Using (2.3)

and since

ξ · ∇x

(
|ξ |2 − V (x)

)2 + 1

2
∇xV (x) · ∇ξ

(
|ξ |2 − V (x)

)2 = 0,

we find after integrating by parts

α

∫
R2d

(
|ξ |2 − V (x)

)2
fα(x, ξ)dxdξ = 0.

To prove (2.8), we multiply equation (1.1) by ξ · x
|x| . Since ξ ·∇x(ξ · x

|x|) = |ξ t |2
|x| ,

we obtain using the signs of V and �

∫
R2d

|ξ t |2
|x| fα(x, ξ)dxdξ = α

∫
R2d

ξ · x

|x|fα(x, ξ)dxdξ

−
∫

R2d

V 1/2(x)�(x, ξ)dxdξ

(3.2)

≤ α
∫

R2d |ξ |fα(x, ξ)dxdξ

= α
∫

R2d V 1/2(x)fα(x, ξ)dxdξ,

and we conclude thanks to (2.6).
Next, we prove (2.9). Following [13], we use the multiplier ξ · ∇x	R(x) with

∇x	R(x) =




x

R
f or |x| ≤ R,

x

|x| f or |x| ≥ R.

We obtain
∫

R2d

[ |ξ |2
R

1{|x|≤R} + |ξ t |2
|x| 1{|x|≥R}

]
fα(x, ξ)dxdξ

= α

∫
R2d

ξ · ∇x	R(x)fα(x, ξ)dxdξ −
∫

R2d

ξ · ∇x	R(x)�(x, ξ)dxdξ,

(3.3)

and we obtain the result noticing that ξ · ∇x	R(x)�(x, ξ) ≥ 0.
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We now turn to the proof of (2.10). We use the multiplier ξ t · ∇ωV (x) and
obtain,∫

R2d

[
D2

ωV .(ξ t , ξ t )

|x| − x · ξ

|x|2 ξ t · ∇ωV (x) + 1

2

|∇ωV (x)|2
|x|

]
fα(x, ξ)dxdξ

= α

∫
R2d

ξ t · ∇ωV (x)fα(x, ξ)dxdξ −
∫

R2d

ξ t · ∇ωV (x)�(x, ξ)dxdξ.

This identity uses the relations

D2
xωV .(ξ, ξ) = ξiξjD

2
ωiωk

V

(
δjk

|x| − xjxk

|x|3
)

,

and 0 = Dωj
V + xiD

2
ωiωk

V
( δjk

|x| − xj xk

|x|3
)
, for all j , which lead to

D2
xωV .(ξ, ξ) = D2

ωV .(ξ t , ξ t )

|x| − x · ξ

|x|2 ξ t · ∇ωV (x).

We therefore conclude∫
R2d

|∇ωV (x)|2
|x| fα(x, ξ)dxdξ ≤ (1 + α)‖V ‖1/2

L∞‖∇V ‖L∞M

+
∫

R2d

[
‖D2

ωV ‖L∞
|ξ t |2
|x| + ‖V ‖1/2

L∞
|ξ t | |∇ωV |

|x|
]
fα(x, ξ)dxdξ.

And we conclude by a Cauchy-Schwarz inequality using the previous estimates.

Proof of Theorem 2.2. We define

ρR(x) = inf
(
1,

|x|
R

)
, ∇	R = x

|x| ρR,

and use the multiplier −2ξ · ∇x	R + 2V 1/2ρR. Using that |ξ |2 = V , we obtain

α

∫
R2d

ρR(x)

V 1/2
|ξ − x

|x|V
1/2|2fα(x, ξ)dxdξ

+ 1

R

∫
R2d

[
|ξ − x

|x|V
1/2|2 1{|x|≤R} + 2

|ξ t |2
|x| 1{|x|≥R}

]
fα(x, ξ)dxdξ

= −2
∫

R2d

ξ · ∇xV
1/2ρR fα(x, ξ)dxdξ

≤
∫

R2d

( |ξ t |2
|x| + |∇ωV 1/2|2

|x|
)

ρR fα(x, ξ)dxdξ.

(3.4)
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Notice that
∫

R2d

( |ξ t |2
|x| + |∇ωV 1/2|2

|x|
)

ρR fα(x, ξ)dxdξ ≤

≤
∫

R2d

( |ξ t |2
|x| + |∇ωV 1/2|2

|x|
)

f (x, ξ)dxdξ

is uniformly bounded using estimates (2.8) and (2.10) and following the argument
of the proof of Theorem 2.3 that fα is increasing to f as α ↓ 0. Therefore we
may pass to the limit as R → ∞ in (3.4) and this gives the first statement of
Sommerfeld condition.

For the second statement, we use the idendity

α

∫
R2d

1

V 1/2
|ξ − x

|x|V
1/2|2 fα(x, ξ)dxdξ =

= 2 α

∫
R2d

[
V 1/2 − x · ξ

|x|
]

fα(x, ξ)dxdξ.

Then, we use the idendity (3.2) and the result (2.13) of Theorem 2.3 which is
proved independently, and this concludes the proof of Theorem 2.2.

4 Proof of Theorem 2.3

The monotonicity of fα, and thus the existence of a limit in locally bounded
measures, follows from the maximum principle or (3.1).

We now explain how the limits can be computed. We begin with the first limit
in (2.12). We compute

[ξ · ∇x + 1

2
∇xV · ∇ξ ] |ξ t |2 = 2

[
− |ξ t |2 x · ξ

|x| + 1

2
ξ · ∇xV

]
. (4.1)

And thus, using that |ξ t (x, ξ)|2�(x, ξ) = 0, we obtain

α

∫
R2d

|ξ t |2 fα(x, ξ)dxdξ = 2
∫

R2d

[
−|ξ t |2 x · ξ

|x| + 1

2
ξ · ∇xV

]
fα(x, ξ)dxdξ

→ 2
∫

R2d

[
−|ξ t |2 x · ξ

|x| + 1

2
ξ · ∇xV

]
f (x, ξ)dxdξ,

thanks to the integrability proved in Theorem 2.1.
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We can compare the above identity to a direct computation based on equation
(2.11), after integration by parts against the test function |ξ t |2ϕR(x), with the
truncation function

ϕR(x) = ϕ(
|x|
R

), ϕ(r) =



1 f or 0 ≤ r ≤ 1,

2 − r f or 1 ≤ r ≤ 2,

0 f or r ≥ 2.

(4.2)

We find, using again (4.1) and |ξ t (x, ξ)|2�(x, ξ) = 0,

−2
∫

R2d

[
−|ξ t |2 x · ξ

|x| + 1

2
ξ · ∇xV

]
ϕR(x) f (x, ξ)dxdξ =

=
∫

R2d

|ξ t |2ξ · ∇xϕR f (x, ξ)dxdξ,

and, since
ξ · ∇xϕR = −ξ · x

R|x| 1{R≤|x|≤2R},

passing to the limit we obtain
∫

R2d

[
−|ξ t |2 x · ξ

|x| + 1

2
ξ · ∇xV

]
f (x, ξ)dxdξ = 0,

which concludes the first limit of (2.12). The second one follows the same lines
and we skip the proof.

The derivation of (2.13) uses the same type of arguments. As a first step, we
compute

α

∫
R2d

V 1/2 fα(x, ξ)dxdξ =

=
∫

R2d

ξ · ∇xV
1/2 fα(x, ξ)dxdξ +

∫
R2d

V 1/2 �(x, ξ)dxdξ

→
∫

R2d

ξ · ∇xV
1/2 f (x, ξ)dxdξ +

∫
Rd

V 1/2 σ(x)dx,

and, working directly with the limit and the truncation function ϕR, we deduce
using Sommerfeld condition

lim
R→∞

1

R

∫
R≤|x|≤2R

∫
Rd

V 1/2 ξ · x

|x| f (x, ξ)dxdξ
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= lim
R→∞

1

R

∫
R≤|x|≤2R

∫
Rd

V (x) f (x, ξ)dxdξ

=
∫

R2d

ξ · ∇xV
1/2 f (x, ξ)dxdξ +

∫
Rd

V 1/2 σ(x)dx.

On the other hand, we also have, as α → 0+

α

∫
R2d

ξ · x

|x| fα(x, ξ)dxdξ =

=
∫

R2d

|ξ t |2
|x| fα(x, ξ)dxdξ +

∫
R2d

ξ · x

|x| �(x, ξ)dxdξ

→
∫

R2d

|ξ t |2
|x| f (x, ξ)dxdξ +

∫
Rd

V 1/2 σ(x)dx,

and, working directly with the limit and the truncation function ϕR, we deduce
using Sommerfeld condition

lim
1

R

∫
R≤|x|≤2R

∫
Rd

(
ξ · x

|x|
)2

f (x, ξ)dxdξ

= lim
1

R

∫
R≤|x|≤2R

∫
Rd

V (x) f (x, ξ)dxdξ

=
∫

R2d

|ξ t |2
|x| f (x, ξ)dxdξ +

∫
Rd

V 1/2 σ(x)dx.

As a conclusion of these different limits we deduce a family of equalities

∫
R2d

|ξ t |2
|x| f (x, ξ)dxdξ =

∫
R2d

ξ · ∇xV
1/2 f (x, ξ)dxdξ, (4.3)

lim α

∫
R2d

V 1/2 fα(x, ξ)dxdξ = lim α

∫
R2d

ξ · x

|x| fα(x, ξ)dxdξ

= lim
1

R

∫
R≤|x|≤2R

∫
Rd

V (x) f (x, ξ)dxdξ. (4.4)

From this the limits in (2.13), (2.15) follow.
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As for (2.14), it follows by comparing (2.6) with the result obtained from work-
ing directly with the limit and the truncation function ϕR, and using Sommerfeld
condition,

lim
1

R

∫
R≤|x|≤2R

∫
Rd

ξ · x

|x| f (x, ξ)dxdξ =
∫

Rd

σ (x)dx

= lim
1

R

∫
R≤|x|≤2R

∫
Rd

V 1/2 f (x, ξ)dxdξ.

5 Uniqueness

For the sake of completeness, in this section we prove uniqueness under the
Sommerfeld condition. Of course the method mimicks the case of Helmholtz
equation and we indicate the arguments without too many details.

Theorem 5.1. We make the assumptions (2.2), (2.3), then there is a unique
measure f which satisfies

(i)
∫

Rd (1 + |ξ |2)|f (·, ξ)|dξ ∈ M1
loc(R

d) ,

(ii) in distributional sense the equation holds

ξ · ∇xf + 1

2
∇xV · ∇ξf = �(x, ξ),

(iii) the Sommerfeld condition holds

1

R

∫
R≤|x|≤2R

∫
Rd

|ξ − x

|x|V
1/2|2 |f (x, ξ)|dxdξ → 0 as R → ∞.

Several variants of this result are possible, especially the integral in (iii) could
be taken on spheres, and liminf is enough.

Also a counterexample which shows the necessity of the Sommerfeld condition
is simple. For V = 1, � = 0, we choose

f (x, ξ) = F
(
x − x · ξ

ξ

|ξ |2
)
G(ξ).

Notice that f satisfies condition (i) because

1

R

∫
|x|≤R

∫
Rd

(1 + |ξ |2)f (x, ξ)dxdξ ≤ ‖F‖L1(Rd ) ‖(1 + |ξ |2)G‖L1(Rd ).

Also, Liouville equation (ii) is always fulfilled, whatever is F ∈ C1 and G such
that ‖(1 + |ξ |2)G‖L1(Rd ). But a simple computation shows that the Sommerfeld
condition (iii) fails (the limit is positive) except if F or G vanish.
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Proof of Theorem 5.1. We recall that existence follows from our main results
(section 2). Therefore we prove uniqueness and consider the difference of two
possible solutions. We still call f this difference which satisfies the statements
(i), (ii) with � = 0 and (iii) .

Using DiPerna and Lions [5] arguments, we can apply, thanks to the regularity
of V , the chain rule to Liouville equation (ii) and thus

ξ · ∇x |f | + 1

2
∇xV · ∇ξ |f | = 0. (5.1)

Consider again the truncation function (4.2). Then after integration by parts we
deduce from the above equation (this requires smoothing in x and truncation in
ξ )

1

R

∫
R2d

ξ · x

|x|ϕ
′(

|x|
R

) |f (x, ξ)|dxdξ = 0.

Therefore we also have

1
R

∫
R≤|x|≤2R

∫
Rd

|ξ |2+V

V 1/2 |f (x, ξ)|dxdξ

= 1
R

∫
R≤|x|≤2R

∫
Rd

1
V 1/2 |ξ − x

|x|V
1/2|2 |f (x, ξ)|dxdξ

= o(1).

We now come back to equation (5.1), and now we use the multiplier taken
from [12]: ξ ·x

(1+|x|)1/2 ϕR. We obtain

∫
R2d

ξ · ∇ ξ · x

(1 + |x|2)1/2
ϕR |f (x, ξ)|dxdξ =

−
∫

R2d

|ξ |2
(1 + |x|2)3/2

ξ · ∇ϕR |f (x, ξ)|dxdξ

which we can rewrite also
∫

R2d
|ξ |2

(1+|x|2)3/2 ϕR |f (x, ξ)|dxdξ

≤ ∫
R2d

|ξ |2(1+|x|2)−(ξ ·x)2

(1+|x|2)3/2 ϕR |f (x, ξ)|dxdξ

= 1
R

∫
R2d ξ · x

(1+|x|2)1/2 ξ · x
|x|ϕ

′( |x|
R

) |f (x, ξ)|dxdξ

= o(1).
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We now let R → ∞ and obtain in the limit∫
R2d

|ξ |2
(1 + |x|2)3/2

|f (x, ξ)|dxdξ = 0.

This concludes the proof of Theorem 5.1.

Acknowledgment. This work was partially supported by HYKE European
programme HPRN-CT-2002-00282 (http://www.hyke.org)

References

[1] S. Agmon, J. Cruz-Sampedro and I. Herbst, Generalized Fourier transform for
Schrödinger operators with potentials of order zero, J. of Funct. Anal., 167 (1999),
345–369.

[2] S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential
equations with simple characteristics, J. Anal. Math. 30 (1976), 1–37.

[3] J.D. Benamou, F. Castella, T. Katsaounis and B. Perthame, High frequency limit
of the Helmholtz equations, Rev. IberoAmer. (2002).

[4] F. Castella, B. Perthame and O. Runborg, High frequency limit of the Helmholtz
equation. Source on a general manifold, Comm. P.D.E. 27 n. 3-4 (2002), 607–651.

[5] R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory
and Sobolev spaces, Invent. Math. 98(3) (1989), 511–547.

[6] D. M. Eidus, The principle of limiting absorption, Math. Sb., 57 (1962), 13–44.
Amer. Math. Soc. Transl. (2) 47 (1965), 157–191.

[7] D. M. Eidus, The limiting absorption and amplitud principles for the diffraction
problem with two unbounded media, Comm. Math. Phys. 107 (1986), 29–38.

[8] L. Erdös and H. T. Yau, Linear Boltzmann equation as the weak coupling limit of
a random Schrödinger equation, Comm. Pure Appl. Math. 53 (2000), 667–735.

[9] I. Herbst, Spectral and scattering theory for Schrödinger operators with potentials
independent of |x|, Amer. J. Math. 113(3) (1991), 509–565.

[10] T. Ikebe and Y. Saito, Limiting absorption method and aboslut continuity for the
Schrödinger operator, J. Math. Kyoto Univ. 12-3 (1972), 512–542.

[11] C. Kenig, G. Ponce and L. Vega, Small solutions to nonlinear Schrödinger equa-
tions, Ann. Inst. H. Poincare Anal. Non Lineaire 10 (1993), 255–288.

[12] P.L. Lions and B. Perthame, Lemmes de moments, de moyenne et de dispersion,
C. R. Acad. Sci. Paris, Série I 314 (1992), 801–806.

[13] B. Perthame and L. Vega, Morrey-Campanato estimates for Helmholtz Equation,
J. Funct. Anal. 164(2) (1999), 340–355.

[14] B. Perthame and L. Vega, Energy decay and Sommerfeld condition for Helmholtz
equation with variable index at infinity, preprint (2002).

Bull Braz Math Soc, Vol. 34, N. 1, 2003



SOMMERFELD CONDITION FOR A LIOUVILLE EQUATION 57

[15] F. Poupaud and A. Vasseur Classical and quantum transport in random media,
preprint (2001).

[16] M. Reed and B. Simon, Analysis of Operators. Methods of Modern Mathematical
Physics IV, Acad. Press, San Diego, 1978.

[17] L. Ryzhik, G. Papanicolaou and J. Keller, Energy transport for elastic and other
waves in a random medium Wave motion 24 (1996), 327–370.

[18] Y. Saito, Schrödinger operators with a nonspherical radiation condition, Pacif. J.
of Math. 126(2) (1987), 331–359.

[19] Bo Zhang, Radiation condition and limiting amplitude principle for acoustic prop-
agators with two unbounded media, Proc. of the Royal Soc. of Edinburgh, 128 A
(1998), 173–192.

Benoît Perthame
Ecole Normale Supérieure, DMA, UMR8553
45, rue d’Ulm 75230 Paris
FRANCE
E-mail: benoit.perthame@ens.fr

Luis Vega
Universidad del Pais Vasco, Apdo. 644
48080 Bilbao
SPAIN
E-mail: mtpvegol@lg.ehu.es

Bull Braz Math Soc, Vol. 34, N. 1, 2003


