
Bull Braz Math Soc, New Series 34(1), 59-75
© 2003, Sociedade Brasileira de Matemática

The convexity principle and its applications
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Abstract. Recently [1, 2] the new convexity principle has been validated. It states that
a nonlinear image of a small ball in a Hilbert space is convex, provided that the map is
C1,1 and the center of the ball is a regular point of the map. This result has numerous
applications in linear algebra, optimization and control.
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1 Introduction

Convexity plays a key role in functional analysis, optimization and control theory.
For instance, if a mathematical programming problem is convex, then necessary
optimality conditions coincide with sufficient ones, duality theorems hold and
effective numerical methods can be constructed [3]. However, convex problems
are just a small island in the ocean of nonconvex ones.

In the present paper we describe the technique, which is useful for establish-
ing convexity. It is based on the recent result [1, 2], asserting convexity of a
nonlinear image of a small ball in a Hilbert space. This result is addressed in
Section 2, while all other Sections deal with its applications to various fields of
mathematics. We start with linear algebra and prove convexity of the spectrum
of a family of perturbed matrices, zero sets of perturbed polynomials and value
sets of some determinants (Section 3). The duality theory for a class of non-
convex mathematical programming problems (local programming)is developed
in Section 4. Special numerical methods for solving such problems are also
provided. Various applications to control problems are described in Section 5.
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They are based on the convexity of the reachable set for nonlinear system with
“small energy control”.

2 The convexity principle

LetX, Y be two Hilbert spaces, let f : X → Y be a nonlinear map with Lipschitz
derivative on a ball B(a, r) = {x ∈ X : ||x − a|| ≤ r}, thus

||f ′(x)− f ′(z)|| ≤ L||x − z|| ∀x, z ∈ B(a, r). (1)

Suppose that a is a regular point of f , i.e. the linear operator f ′(a)mapsX onto
Y ; then there exists ν > 0 such that

||f ′(a)∗y|| ≥ ν||y|| ∀y ∈ Y. (2)

For instance, for X, Y finite dimensional: X = Rn, Y = Rm, this condition
holds if rankf ′(a) = m; for this case ν = σ1(f

′(a)) — the least singular value
of f ′(a).

Theorem 1. If (1), (2) hold and ε < min{r, ν/(2L)}, then the image of a ball
B(a, ε) = {x ∈ X : ||x − a|| ≤ ε} under the map f is convex, i.e. F = {f (x) :
x ∈ B(a, ε)} is a convex set in Y . Moreover, the set is strictly convex and its
boundary is generated by boundary points of the ball: ∂F ⊂ f (∂B(a, ε)).

We need the following results:

Lemma 1. A ball in a Hilbert space is strongly convex: if x1, x2 ∈ B(a, ε),
x0 = (x1 + x2)/2, then B(x0, ρ) ⊂ B(a, ε) for ρ = ||x1 − x2||2/(8ε).

This result is well known and follows immediately from the parallelogram
equality.

Lemma 2. Suppose there exist L, ρ,µ > 0, such that

||f ′(x)− f ′(z)|| ≤ L||x − z|| ∀x, z ∈ B(x0, ρ)

||f ′(x)∗y|| ≥ µ||y|| ∀y ∈ Y,∀x ∈ B(x0, ρ)

||f (x0)− y0|| ≤ ρµ,

then the equation f (x) = y0 has a solution x∗ ∈ B(x0, ρ) and

||x∗ − x0|| ≤ ||f (x0)− y0||
µ

.

This Lemma coincides with Corollary 1, Theorem 1 of [4].
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Proof of Theorem 1. Let x1, x2 be arbitrary points in B(a, ε) ⊂ B(a, r), yi =
f (xi) ∈ F, i = 1, 2. Denote x0 = (x1 + x2)/2, y0 = (y1 + y2)/2. To prove
convexity of F it suffices to find x∗ ∈ B(a, ε) such that f (x∗) = y0. We
have y1 = f (x0) + f ′(x0)(x1 − x0) + ε1, y2 = f (x0) + f ′(x0)(x2 − x0) + ε2,

where ||εi || ≤ L||xi − x0||2/2 = L||x1 − x2||2/8, i = 1, 2 due to (1), see
e.g. [5, Theorem 3.2.12]. Hence y0 = f (x0) + ε0, ε0 = (ε1 + ε2)/2, ||ε0|| ≤
L||x1−x2||2/8.All conditions of Lemma 2 are satisfied forµ = ν−Lε > 0, ρ =
||x1 − x2||2/(8ε), because (1),(2) hold, B(x0, ρ) ⊂ B(a, ε) due to Lemma 1,
||f (x0)−y0|| = ||ε0|| ≤ L||x1 −x2||2/8 = Lρε ≤ ρ(ν−Lε) = ρµ.Moreover,
||f ′(x)∗y|| ≥ ||f ′(a)∗y|| − ||(f ′(x)∗ − f ′(a)∗)y|| ≥ ν||y|| −L||x − a||||y|| ≥
(ν−Lε)||y|| = µ||y|| for x ∈ B(x0, ρ). Thus Lemma 2 provides the desired x∗
and the proof of convexity of F is completed.

From the above reasoning it follows that for x1 	= x2 the equationf (x) = y has
a solution for y close enough to y0; this validates strict convexity of F . Finally,
if x0 is an interior point of B(a, ε) then there exists B(x0, ρ) ⊂ B(a, ε), ρ > 0
such that Lemma 2 holds. Hence for any y close enough to f (x0) the equation
f (x) = y has a solution in B(a, ε). This means that the image of interior points
of the ballB(a, ε) lies in the interior ofF , that is ∂F is generated by the boundary
of B(a, ε). �

Remarks. 1. We presented the proof, based on Lemma 2 (which has been
derived in [4] by use of a version of Newton method). Another proofs can be
obtained by modern techniques, related to Ljusternik theorem (see e.g. [7, The-
orem 2.7], [8]). However, the proofs of the Ljusternik-like results are also based
on the Newton method. On the other hand an attempt to use the fundamental
theorem by Graves on solvability of nonlinear equations [6] instead of Lemma 2
fails, because the theorem does not provide explicit bounds for solutions which
are required in the proof.

2. The idea of Theorem 1 is very simple. The ball B(a, ε) is strongly convex,
thus its image under linear map f ′(a) is strongly convex as well. But it can not
loose convexity for a nonlinear map f , which is close enough to its linearization.
The same reasoning explains that the result can not be extended to an arbitrary
Banach spaces, where a ball is not strongly convex. However the extension of
the principle to uniformly convex Banach spaces (such as Lp, 1 < p < ∞) is
an open problem.

3. The result holds, if we replace the ball by any other strongly convex set (e.g.
by a nondegenerate ellipsoid). For particular case f : Rn → Rn Theorem 1 has
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been extended in [9] for strictly convex (not necessarily strongly convex) sets.

4. Smoothness assumptions of Theorem 1 can not be seriously relaxed. For in-
stance, A.Ioffe constructed a counterexample with f continuously differentiable
but not in C1,1. Then the result is false.

In many cases the conditions of Theorem 1 can be effectively checked, and
the radius ε of the ball can be estimated. One of such examples is a quadratic
transformation.

Example. Let x ∈ Rn and f (x) = (f1(x), ...fm(x))
T where fi(x) are

quadratic functions:

fi(x) = (1/2)(Aix, x)+ (ai, x), Ai = ATi ∈ Rn×n,
ai ∈ Rn, i = 1, ...m.

(3)

Take a = 0, that is B = {x : ||x|| ≤ ε}. Then f ′
i (x) = Aix + ai and (1) is

satisfied on Rn with L = (
∑m

i=1 ||Ai ||2)1/2 where ||Ai || stands for the spectral
norm of matricesAi.Consider the matrixAwith columns ai : A = (a1|a2|...|am).
Then f ′(0)T y = Ay, and if rankA = m, then (2) holds with ν = σ1(A) — the
minimal singular value of A, that is ν = (min λ1(A

TA))1/2, where λ1 is the
minimal eigenvalue of the corresponding matrix. Hence, Theorem 1 implies:

Proposition 1. If ε < ν/(2L), then the image of the ball B under the map (3) is
convex:

F = {f (x) : ||x|| ≤ ε}
is a convex set in Rm.

This is in a sharp contrast with the results on images of arbitrary balls under
quadratic transformations, where the convexity can be validated [10] just under
very restrictive assumptions.

For instance, let n = m = 2 and

f1(x) = x1x2 − x1, f2(x) = x1x2 + x2. (4)

Then the estimates above guarantee that F is convex for ε < ε∗ = 1/(2
√

2) ≈
0.3536. It can be proved directly for this case that F is convex for ε ≤ ε∗ and
looses convexity for ε > ε∗. Thus the estimate provided by Proposition 1 is tight
for this example.

Figure 1 shows the images of the ε-discs {x ∈ R2 : ||x|| ≤ ε} under the
mapping (4) for various values of ε.
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Figure 1: Images of ε-discs for various ε.

3 Applications to linear algebra

In this section we consider three applications of the convexity principle to lin-
ear algebra: perturbation of spectrum of real matrices, zero set of perturbed
polynomials and the set arising in so-called µ-analysis.

a. Pseudospectrum. The set of all eigenvalues of a family of perturbed matri-
ces is called pseudospectrum. More rigorously, the pseudospectrum of a nominal
matrix A ∈ Rn×n is

�ε(A) = {λ ∈ C : ∃	 ∈ Rn×n, ||	||F ≤ ε, λ is an eigenvalue of A+	.} (5)

Usually [11, 12, 13] matrices A,	 are assumed to be complex, while the matrix
norm is the spectral one ||	|| = (max λ(	∗	))1/2. For this case the closed-form
characterization of pseudospectrum is available. The real case is much more
difficult, and neither effective description of �ε(A) nor its qualitative behavior
for small ε are known. The result below provides such information for Frobenius
norm of matrix perturbations: ||	||F = (

∑
δ2
ij )

1/2, where δij , i, j = 1, . . . , n
are entries of 	.
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Theorem 2. If A has all distinct eigenvalues, then its pseudospectrum is the
union of n nonintersecting convex sets on the complex plane provided that ε is
small enough.

Proof. Consider a map f : 	 → λ where	 ∈ X,X is the space of n× n real
matrices equipped with the scalar product 〈A,B〉 =TraceATB and correspond-
ing norm ||	||F = 〈	,	〉1/2 and λ ∈ C is one fixed eigenvalue of A +	; the
space C can be identified with Y = R2. All eigenvalues of A are distinct hence
the same holds for A + 	 with ||	||F small enough. Thus f is well defined.
Due to standard results of perturbation theory [14, Chapter 2] the map f is twice
differentiable if all eigenvalues ofA are distinct and explicit formulae for second
derivatives confirm that they are bounded for ||	||F small enough, so f ∈ C1,1.

Now, the derivative of f is given by [14]

g = f ′(0)	 = yT	x

yT x

where x, y are left and right eigenvectors ofA, corresponding to the eigenvalue λ:

Ax = λx, AT y = λy, yT x 	= 0.

If λ is real, then the eigenvalue remains real under small perturbations of A (a
simple real eigenvalue can not become complex), so the pseudospectrum is an
interval and hence it is convex in this case. If λ is complex: λ = α + iβ, β 	= 0
then we shall prove that g runs the entire complex plane when 	 runs X. First
note that if x = u + iv, y = s + it then u 	= 0, v 	= 0 and u, v are linearly
independent (and similar is true for s, t). Indeed,Au = αu−βv,Av = αv+βu,
andu = 0 implies (due to the first equality andβ 	= 0) that v = 0; this contradicts
the assumption x 	= 0. Simultaneously v = 0 leads to the contradiction. If
u = γ v, γ 	= 0 then from above equations (α − βγ )x = (α + β/γ )x, that is
γ 2 = −1; this is impossible. The properties of u, v, s, t ensure the existence of
vectors u⊥, v⊥, s⊥, t⊥ ∈ Rn such that

uT u⊥ = 0, uT v⊥ 	= 0, vT v⊥ = 0, vT u⊥ 	= 0,

sT s⊥ = 0, sT t⊥ 	= 0, tT t⊥ = 0, tT s⊥ 	= 0.

Now take 	 = µv⊥(s⊥)T + νu⊥(t⊥)T with some real µ, ν. Then after simple
calculations one gets

yT	x = µ(uT v⊥)(sT t⊥)+ iν(vT u⊥)(tT s⊥) = µc1 + iνc2,
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where c1, c2 	= 0. For arbitrary µ, ν ∈ R1 this expression runs the entire C. We
conclude that f ′(0)	 maps X onto Y . This means that we are in the framework
of Theorem 1 and each eigenvalue of A diffuses into a convex set in C. �

Note that if Frobenius norm is replaced with another matrix norm, the space of
matrices looses its Hilbert structure and we can not apply Theorem 1. However
it is not clear if there exists an analog of Theorem 2 for some other norms.

The assumption on simplicity of all eigenvalues is significant. For instance if

A =
(

1 1
0 1

)
then the pseudospectrum of A reminds a cross centered at (1,0)

and it is nonconvex for arbitrary small ε.

b. Zero set for polynomials. Consider a family of polynomials with real
coefficients

P(x, a) = a1 + a2x + · · · + anx
n−1 + xn, a ∈ Rn, ||a − a0|| ≤ ε, (6)

where a0 are the coefficients of the nominal polynomial and ||.|| stands for
Euclidean norm. The set of all zeros of such polynomials is called a zero set:

Zε = {x ∈ C : ∃ a, ||a − a0|| ≤ ε, P (x, a) = 0.} (7)

A formula for computation of the zero set for arbitrary ε is known [15], however
it does not provide the qualitative description of the set. The result below yields
the construction of the zero set for small ε and distinct roots of the nominal
polynomial.

Theorem 3. If P(x, a0) has all distinct zeros, then the zero set of family (6) is
the union of n nonintersecting convex sets on the complex plane provided that ε
is small enough.

Proof. The proof follows the same lines as for Theorem 2, and we focus
on the key points only. Introduce f : a → λ where λ ∈ C is a fixed
simple zero of P(x, a); this function is well defined in the neighborhood of
a0, λ0 = f (a0). This function is inC1,1 and the derivative is given by f ′(a0)	 =
−qT	/P ′

x(λ0, a
0), where 	 = a − a0 ∈ Rn, q = (1, λ0, λ

2
0, . . . , λ

n−1
0 )T ∈ Rn

and P ′
x denotes differentiation with respect to x, while P ′

x(λ0, a
0) 	= 0 because

λ0 is a simple zero of P(x, a0). If λ0 is real, the corresponding component of the
zero set is an interval (real simple zero remains real under small perturbations of
the coefficients) and hence convex. If λ0 is complex (�λ0 	= 0) then it is not hard
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to prove that vectors �q,�q are linearly independent and thus f ′(a0)	 maps
Rn onto C. The use of Theorem 1 terminates the proof. �

For multiple roots the zero set can be the union of nonconvex sets for arbitrary
small ε, as simple examples demonstrate. The same situation holds if we replace
Euclidean norm with ∞-norm. For instance, the zero set for the second order
polynomial family P(x, a) = a1 + a2x + x2, |a1 − 1| ≤ ε, |a2| ≤ ε is the
union of two distorted rectangles which are nonconvex. The case of p-norms,
1 < p < ∞ remains uninvestigated.

c. A problem inµ-analysis. So calledµ-analysis (or structured singular value
problem) is an important tool in modern control theory [16]. For a given matrix
M ∈ Cn×n findingµ(M) requires to estimate rmax — the largest r which preserves
det(I +M	) nonvanishing for all matrix perturbations 	 with norm less then
r . It is assumed that 	 has a specified block structure with each block real
or complex and specified norm of each block. We address a particular case of
the problem — real perturbations with one-block structure and Frobenius norm
(sometimes such version is called spherical µ). Define the value set of the
determinant det(I +M	) when 	 runs the ε-ball:

Dε = {det(I +M	) ∈ C : 	 ∈ Rn×n, ||	||F ≤ ε}. (8)

We say that the matrixM is essentially complex ifM 	= zW, z ∈ C,W ∈ Rn×n.
In other words, for M = U + iV , U, V ∈ Rn×n,M is essentially complex if
U,V are linearly independent or equivalently 〈U,U〉〈V, V 〉 	= 〈U,V 〉2.

Theorem 4. IfM is essentially complex and ε is small enough, then the setDε

is convex.

Proof. The equality

det(I+M	) = 1+Trace(M	)+o(||	||) = 1+〈UT ,	〉+i〈V T ,	〉+o(||	||)
verifies that the map	 → det(I+M	) is differentiable; it can be also proved to
beC1,1. Due to essential complexity ofM the image of 〈UT ,	〉+i〈V T ,	〉,	 ∈
Rn×n is the entire C. Thus Theorem 1 is applicable. �

Figure 2 presents the set Dε for

M =
(

1 + i i

0 1 + i

)
, ε = 0.8.
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Figure 2: Image of det(I +M	), ||	||F ≤ 0.8.

The set has been constructed via the algorithm of Section 4. To find a boundary
point g(θ) of the set having a normal c = (c1, c2)

T with c1 = cos θ, c2 =
sin θ, θ ∈ [0, 2π ] being one-dimensional parameter, one should minimize the
function

f (X) = c1� det(I +MX)+ c2� det(I +MX)

subject to X ∈ Rn×n, ||X||F ≤ ε. The derivative of f reads

f ′(X) = c1(uU − vV )+ c2(vU + uV ),

det(I +MX) = u+ iv, ((I +MX)−1M)T = U + iV .

Thus we can apply method (16) of Section 4 for this minimization problem; its
solution X(θ) provides the desired point g(θ) = det(I + MX(θ)) ∈ C. One
can see that the origin does not belong to the set D0.8, but is very close to it.
We conclude that 0.8 < rmax and rmax − 0.8 is small. Thus in this case we can
estimate rmax by using the above technique for construction of Dε. However
this is not the universal tool — the set Dε can loose convexity for ε < rmax. For
instance five matricesM from [17, Table 1] have been checked; for three of them
the set Dε becomes nonconvex with some ε < rmax.
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4 Local programming

Simultaneously with the standard mathematical programming problem

min f0(x), x ∈ Rn (9)

fi(x) ≤ 0, i = 1, ..., l

fi(x) = 0, i = l + 1, ..., m

consider its version with the extra constraint

min f0(x), x ∈ Rn (10)

fi(x) ≤ 0, i = 1, ..., l

fi(x) = 0, i = l + 1, ..., m

||x − a|| ≤ ε.

which we call local programming problem. Suppose that the functions fi(x), i =
0, 1, ...m are from C1,1 on B(a, ε). Construct the Lagrange function

L(x, y) =
m∑
i=0

yifi(x). (11)

Denote Y+ = {y ∈ Rm+1 : yi ≥ 0, i = 0, 1, ..., l}. We assume, that a is a
feasible point in (9), moreover we can assume without loss of generality that all
inequality constraints are active in a:

fi(a) = 0, i = 1, ..., m,

otherwise they play no role in (10) and can be rejected for ε small enough.
Finally we suppose that the gradients of fi(x), i = 0, 1, ..., m at a are linearly
independent, i.e. there exists no y0 	= 0 such that Lx(a, y0) = 0. If there are no
inequality constraints, this condition means that a is not a stationary point in (9).
In the presence of inequality constraints this condition is more restrictive than
the assumption “a is not a Kuhn-Tucker point in problem (9)”. For instance,
it implies m < n, that is the number of active constraints in a is less than the
dimension.

Theorem 5. Under above assumptions there exists ε∗ > 0 such that a solution
x∗ of (10) with 0 < ε < ε∗ exists, is unique, lies on the boundary of B(a, ε) :
||x∗ − a|| = ε and the following inequality holds

L(x, y∗) ≥ L(x∗, y∗) ∀x : ||x − a|| ≤ ε (12)

for some y∗ ∈ Y+, y∗ 	= 0, y∗
i fi(x

∗) = 0, i = 1, ..., l.
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Proof. The problem (10) is equivalent to the optimization problem in the “im-
age space”:

min f0, f ∈ F, fi ≤ 0, i = 1, ..., l, (13)

where f = (f0, f1, ..., fm) ∈ Rm+1, f (x) = (f0(x), f1(x), ..., fm(x)), F =
{f (x) : ||x − a|| ≤ ε}. The point a is a regular point for f (x) because f ′

i (a)

are linearly independent. Theorem 1 guarantees the convexity of F for ε small
enough. Thus (13) is a convex problem and for its solution f ∗ = f (x∗) there
exists a separating hyperplane: 0 	= y∗ ∈ Rm+1, (y∗, f ) ≥ 0 ∀f : f ∈
F, f0 ≥ f ∗

0 , fi ≤ 0, i = 1, ..., l. This condition is equivalent to (12). Strict
convexity ofF implies that the solution of (13) is unique and lies on the boundary
of F which (as Theorem 1 claims) is the image of the points with ||x − a|| = ε,
thus ||x∗ − a|| = ε. �

Note that for
ψ(y) = min||x−a||≤ε L(x, y);

the result can be formulated as follows: if x∗ is a solution of (10) then there
exists y∗ ∈ Y+ such that

L(x∗, y∗) = max
y∈Y+

ψ(y).

This is the dual formulation of the problem.
Under some Slater-like condition we can ensure y∗

0 	= 0, that is y∗
0 can be taken

equal to one.

Theorem 6. Suppose that the following regularity condition holds: for any
ε > 0, σ ∈ Rm : σi = 1, i = 1, ..., l, |σi | = 1, i = l + 1, ..., m there exists xσ
such that

σifi(xσ ) < 0, i = 1, ..., m, ||xσ − a|| ≤ ε. (14)

Then in Theorem 5 we can take y∗
0 = 1 and (12) is necessary and sufficient

condition for optimality in (10).

Proof. From (12) we get

y∗
0 (f0(x)− f0(x

∗))+
m∑
i=1

y∗
i fi(x) ≥ 0 ∀||x − a|| ≤ ε.
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Take σ : σi = signy∗
i and the corresponding xσ . Then for y∗

0 = 0 we have∑m
i=1 y

∗
i fi(xσ ) < 0 (because y∗ 	= 0), which contradicts the inequality above

for x = xσ . Thus y∗
0 > 0, of course we can scale y∗ to make y∗

0 = 1. Condition
(12) is obviously sufficient for optimality if y∗

0 = 1. �
Regularity condition (14) can be replaced by other ones, e.g.: f ′

i (a), i =
l + 1, ..., m are linearly independent and there exists h ∈ Rn : (f ′

i (a), h) =
0, i = l + 1, ..., m, (f ′

i (a), h) < 0, i = 1, ..., l.
Let us show how these results work for the case of quadratic functions. Con-

sider (10) with a = 0 and

fi(x) = (1/2)(Aix, x)+ (ai, x)+ αi, i = 0, 1, ..., m.

Suppose that αi ≤ 0, i = 1, ..., l, αi = 0, i = l + 1, ..., m and the assumptions
of Proposition 1 are satisfied (with obvious changes of notation). Then Theorem
5 can be applied,

L(x, y) = (1/2)(A(y)x, x)+ (a(y), x)+ α(y),

A(y) =
m∑
i=0

yiAi, a(y) =
m∑
i=0

yiai, α(y) =
m∑
i=0

yiαi.

Then ψ(y) can be found as the solution of the problem

ψ(y) = min||x||≤ε((A(y)x, x)+ 2(a(y), x)+ α(y)).

This problem is always tractable (even if A(y) is not positive definite), and can
be effectively solved [10]. Thus we can calculateψ(y), it is not hard to calculate
∂yψ(y) as well. Hence we can apply the subgradient method for maximization
of ψ(y) on Y+.

In more general case, when fi(x) are nonquadratic functions, minimization
of L(x, y) on a ball can be performed by use of the special iterative method.
Consider the simplest optimization problem:

min||x−a||≤ε f (x) (15)

and the iterative method

xk+1 = a − ε
f ′(xk)

||f ′(xk)|| . (16)
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Theorem 7. Suppose that f : Rn → R1 is C1,1 on B(a, ε):

||f ′(x)− f ′(y)|| ≤ L||x − y||, x, y ∈ B(a, ε)
and f ′(a) 	= 0 while ε < ||f ′(a)||/(2L). Then

a) The solution x∗ of (15) exists and is unique, ||x∗−a|| = ε and the necessary
and sufficient optimality condition holds:

x∗ = a − ε
f ′(x∗)

||f ′(x∗)|| . (17)

b) Method (16) converges with linear rate of convergence for any x0 ∈ B(a, ε):

||xk − x∗|| ≤ qk||x0 − x∗||, q = O(ε) = εL

||f ′(a)|| − εL
< 1. (18)

Proof. The statement a) follows from Theorem 3; (17) is the necessary condi-
tion of x∗ to be the minimum point in (15).

If we subtract (17) from (16) we get

xk+1 − x∗ = ε(
f ′(xk)

||f ′(xk)|| − f ′(x∗)
||f ′(x∗)||).

For any 0 < τ, x ∈ Rn, ||x|| ≥ τ the vector τx/||x|| is a projection of x on
the ball B(0, τ ). Projection is a nonexpanding map, so we can proceed (with
τ = ||f ′(a)|| − εL)

||xk+1 − x∗|| ≤ (ε/τ)||f ′(xk)− f ′(x∗)|| ≤ q||xk − x∗||.
This is equivalent to the desired estimate (18). �

Note that (16) can be considered as the conditional gradient method [18]
for solving (15) with the special stepsize rule. However, its structure is rather
peculiar: each new step is performed from the point a, not xk.

5 Control applications

We consider very briefly (with no technical details) some control applications of
the “image convexity” principle.
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a. Convexity of the reachable set. A general nonlinear control system

ẋ = F(x, u, t), x ∈ Rn, u ∈ Rm, 0 ≤ t ≤ T , x(0) = c (19)

with L2-bounded control

u ∈ U = {u :
∫ T

0
||u(t)||2dt ≤ ε} (20)

defines a reachable set

Rε = {x(T ) : x(t) is a solution of (19), u ∈ U}. (21)

Suppose that the linearized system

ż = Fx(x0, 0, t)z+ Fu(x0, 0, t)u, z(0) = 0 (22)

is controllable [19]; here x0 is the solution of the nominal system

ẋ0 = F(x0, 0, t), x0(0) = c.

Then (under some technical assumptions to guarantee the smoothness of the map
f : u → x(T )) we can conclude, that for ε small enough the reachable set Rε is
convex. Indeed, we can apply Theorem 1 withX = L2, Y = Rn, f : u → x(T ).
The controllability of (22) ensures regularity of this map at u = 0.

b. Sufficiency of the local maximum principle. Consider the optimal control
problem

min φ(x(T )) (23)

where x(t) is a solution of (19) subject to the constraint (20) and terminal time
T is fixed and the function φ : Rn → R1 is convex. Then this optimal control
problem is equivalent to finite-dimensional one:

min
x∈Rε

φ(x)

which is convex under above conditions. Thus the first-order necessary con-
ditions for the extremum (which can be written in the form of local maximum
principle [19]) is also sufficient. Thus we conclude that the local maximum
principle is the sufficient condition for optimality for (19), (20), (23).

Also from Theorem 5 we obtain that the solution is unique and it reduces (20)
to equality.
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c. Numerical methods. Iterative method (16) can be applied to solve the
optimal control problem (19), (20), (23). It has the following form. At k-th
iteration we have an approximation uk = uk(t), 0 ≤ t ≤ T and calculate xk as
a solution of (19) with u = uk. Then the gradient of the objective function can
be found as

f ′(uk) = −FTu (xk, uk, t)ψk(t),

where ψk is a solution of the adjoint system

ψ̇ = −FTx (xk, uk, t)ψ, ψ(T ) = −φ′(xk(T )).

Then the updated control is found by (16), where L2 norm is used. Theorem 7
guarantees convergence of this method to the optimal control.

d. Discrete-time case. Let the states xk ∈ Rn and controls uk ∈ Rm be
described by nonlinear difference equations

xk+1 = F(xk, uk, k), x0 = c, k = 0, 1, ..., N.

Our objective is

min φ(x(N))

subject to l2-type constraint

N−1∑
k=0

||uk||2 ≤ ε.

Then under condition of controllability of the linearized system we can prove (as
it was done above for the continuous-time case) that the reachable set is convex
if ε is small enough. The standard technique allows to obtain the first-order
optimality condition which is necessary and sufficient.

6 Conclusions

The new “image convexity” principle is a promising tool for analysis of various
problems. In this paper we have presented some of its application to linear
algebra, optimization and control. Probably, much more applications can arise
in other fields, including functional analysis and numerical analysis.
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