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Abstract. Some recent methods for solving second-order nonlinear partial differential
equations of divergence form and related nonlinear problems are surveyed. These meth-
ods include entropy methods via the theory of divergence-measure fields for hyperbolic
conservation laws, kinetic methods via kinetic formulations for degenerate parabolic-
hyperbolic equations, and free-boundary methods via free-boundary iterations for mul-
tidimensional transonic shocks for nonlinear equation of mixed elliptic-hyperbolic type.
Some recent trends in this direction are also discussed.
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1 Introduction

In this paper, we survey some methods, developed recently, for solving nonlinear
partial differential equations of divergence form—nonlinear conservation laws—
and related nonlinear problems. These equations take the following form:

∇ · A(y, u,Du)+ B(y, u,Du) = 0, u ∈ R
m, y ∈ R

n, (1.1)

where A : R
n × R

m × R
m×n → R

m×n and B : R
n × R

m × R
m×n → R

m are
given mappings, and Du = (∂y1u, . . . , ∂ynu) ∈ R

m×n for y = (y1, . . . , yn).

Received 5 November 2002.



108 GUI-QIANG CHEN

Although the form is very simple and easy to be written, many important
nonlinear partial differential equations, arising from several areas of mathematics
and various sciences including physics, mechanics, chemistry, and engineering
sciences take this form.

Three of the most important classes of such partial differential equations are
the following:

(i) Hyperbolic Conservation Laws:

∂tu+ ∇x · f (u) = 0, u ∈ R
m, y = (t, x) ∈ R+ × R

d, (1.2)

where f : R
m → R

m×d is given. Examples of (1.2) include the Euler equations
for compressible fluids and various other models in fluid mechanics, geometry,
and dynamic systems [5, 20, 46, 47, 93, 101, 109].

(ii) Degenerate Parabolic-Hyperbolic Equations:

∂tu+ divxf (u) = divx(A(u)Dxu), u ∈ R, y = (t, x) ∈ R+ × R
d, (1.3)

where f : R → R
d and A : R → R

d×d are given. Such equations arise
in multiphase flows in porous media [28, 60], sedimentation and consolidation
processes [21], and numerical analysis [77, 78, 98].

(iii) Nonlinear Equations of Mixed Elliptic-Hyperbolic Type:

div (ρ(Du)Du) = 0, u ∈ R, x ∈ R
d, (1.4)

where ρ : R
d → R is given. The typical example is the Euler equations for

steady potential fluids, which consist of the conservation law of mass and the
Bernoulli law.

One of the main difficulties to solve these nonlinear partial differential equa-
tions is the discontinuity of solutions. No matter how smooth the initial data
and/or the boundary data are, the solutions (u or Du) generally develop singu-
larity and become discontinuous functions in later time, which implies that the
solutions are not in the Sobolev spaces Wk,p, k = 1, or 2. In general, the solu-
tions (u or Du) are at most in BV,L∞, Lp, and M, and should be understood
to satisfy the equations in the sense of distributions: For any ϕ ∈ C∞

0 (�),

−
∫
�

A(y, u,Du) ·Dϕ dy +
∫
�

B(y, u,Du)ϕ dy = 0.

Across a discontinuity surfaceS of a weak solution, the solution and the surface
must satisfy the Rankine-Hugoniot condition:

[A(y, u,Du) · ν]S = 0.

Bull Braz Math Soc, Vol. 34, N. 1, 2003



SOME RECENT METHODS FOR PDE OF DIVERGENCE FORM 109

To ensure the uniqueness of solutions, one requires an additional entropy condi-
tion to single out physical relevant solutions.

Other difficulties include concentration and cavitation which yield that solu-
tions become measures, focusing and defocusing which exclude the boundedness
of solutions, and complex interactions among shock waves, rarefaction waves,
contact waves, vortices, boundaries, etc. which exhibit extremely complex be-
havior of solutions.

Many traditional methods do not directly apply. New methods and ideas are
required in order to solve these difficulties.

In this paper, we will mainly discuss some methods, developed recently, for the
analysis of these major mathematical models. These methods include entropy
methods via the theory of divergence-measure fields for hyperbolic conserva-
tion laws, kinetic methods via kinetic formulations for degenerate parabolic-
hyperbolic equations, and free-boundary methods via free-boundary iterations
for multidimensional transonic shocks for nonlinear equations of mixed elliptic-
hyperbolic type. Most of the materials we present in this paper are based on the
results in Chen-Frid [33, 34], Chen-Perthame [42], and Chen-Feldman [32].

This selection of topics is just an illustration of several examples of recent
activities and is by no means an exhaustive treatment of all the exciting progresses
that have been made in nonlinear partial differential equations of divergence form
in the recent period.

Even for the methods that we describe here, much more could be said about
applications to other relevant problems.

In Section 2, we discuss some entropy methods and related theory of di-
vergence-measure fields and present their applications to hyperbolic systems
of conservation laws. In Section 3, we present a kinetic method via kinetic
formulations for nonlinear conservation laws through anisotropic degenerate
parabolic-hyperbolic equations. In Section 4, we discuss a free boundary method
via free boundary iterations through a transonic shock problem. In Section 5,
we discuss further methods and current trends in nonlinear partial differential
equations of divergence form.

2 Entropy methods and divergence-measure fields

In this section we discuss some entropy methods and related theory of divergence-
measure fields, developed recently in Chen-Frid [33], for hyperbolic systems of
conservation laws and related nonlinear equations.

2.1 Hyperbolic conservation laws and divergence-measure fields

One of the simplest PDEs is perhaps the following transport equations:

∂tρ + ∂x(vρ) = 0, (2.1)
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where v represents the velocity and ρ the density. Consider the Cauchy problem:

ρ|t=0 = ρ0(x). (2.2)

When v is a given constant velocity, then the solution of (2.1)–(2.2), ρ(t, x) =
ρ0(x − vt), just transports the initial mass ρ0(x) at the point x to the different
location x−vt at time t > 0, which keeps the same mass shape. However, when
v = v(t, x) is a given discontinuous function, then the solution of (2.1)–(2.2)
may become a unbounded discontinuous function or a measure, although the
total mass is always conserved.

Furthermore, in many physical situations, v = v(t, x) is not a given func-
tion, it is governed by some other equations. For example, in isentropic fluid
dynamics, the velocity v = v(t, x) is usually governed by the conservation law
of momentum:

∂t (ρv)+ ∂x(ρv
2 + p0(ρ)) = 0, (2.3)

which, along with (2.1), forms the system of Euler equations for isentropic fluids.
When p0(ρ) = 0, system (2.1) and (2.3) becomes the pressureless Euler

equations. It has been shown that even the Riemann solutions of this system
contain δ-measures, as the vanishing pressure limits (e.g. [15, 41, 58, 129]).

When p0(ρ) = ργ /γ , there exist nonvacuum Riemann data such that the
corresponding Riemann solutions consist of two rarefaction waves with an in-
termediate vacuum state. Under the Lagrangian coordinates (t, y) with

yt (t, x) = ρ(t, x), yx(t, x) = −(ρv)(t, x),
system (2.1) and (2.3) becomes

∂tτ − ∂yv = 0, ∂tv + ∂yp(τ) = 0, with p(τ) = p0(ρ), τ = 1/ρ. (2.4)

Then the corresponding Riemann solutions of system (2.4) contain a weighted
δ-measure concentrated at y = 0.

These simple examples of partial differential equations fit into the general
framework of hyperbolic systems of conservation laws (1.2).

Definition 2.1. A function η : R
m → R is called an entropy of (1.2) if there

exists q : R
m → R

d such that

∇qk(u) = ∇η(u)∇fk(u), k = 1, 2, . . . , d. (2.5)

The function q(u) is called the entropy flux associated with the entropy η(u),
and the pair (η(u), q(u)) is called an entropy pair. The entropy pair (η(u), q(u))
is called a convex entropy pair on the domain K ⊂ R

m if the Hessian matrix
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∇2η(u) ≥ 0 for u ∈ K . The entropy pair (η(u), q(u)) is called a strictly convex
entropy pair on the domain K if ∇2η(u) > 0 for u ∈ K .

Friedrichs-Lax [68] observed that most of the systems of conservation laws that
result from continuum mechanics are endowed with a globally defined, strictly
convex entropy. Available existence theories show that solutions of (1.2) are
generally in the following class of entropy solutions.

Definition 2.2. A vector function u = u(t, x) is called an entropy solution if

i) u(t, x) ∈ M(R+ × R
d), or Lp(R+ × R

d), 1 ≤ p ≤ ∞;

ii) u(t, x) satisfies the Lax entropy inequality:

∂tη(u(t, x))+ ∇x · q(u(t, x)) ≤ 0 (2.6)

in the sense of distributions for any convex entropy pair (η, q) : R
m →

R × R
d so that η(u(t, x)) and q(u(t, x)) are distributional functions.

Clearly, an entropy solution is a weak solution by choosing η(u) = ±u in
(2.6).

One of the major issues in conservation laws is to study the behavior of so-
lutions in this class to explore all possible information of solutions, including
large-time behavior, uniqueness, stability, and traces of solutions, among others.
The Schwartz lemma indicates from (2.6) that the distribution

∂tη(u(t, x))+ ∇x · q(u(t, x))
is in fact a Radon measure, that is, the field (η(u(t, x)), q(u(t, x))) is a
divergence-measure field:

div (t,x)(η(u(t, x)), q(u(t, x))) ∈ M(R+ × R
d). (2.7)

It is clear that understanding more properties of divergence-measure fields can
advance our understanding of the behavior of entropy solutions for hyperbolic
conservation laws and other related nonlinear equations by selecting appropriate
entropy pairs.

In general, divergence-measure fields (DM-fields, for short) are extended
vector fields, including vector fields in Lp and vector-valued Radon measures,
whose divergences are Radon measures. More precisely, we have
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Definition 2.3. Let � ⊂ R
N be open. For F ∈ Lp(�; R

N), 1 ≤ p ≤ ∞, or
F ∈ M(�; R

N), set

|divF |(�) := sup{ 〈F, ∇ϕ〉 : ϕ ∈ C1
0(�), |ϕ(x)| ≤ 1, x ∈ � }.

For 1 ≤ p ≤ ∞, we say that F is an Lp divergence-measure field over �, i.e.,
F ∈ DMp(�), if

‖F‖DMp(�) := ‖F‖Lp(�;RN) + |divF |(�) < ∞. (2.8)

We say that F is an extended divergence-measure field over �, i.e.,
F ∈ DMext (�), if

‖F‖DMext (�) := |F |(�)+ |divF |(�) < ∞. (2.9)

IfF ∈ DMp(�) for any open set�with� � D ⊂ R
N , we sayF ∈ DMp

loc(D);
and, if F ∈ DMext (�) for any open set � with � � D ⊂ R

N , we say F ∈
DMext

loc (D). We denote F ∈ DM(�) either F ∈ DMp(�) or F ∈ DMext (�).
Here, for open sets A,B ⊂ R

N , the relation A � B means that the closure of A,
Ā, is a compact subset of B.

As we will see, these spaces under norms (2.8) and (2.9) are Banach spaces,
respectively. These spaces are larger than the space of vector fields of bounded
variation. The establishment of the Gauss-Green theorem, traces, and other
properties of BV functions in the middle of last century (see Federer [64]) has
advanced significantly our understanding of BV solutions of nonlinear partial
differential equations and nonlinear problems in calculus of variations, differ-
ential geometry, and other areas. A natural question is whether the DM-fields
have similar properties, especially the traces and the Gauss-Green formula as for
the BV functions. At a first glance, it seems unclear.

First, observe that one cannot define the traces for each component of a DM
field over any Lipschitz boundary in general, as opposed to the case ofBV fields.
This fact can be easily seen through the following example.

Example 2.1. Clearly, F(x, y) = (sin( 1
x−y ), sin( 1

x−y )) belongs toDM∞(R2).
It is impossible to define any reasonable notion of traces over the line x = y for
the component sin( 1

x−y ).
The following example indicates that the classical Gauss-Green theorem may

fail.

Example 2.2. F(x, y) = ( x

x2+y2 ,
y

x2+y2 ) belongs to DM1
loc(R

2). As remarked

in Whitney [145], for � = {(x, y) : x2 + y2 < 1, y > 0},∫
�

divFdxdy = 0 �=
∫
∂�

F · ν dH 1 = π,

if one understands F · ν|∂� in the classical sense.
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Example 2.3. Let µ ∈ M. Then, for any bounded open interval I ⊂ R,

F(x, y) = (µ(y), 0) ∈ DMext (I × R).

Some efforts for certain special cases have been made in generalizing the
Gauss-Green theorem, see [4, 6, 19, 125, 151, 152]. Also see [83, 84, 88, 116,
123, 134] for related problems and references.

2.2 Basic properties of divergence-measure fields

Now we list some basic properties of divergence-measure fields in the spaces
DMp(�), 1 ≤ p ≤ ∞, and DMext (�).

Proposition 2.1. (i) Let {Fj } be a sequence in DMp(�) such that

Fj ⇀ F L
p

loc(�; R
N), for 1 ≤ p < ∞, (2.10)

Fj
∗
⇀ F L∞

loc(�; R
N), for p = ∞. (2.11)

Then

‖F‖Lp(�) ≤ lim inf
j→∞ ‖Fj‖Lp(�), |divF |(�) ≤ lim inf

j→∞ |divFj |(�).

(ii) Let {Fj } be a sequence in DMext (�) such that

Fj ⇀ F Mloc(�; R
N).

Then

|F |(�) ≤ lim inf
j→∞ |Fj |(�), |divF |(�) ≤ lim inf

j→∞ |divFj |(�).

This proposition immediately implies that the spacesDMp, 1 ≤ p ≤ ∞, and
DMext (�) are Banach spaces under norms (2.8) and (2.9), respectively.

Proposition 2.2. Let {Fj } be a sequence in DM(�) satisfying

lim
j→∞ |divFj |(�) = |divF |(�)

and one of the following three conditions:

Fj ⇀ F L
p

loc(�; R
N), for 1 ≤ p < ∞,

Fj
∗
⇀ F L∞

loc(�; R
N), for p = ∞,

Fj ⇀ F Mloc(�; R
N).
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Then, for every open set A ⊂ �,

|divF |(Ā ∩�) ≥ lim sup
j→∞

|divFj |(Ā ∩�). (2.12)

In particular, if |divF |(∂A ∩�) = 0, then

|divF |(A) = lim
j→∞ |divFj |(A). (2.13)

We now use the so-called positive symmetric mollifiersω : R
N → R satisfying

ω(x) ∈ C∞
0 (R

N), ω(x) ≥ 0, ω(x) = ω(|x|), ∫
RN
ω(x) dx = 1, supp ω(x) ⊂

B1 ≡ {x ∈ R
N : |x| < 1}. We denote ωε(x) = ε−Nω(x

ε
) and Fε = F ∗ωε, that

is,

Fε(x) = ε−N
∫

RN

F (y)ω
(x − y

ε

)
dy =

∫
RN

F (x + εy)ω(y) dy. (2.14)

Then Fε ∈ C∞(A; R
N) for any A � � when ε is sufficiently small. We recall

that, for any f, g ∈ L1(RN),∫
RN

fεg dx =
∫

RN

fgε dx. (2.15)

The following fact for DM fields is analogous to a well-known property of
BV functions.

Proposition 2.3. Let F ∈ DM(�). Let A � � be open and |divF |(∂A) = 0.
Then, for any ϕ ∈ C(�; R),

lim
ε→0

〈divFε, ϕχA〉 =< divF, ϕχA > .

Furthermore, if F ∈ DMext (�) and |F |(∂A) = 0, then, for any ϕ ∈ C(�; R
N),

lim
ε→0

< Fε, ϕχA >=< F, ϕχA > .

Now we discuss some product rules for divergence-measure fields.

Proposition 2.4. Let F = (F1, . . . , FN) ∈ DM(�). Let g ∈ BV ∩L∞(�) be
such that ∂xj g(x) is |Fj |-integrable, for each j = 1, . . . , N , and the set of non-
Lebesgue points of ∂xj g(x) has |Fj |-measure zero; and g(x) is (|F | + |divF |)-
integrable and the set of non-Lebesgue points of g(x) has (|F |+|divF |)-measure
zero. Then gF ∈ DM(�) and

div (gF ) = g divF + ∇g · F. (2.16)
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In particular, if F ∈ DM∞(�), gF ∈ DM∞(�) for any g ∈ BV ∩ L∞(�);
moreover, if g is also Lipschitz over any compact set in �,

div (gF ) = g divF + F · ∇g. (2.17)

In fact, for F ∈ DM∞(�), one may refine the above result to yield that (2.17)
holds a.e. in a more general case, not only for local Lipschitz functions. In this
case, we must take the absolutely continuous part of ∇g. For g ∈ BV , let (∇g)ac
and (∇g)sing denote the absolutely continuous part and the singular part of the
Radon measure ∇g, respectively. Then

Proposition 2.5. GivenF ∈ DM∞(�) and g ∈ BV (�)∩L∞(�), the identity

div (gF ) = ḡdivF + F · ∇g
holds in the sense of Radon measures in �, where ḡ is the limit of a mollified
sequence for g through a positive symmetric mollifier, and F · ∇g is a Radon
measure absolutely continuous with respect to |∇g|, whose absolutely continuous
part with respect to the Lebesgue measure in� coincides with F · (∇g)ac almost
everywhere in �.

2.3 Normal traces and the Gauss-Green Formula

We now discuss the generalized Gauss-Green theorem forDM-fields over� ⊂
R
N by introducing a suitable definition of normal traces over the boundary ∂�

of a bounded open set with Lipschitz deformable boundary, established in [33].

Definition 2.4. Let � ⊂ R
N be an open bounded subset. We say that ∂� is a

deformable Lipschitz boundary, provided that

(i) ∀ x ∈ ∂�, ∃ r > 0 and a Lipschitz map γ : R
N−1 → R such that, after

rotating and relabeling coordinates if necessary,

� ∩Q(x, r) = {y ∈ R
N : γ (y1, . . . , yN−1) < yN } ∩Q(x, r),

where Q(x, r) = {y ∈ R
N : |xi − yi | ≤ r, i = 1, . . . , N };

(ii) ∃� : ∂� × [0, 1] → � such that � is a homeomorphism bi-Lipschitz
over its image and �(ω, 0) = ω for all ω ∈ ∂�. The map � is called a
Lipschitz deformation of the boundary ∂�.

Denote ∂�s ≡ �(∂�× {s}), s ∈ [0, 1], and denote �s the open subset of �
whose boundary is ∂�s . We call � a Lipschitz deformation of ∂�.
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Remark 2.1. The domains with deformable Lipschitz boundaries clearly in-
clude bounded domains with Lipschitz boundaries, the star-shaped domains,
and the domains whose boundaries satisfy the cone property. It is also clear that,
if � is the image through a bi-Lipschitz map of a domain �̄ with a Lipschitz
deformable boundary, then � itself possesses a Lipschitz deformable boundary.

For DMp fields with 1 < p ≤ ∞, we have

Theorem 2.1. Let F ∈ DMp(�), 1 < p ≤ ∞. Let� ⊂ R
N be a bounded open

set with Lipschitz deformable boundary. Then there exists a continuous linear
functional F · ν|∂� over Lip(∂�) such that, for any φ ∈ Lip(RN),

〈F · ν|∂�, φ〉∂� = 〈divF, φ〉� +
∫
�

∇φ · F dx. (2.18)

Moreover, let ν : �(∂�×[0, 1]) → R
N be such that ν(x) is the unit outer normal

to ∂�s at x ∈ ∂�s , defined for a.e. x ∈ �(∂� × [0, 1]). Let h : R
N → R be

the level set function of ∂�s , that is,

h(x) :=




0, for x ∈ R
N −�,

1, for x ∈ �−�(∂�× [0, 1]),
s, for x ∈ ∂�s, 0 ≤ s ≤ 1.

Then, for any ψ ∈ Lip(∂�),

〈F · ν|∂�, ψ〉∂� = − lim
s→0

1

s

∫
�(∂�×(0,s))

E(ψ)∇h · F dx, (2.19)

where E(ψ) is any Lipschitz extension of ψ to all R
N .

In the case p = ∞, the normal trace F · ν|∂� is a function in L∞(∂�)
satisfying ‖F · ν‖L∞(∂�) ≤ C‖F‖L∞(�), for some constant C independent of F .
Furthermore, for any field F ∈ DM∞(�),

〈F · ν|∂�, ψ〉∂� = ess lim
s→0

∫
∂�s

ψ ◦�−1
s F · ν dHN−1, (2.20)

for any ψ ∈ L1(�).

Finally, for F ∈ DMp(�) with 1 < p < ∞, F · ν|∂� can be extended to a
continuous linear functional over W 1−1/p,p(∂�) ∩ L∞(∂�).

As indicated by Example 2.2, it is more delicate for fields in DM1 and
DMext . Then we have to define the normal traces as functionals over the spaces
Lip(γ, ∂�) with γ > 1 (see Stein [137]). For 1 < γ ≤ 2, the elements of
Lip(γ, ∂�) are (N + 1)-components vectors, where the first component is the
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function itself, and the other N components are its “first-order partial deriva-
tives”. In particular, as a functional over Lip(γ, ∂�), the values of the normal
trace of a field in DM1 or DMext on ∂� depend not only on the values of the
respective functions over ∂�, but also on the values of their first-order derivatives
over ∂�. To define the normal traces for F ∈ DM1 or DMext , we resort to the
properties of the Whitney extensions of functions in Lip(γ, ∂�) to Lip(γ,RN).
We have the following analogue of Theorem 2.1 which covers fields in DM1

and DMext .

Theorem 2.2. Let F ∈ DM1(�) or DMext (�). Let � ⊂ R
N be a bounded

open set with Lipschitz deformable boundary. Then there exists a continuous
linear functional F · ν|∂� over Lip(γ, ∂�) for any γ > 1 such that, for any
φ ∈ Lip(γ,RN),

〈F · ν|∂�, φ〉∂� = 〈divF, φ〉� + 〈F,∇φ〉�. (2.21)

Moreover, let h : R
N → R be the level set function as in Theorem 2.1; and, in

the case that F ∈ DMext (�), we also assume that ∂xih is |Fi |-measurable and
its set of non-Lebesgue points has |Fi |-measure zero, i = 1, . . . , N . Then, for
any ψ ∈ Lip(γ, ∂�), γ > 1,

〈F · ν|∂�, ψ〉∂� = − lim
s→0

1

s
〈F,E(ψ)∇h〉�(∂�×(0,s)), (2.22)

where E(ψ) ∈ Lip(γ,RN) is the Whitney extension of ψ on ∂� to R
N .

Remark 2.2. In general, for F ∈ DM1(D) or DMext (D), the normal traces
F · ν|∂� may be no longer functions. This can be seen in Example 2.2 for
F ∈ DM1

loc(R
2) with � = {(x, y) : x2 + y2 < 1, y > 0}, for which F · ν|∂�

is a measure.

As a corollary of the Gauss-Green formula for DM∞ fields, we have

Proposition 2.6. Let� ⊂ R
N be a bounded open set with Lipschitz boundary,

F1 ∈ DM∞(�), and F2 ∈ DM∞(RN − �̄). Then

F(y) =
{
F1(y), y ∈ �,
F2(y), y ∈ R

N − �̄
(2.23)

belongs to DM∞(RN), and

‖F‖DM∞(RN) ≤ ‖F1‖DM∞(�) + ‖F2‖DM∞(RN−�̄) + ‖F1 · ν − F2 · ν‖L∞(∂�).
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Some entropy methods based on the theory of divergence-measure fields pre-
sented above have been developed and applied to solving various nonlinear prob-
lems for conservation laws and related nonlinear equations. These problems
especially include (1) the stability of Riemann solutions, which may contain
rarefaction waves, contact discontinuities, and/or vacuum states, in the class
of entropy solutions of the Euler equations for gas dynamics in [34, 35, 44];
(2) the decay of periodic entropy solutions for hyperbolic conservation laws in
[34]; (3) Initial and boundary layer problems for hyperbolic conservation laws in
[43, 141]; (4) initial-boundary value problems for hyperbolic conservation laws
in [34]; and (5) nonlinear degenerate parabolic-hyperbolic equations in [22, 111].

One of the entropy methods is to identify Lyapunov-type functionals and em-
ploy the Gauss-Green formula to establish the uniqueness and stability of entropy
solutions; see [34, 35, 44]. In this regard, some related Lyapunov-type function-
als have also been identified for small BV solutions obtained by the Glimm
scheme, the wave-front tracking scheme, and the vanishing viscosity method;
see Biachini-Bressan [12], Bressan [17], Liu-Yang [107], LeFloch [96], and the
references cited therein for the details.

It would be interesting to apply the theory of divergence-measure fields to
develop more efficient entropy methods for solving more nonlinear problems in
partial differential equations and related areas whose solutions are only measures
or Lp functions.

3 Kinetic Methods and Kinetic Formulations

In this section, we present a kinetic method, developed recently in Chen-Perthame
[42], for nonlinear conservation laws through anisotropic degenerate parabolic-
hyperbolic equations (1.3), that is,

∂t u+ divxf (u) = divx(A(u)Dxu), u ∈ R,

where f : R −→ R
d and A : R → R

d×d with A(u)d×d ≥ 0, symmetric, and
hence

A(u) = (aij (u)) =
( K∑
k=1

σki(u)σkj (u)

)
.

We assume

f ∈ Liploc(R; R
d), σkj ∈ L∞

loc(R; R). (3.1)

Equation (1.3) and its variants model degenerate diffusion-convection motions
of ideal fluids and arise in a wide variety of important applications including two
phase flows in porous media and sedimentation-consolidation processes. There
are a large literature for the design and analysis of various numerical methods for

Bull Braz Math Soc, Vol. 34, N. 1, 2003



SOME RECENT METHODS FOR PDE OF DIVERGENCE FORM 119

such equations. The well posedness for such equations has been in great demands
not only for the mathematical theory of degenerate parabolic equations, but also
for various applications.

When A(u) ≡ 0, equation (1.3) is a scalar hyperbolic conservation law. The
well posedness in BV,L∞, and L1 was established in [92, 93, 118, 142] and
[55, 104].

When f (u) ≡ 0, equation (1.3) is a degenerate parabolic equation. Many
efforts have been made, for example, see [18, 24, 51, 52] and the references cited
therein.

WhenA(u) = α′(u)I, α′(u) ≥ 0, the isotropic case, DiBenedetto [51] showed
the regularity of solutions, that is, α(u) ∈ C. Only recently, the well-posedness
for the isotropic degenerate parabolic-hyperbolic equation was established for
L∞ solutions in bounded domain in [27] (also see [89]) and for unbounded
solutions for the Cauchy problem in [31]. Other early related references can
been found in [73].

Similar to the argument in Section 2.1, we can derive the following entropy
inequality for u ∈ L∞: For any η(u), η′′(u) ≥ 0,

∂t η(u)+ divx(q(u)− A(u)Dxη(u)) ≤ −η′′(u)(Dxu)
�A(u)Dxu ≤ 0,

which implies

−div (t,x)(η(u), q(u)− A(u)Dxη(u)) = µ ∈ M+.

Then the theory of divergence-measure fields and related entropy methods can
naturally be applied to studying solution behaviors of degenerate parabolic-
hyperbolic equations by using the nonnegativity of µ.

The methods in Section 2 are based on the macroscopic setting for the macro-
scopic variables η(u) and q(u) − A(u)Dxη(u); the framework is very general
and can be applied to many important situations. However, in some cases, more
detailed information about the Radon measure µ and the entropy pairs is very
useful, if available, for studying further behavior of solutions. In the last decade,
kinetic methods, along with kinetic formulations, have been developed for the
hyperbolic case, by exploring more information about the Radon measure and
entropy pairs. One of the basic ideas of kinetic methods is to explore some ad-
ditional information about the measure µ, that is, microscopic or mescroscopic
information, by introducing an additional variable, usually the kinetic veloc-
ity variable. For the hyperbolic case, see Lions-Perthame-Tadmor [104] and
Perthame [121]. The main motivation is that the Euler equations for compress-
ible fluids can be derived from the Boltzmann equation.

Now we illustrate a kinetic method in Chen-Perthame [42] through establishing
the well-posedness in L1 for (1.3) with

u|t=0 = u0 ∈ L1(Rd), x ∈ R
d . (3.2)
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One of the main difficulties for the well-posedness problem is the coupling
between convection and degenerate diffusions, that is, singularity against regu-
larity. One requires a uniform approach that works for both the hyperbolic and
parabolic phases.

Introduce the kinetic function χ on R
2:

χ(ξ ; u) =



+1 for 0 < ξ < u,

−1 for u < ξ < 0,
0 otherwise.

Definition 3.1. A kinetic solution is a function u(t, x) ∈ L∞ ([0,∞);L1(Rd)
)

such that

(i) The kinetic equation

∂t χ(ξ ; u)+ f ′(ξ) ·Dxχ(ξ ; u)− divx(A(ξ)Dxχ(ξ ; u)) (3.3)

= ∂ξ (m+ n)(t, x, ξ)

holds in D
′(R+ × R

d+1) with initial data

χ(ξ ; u)|t=0 = χ(ξ ; u0),

for some measures m(t, x, ξ) ≥ 0 and n(t, x, ξ) ≥ 0:

∫
R

n(t, x, ξ) ψ(ξ) dξ =
K∑
k=1

(
divxβ

ψ

k (u(t, x))
)2
,

for any ψ ∈ C∞
0 (R) with ψ ≥ 0, where βψk (u) = ∫ u

0

√
ψ(w)σk(w)dw ∈

R
d for σk(u) = (σk1(u), . . . , σkd(u));

(ii) There exists µ(ξ) ∈ L∞ with µ(ξ) → 0 as |ξ | → ∞ such that∫ ∞

0

∫
Rd

(m+ n)(t, x, ξ) dx dt ≤ µ(ξ);

(iii) For any nonnegative ψ ∈ C∞
0 (R),

divxβ
ψ

k (u) ∈ L2([0,∞)× R
d), k = 1, . . . , K;

(iv) For any nonnegative ψ1, ψ2 ∈ C∞
0 (R),√

ψ1(u(t, x)) divxβ
ψ2
k (u(t, x)) = divxβ

ψ1ψ2
k (u(t, x)), a.e.
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Remark 3.1. This notion of kinetic solutions applies to more general situations,
especially when a solution u is only in L1. The advantage of this notion is that
the kinetic equation is well defined even when the macroscopic fluxes q(u) are
not locally integrable so that L1 is a natural space on which kinetic solutions are
posed.

Remark 3.2. Any bounded kinetic solution u ∈ L∞ satisfies the entropy in-
equality. This can be seen as follows: For any η ∈ C2 with η′′(u) ≥ 0, multiply-
ing the kinetic equation (3.3) by η′(ξ) and then integrating with respect to ξ ∈ R

yield

∂tη(u)+ divx(q(u)− A(u)Dxη(u)) = −
∫

R

η′′(ξ)(m+ n)(t, x, ξ)dξ ≤ 0

in the sense of distributions.

Remark 3.3. If u0 ∈ W 2,1 ∩ H 1 ∩ L∞(Rd), then it can be shown that there
exists a global kinetic solution u = u(t, x) of the Cauchy problem (1.3) and
(3.2), via the vanishing viscosity method.

Remark 3.4. For the isentropic case, A(u) = α′(u)I , condition (iv) in Def-
inition 3.1 can be removed as a direct corollary of a standard chain rule (see
[42]).

For kinetic solutions, we have first the following stability theorem.

Theorem 3.1. Assume that (3.1) holds. Then

(i) For any kinetic solution u ∈ L∞([0,∞);L1(Rd)) with initial data u0 ∈
L1,

‖u(t)− u0‖L1(Rd ) → 0, when t → 0.

(ii) If u, v ∈ L∞([0,∞);L1(Rd)) are kinetic solutions to (1.3) and (3.2) with
initial data u0, v0 ∈ L1, respectively, then

‖u(t)− v(t)‖L1(Rd ) ≤ ‖u0 − v0‖L1(Rd ). (3.4)

(iii) Furthermore, if u ∈ L∞([0,∞)× R
d), this kinetic solution is the entropy

solution.

We now give a formal proof to present the kinetic method for establishing the
stability of kinetic solutions.
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Formal Proof. Consider two solutions u(t, x) and v(t, x). Denote by
m(t, x, ξ) the kinetic defect measure and by

n(t, x, ξ) := δ(ξ − u(t, x))

K∑
k=1

(
d∑
i=1

∂xi σik(u(t, x))

)2

, (3.5)

the parabolic defect measure, which are associated with u(t, x); and byp(t, x, ξ)
the kinetic defect measure and by

q(t, x, ξ) := δ(ξ − v(t, x))

K∑
k=1

(
d∑
i=1

∂xi σik(v(t, x))

)2

, (3.6)

the parabolic defect measure, which are associated with v(t, x).
Then we use the following microscopic contraction functional introduced in

[121]:

Q(t, x, ξ) = |χ(ξ ; u(t, x))| + |χ(ξ ; v(t, x))|
− 2χ(ξ ; u(t, x)) χ(ξ ; v(t, x)) ≥ 0,

(3.7)

which is useful for deriving a contraction principle since∫
R

Q(t, x, ξ) dξ = |u(t, x)− v(t, x)|.

Notice that

∂t |χ(ξ ; u(t, x))| + a(ξ) ·Dx |χ(ξ ; u(t, x))|

−
d∑

i,j=1

∂2
xixj

(
aij (ξ)|χ(ξ ; u(t, x))|

)
= sgn(ξ) ∂ξ (m+ n)(t, x, ξ) ,

which yields

d

dt

∫
Rd+1

|χ(ξ ; u(t, x))| dx dξ = −2
∫

Rd

(m+ n)(t, x, 0)dx.

A similar identity holds for v(t, x).
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Furthermore, we obtain

d

dt

∫
Rd+1

χ(ξ ; u(t, x)) χ(ξ ; v(t, x)) dx dξ

+2
∫

Rd+1

d∑
i,j=1

aij (ξ) ∂xiχ(ξ ; u(t, x))∂xj χ(ξ ; v(t, x)) dx dξ

=
∫

Rd+1
((m+ n)(t, x, ξ)(δ(ξ − v(t, x))− δ(ξ))

+(p + q)(t, x, ξ)(δ(ξ − u(t, x))− δ(ξ))) dx dξ.

Then we have
d

dt

∫
Rd+1

Q(t, x, ξ) dx dξ

= 4
∫

Rd+1

d∑
i,j=1

aij (ξ) ∂xi χ(ξ ; u(t, x)) ∂xj χ(ξ ; v(t, x)) dx dξ

− 2
∫

Rd+1
((m+ n)(t, x, ξ)δ(ξ − v(t, x))+ (p + q)(t, x, ξ)δ(ξ − u(t, x))) dx dξ

≤ 4
∫

Rd+1

d∑
i,j=1

aij (ξ) ∂xi u(t, x) ∂xj v(t, x) δ(ξ − u(t, x)) δ(ξ − v(t, x)) dx dξ

− 2
∫

Rd+1
(n(t, x, ξ)δ(ξ − v(t, x))+ q(t, x, ξ)δ(ξ − u(t, x))) dx dξ,

since m(t, x, ξ) and p(t, x, ξ) are nonnegative.
Using (3.5) and (3.6) yields∫
Rd+1

(n(t, x, ξ)δ(ξ − v(t, x))+ q(t, x, ξ)δ(ξ − u(t, x))) dx dξ

=
K∑
k=1

∫
Rd+1

δ(ξ − u(t, x)) δ(ξ − v(t, x))

×

( d∑

i=1

∂xi σik(u(t, x))

)2

+
(

d∑
i=1

∂xi σik(v(t, x))

)2

 dx dξ

≥ 2
K∑
k=1

∫
Rd+1

δ(ξ − u(t, x)) δ(ξ − v(t, x))

×
(

d∑
i=1

∂xi σik(u(t, x))

) 
 d∑
j=1

∂xj σjk(v(t, x))


 dx dξ
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= 2
K∑
k=1

d∑
i,j=1

∫
Rd+1

δ(ξ − u(t, x)) δ(ξ − v(t, x)) σik(u(t, x)) σjk(v(t, x))

× ∂xiu(t, x) ∂xj v(t, x) dx dξ

= 2
d∑

i,j=1

∫
Rd+1

aij (ξ) ∂xiu(t, x) ∂xj u(t, x) δ(ξ − u(t, x)) δ(ξ − v(t, x)) dx dξ.

Therefore, we end up with

d

dt

∫
Rd+1

Q(t, x, ξ) dx dξ ≤ 0,

which implies that ‖u(t) − v(t)‖L1(Rd ) is non-increasing. This concludes the
contraction property (3.4).

Remark 3.5. Employing Theorem 3.1, we can establish the existence of ki-
netic solutions in L1 for initial data u0 ∈ L1(Rd). This can be achieved by
approximating u0 by uε0 ∈ W 2,1 ∩H 1 ∩L∞(Rd) and by using the L1 contraction
property for the corresponding kinetic solutions uε which yields the convergence
of uε in L1 as ε → 0.

Remark 3.6. Our uniqueness result implies that, if u0 ∈ L∞∩L1(Rd), then the
kinetic solution is the unique entropy solution and |u(t, x)| ≤ ‖u0‖L∞ . There-
fore, the two notions are equivalent for solutions in L∞, although the notion of
kinetic solutions is more general.

Using this kinetic method, a generalL1–framework for continuous dependence
and error estimates for quasilinear, anisotropic degenerate parabolic equations
has also been developed, and applications of our general L1–framework have
been made in establishing an explicit estimate for continuous dependence on the
nonlinearities and an optimal error estimate for the vanishing anisotropic vis-
cosity method, without the requirement of bounded variation of the approximate
solutions, for anisotropic degenerate parabolic equations. For more details, see
Chen-Karlsen [38].

4 Free Boundary Methods and Free Boundary Iterations

Besides well-posedness problems for partial differential equations of divergence
form, many PDE problems arising from various areas are more specific and
require the behavior of specific solutions. Such problems include free-boundary
problems for partial differential equations of divergence form for two phase flows.
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In many cases, given one phase u−(y), we seek a surface S determined by some
physical laws and a solution determined by the partial differential equations for
the other phase. Such problems are called one-phase free boundary problems. In
particular, across a discontinuity surface S, a weak solution u(y) of (1.1) should
satisfy the Rankine-Hugoniot conditions:

A(y, u,Du) · ν|S = G(y, ν) Lipschitz w.r.t. y, ν, (4.1)

u|S = u−|S, (4.2)

which are the free boundary conditions, where G(y, ν) = A(y, u−,Du−) · ν|S
and ν is the unit normal to S in the direction of the unknown phase.

In this section we present a free boundary method via a free boundary iteration
developed in Chen-Feldman [32] through a multidimensional transonic shock
problem.

Consider inviscid steady potential fluid flows, which are governed by the Euler
equations consisting of the conservation law of mass and the Bernoulli law for the
velocity. Then the Euler equations for the velocity potential ϕ : � ⊂ R

n → R

can be formulated into the form (1.4) with u = ϕ, that is,

div (ρ(|Dϕ|2)Dϕ) = 0, (4.3)

where the density function ρ(q2) has the form:

ρ(q2) = (
1 − θq2

) 1
2θ , (4.4)

with θ = γ − 1

2
and the adiabatic exponent γ > 1.

The second order nonlinear equation (4.3) is elliptic at Dϕ with |Dϕ| = q if

ρ(q2)+ 2q2ρ ′(q2) > 0, (4.5)

and is hyperbolic if

ρ(q2)+ 2q2ρ ′(q2) < 0. (4.6)

The elliptic regions of equation (4.3) correspond to the subsonic flow, and the
hyperbolic regions to the supersonic flow. Shocks are jump discontinuities in
the velocity Dϕ. We study weak solutions of (4.3) with transonic (hyperbolic-
elliptic) shocks. Classical linear models for the equations of mixed type include
the Tricomi equation and the Keldysh equation (see [11, 147, 148]).

Shiffman [130], Bers [8], and Finn-Gilbarg [67] studied subsonic (elliptic) so-
lutions of (4.3) outside an obstacle; also see Dong [57]. Alt-Caffarelli-Friedman
[3] studied free boundary problems for subsonic flows.
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Morawetz in [113] showed that the flows of (4.3) past an obstacle may contain
transonic shocks in general. One exception is that, when the obstacle forms a
wedge with small angle, the uniform outflow with supersonic speed may produce
a non-transonic shock (hyperbolic-hyperbolic shock); see [45, 99, 100, 127, 149].
Transonic shocks also arise in many other situations of physical importance. For
example, when a plane shock hits a wedge, a reflected flow may form a transonic
shock; see Glimm-Majda [76] and Morawetz [114]. Steady transonic shocks are
also very useful for solving some unsteady important problems; see Chen-Glimm
[36].

Canic-Keyfitz-Lieberman [25] studied perturbations of steady transonic
shocks between two uniform flows for the two-dimensional transonic small-
disturbance (TSD) equation, which governs the behavior of the first non-trivial
term in the geometric optics expansion to (4.3) near a certain physical point.
The TSD model can be written as a second order nonlinear equation of mixed
type with coefficients depending only upon the unknown function itself, but
independent of its gradient as in (4.3). This feature is essential for the approach
in [25] (also see [26]).

Majda [108] studied the existence and stability of multidimensional shock
fronts, locally in time, for the Euler equations for compressible fluids (also see
Métivier [112]).

We now discuss several recent results on the existence and stability of mul-
tidimensional transonic shocks for (4.3) in unbounded domains and present a
nonlinear method in [32] for establishing these results.

4.1 Transonic Shocks

We first introduce multidimensional transonic shocks for (4.3). A function ϕ ∈
W 1,∞(�) is a weak solution of (4.3) in an unbounded domain � if

(i) |Dϕ(x)| ≤ 1/
√
θ a.e.

(ii) For any ζ ∈ C∞
0 (�), ∫

�

ρ(|Dϕ|2)Dϕ ·Dζ dx = 0. (4.7)

We are interested in weak solutions with shocks. Let �+ and �− be open
subsets of � such that

�+ ∩�− = ∅, �+ ∪�− = �,
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and S = ∂�+ ∩ �. Let ϕ ∈ W 1,∞(�) be a weak solution of (4.3) and be in
C2(�±) ∩ C1(�±) so that Dϕ experiences a jump across S that is an (n − 1)-
dimensional smooth surface. Then the condition that ϕ(x) is a weak solution of
(4.3) implies the continuity of ϕ(x) across S:

ϕ+ = ϕ− on S (4.8)

and the following Rankine-Hugoniot condition on S:[
ρ(|Dϕ|2)Dϕ · ν

]
S

= 0, (4.9)

where ν is the unit normal to S in the direction of �+, and the bracket denotes
the difference between the values of the function along S on the �± sides,
respectively. We can also write (4.9) as

ρ(|Dϕ+|2)Dϕ+ · ν = ρ(|Dϕ−|2)Dϕ− · ν on S. (4.10)

Let K > 0. Then the function

�K(p) := (
K − θp2

) 1
2θ p, (4.11)

defined for p ∈
[
0,
√
K/θ

]
, satisfies

lim
p→0+�K(p) = lim

p→√
K/θ−

�K(p) = 0, (4.12)

�K(p) > 0 for p ∈
(

0,
√
K/θ

)
, (4.13)

0 < �′
K(p) < K

1
2θ on (0, pKsonic) and

�′
K(p) < 0 on

(
pKsonic,

√
K/θ

)
,

(4.14)

�
′′
K(p) < 0 on (0, pKsonic), (4.15)

where

pKsonic = √
K/(θ + 1). (4.16)

Suppose that ϕ(x) is a solution satisfying

|Dϕ(x)| < p1
sonic = 1√

θ + 1
in �+, |Dϕ(x)| > p1

sonic in �−, (4.17)
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besides (4.8) and (4.9). Then ϕ(x) is a transonic shock solution with transonic
shock S dividing � into the subsonic region �+ and the supersonic region �−
and satisfying the physical entropy condition (see Courant-Friedrichs [47]; also
see Lax [93, 94]):

ρ(|Dϕ−|2) < ρ(|Dϕ+|2) and Dϕ± · ν > 0 along S, (4.18)

that is, the density ρ increases across a shock in the flow direction. Note that the
equation (4.3) is elliptic in the subsonic region and hyperbolic in the supersonic
region.

4.2 Multidimensional transonic shocks near flat shocks

Let (x ′, xn) be the coordinates in R
n, where x ′ = (x1, . . . , xn−1) ∈ Rn−1 and

xn ∈ R.

Let q−
0 ∈

(
p1
sonic, 1/

√
θ
)

and ϕ−
0 (x) := q−

0 xn. Then ϕ−
0 (x) is a supersonic

solution in�. According to (4.12)–(4.14), there exists a unique q+
0 ∈ (0, p1

sonic)

such that (
1 − θ(q+

0 )
2
) 1

2θ q+
0 = (

1 − θ(q−
0 )

2
) 1

2θ q−
0 . (4.19)

Define ϕ+
0 (x) := q+

0 xn in �. Then the function

ϕ0(x) = min(ϕ+
0 (x), ϕ

−
0 (x)) (4.20)

is a plane transonic shock solution in�,�+
0 and�−

0 := � \�+
0 are its subsonic

and supersonic regions, respectively, and S0 = {xn = 0} is a transonic shock.
We first focus on an infinite cylinder (0, a)n−1 × (−∞,∞). Since it is not

necessary to require that the supersonic perturbation ϕ−(x) be defined in the
whole infinite cylinder, we introduce a finite subcylinder �1 := (0, a)n−1 ×
(−1, 1) and focus on the cylinder domain � := (0, a)n−1 × (−1,∞) without
loss of generality. Then our multidimensional transonic shock problem can be
formulated into the following form:

Multidimensional Transonic Shock Problem (MTS). Given a supersonic
weak solution ϕ−(x) of (4.3) in �1, which is a C1,α perturbation of ϕ−

0 (x), for
some α ∈ (0, 1):

‖ϕ− − ϕ−
0 ‖1,α,�1 ≤ σ, (4.21)

with σ > 0 small, and

ϕ−
ν = 0 on ∂(0, a)n−1 × (−1, 1), (4.22)
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find a transonic shock solution ϕ(x) in � such that �− := � \�+ = {x ∈ � :
|Dϕ(x)| > p1

sonic} ⊂ �1, ϕ = ϕ− in �−, and

ϕ = ϕ−, ϕxn = ϕ−
xn

on (0, a)n−1 × {−1}, (4.23)

ϕν = 0 on ∂(0, a)n−1 × (−1,∞), (4.24)
ϕ(·, xn)− ωxn → 0 uniformly on (0, a)n−1 as xn → ∞, (4.25)

for some constant ω ∈ (0, p1
sonic) which is not prescribed.

In order to deal with the multidimensional transonic shock problem in the
unbounded domain �, we define the following weighted Hölder semi-norms
and norms in a domain D ⊂ R

n: Let x → δx be a given non-negative function
defined on D. Let δx,y := min(δx, δy) for x, y ∈ D. For k ∈ R, α ∈ (0, 1), and
m ∈ N (the set of nonnegative integers), we define

[u](k)m;0;D =
∑

|β|=m
sup
x∈D

(
δm+k
x |Dβu(x)|) ,

[u](k)m;α;D =
∑

|β|=m
sup

x,y∈D,x �=y

(
δm+α+k
x,y

|Dβu(x)−Dβu(y)|
|x − y|α

)
, (4.26)

‖u‖(k)m;0;D =
m∑
j=0

[u](k)j ;0;D, ‖u‖(k)m;α;D = ‖u‖(k)m;0;D + [u](k)m;α;D,

whereDβ = ∂
β1
x1 . . . ∂

βn
xn , β = (β1, . . . , βn) is a multi-index with βj ≥ 0, βj ∈ N,

|β| = β1 + · · · + βn, and the weight function

δx = 1 + |xn|.
We denote by ‖u‖m,α,D the standard (non-weighted) Hölder norms in a domain
D, i.e., the norms defined as above with δx = δx,y = 1.

Then we have

Theorem 4.1. Let q+
0 ∈ (0, p1

sonic) and q−
0 ∈

(
p1
sonic, 1/

√
θ
)

satisfy (4.19), and

let ϕ0(x) be the plane transonic shock solution (4.20). Then there exist σ0 > 0
and C0 depending only on n, a, α, γ , and q+

0 such that, for every σ ∈ (0, σ0)

and any supersonic solution ϕ−(x) of (4.3) satisfying the conditions stated in
Problem (MTS), the following hold:

(i) There exists q+ ∈ (0, p1
sonic) that is the unique solution of the equation

ρ((q+)2)q+ = Q+
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with

Q+ = 1

an−1

∫
(0,a)n−1

ρ(|Dϕ−(x ′,−1)|2)ϕ−
xn
(x ′,−1)dx ′, (4.27)

and satisfies

|q+ − q+
0 | ≤ C0σ, (4.28)

such that, for any solutionϕ(x) of Problem (MTS) with the subsonic region
�+(ϕ) := {x ∈ � : |Dϕ(x)| < p1

sonic} of the form:

�+(ϕ) = {xn > f (x ′)} ∩� with f ∈ C1,α([0, a]n−1),

Df |∂(0,a)n−1 = 0,
(4.29)

the constant ω in (4.25) must be q+:

ω = q+. (4.30)

(ii) There exists a solution ϕ(x) of Problem (MTS) satisfying

‖ϕ − q+
0 xn‖(−1)

1;α;�+(ϕ) ≤ C0σ, (4.31)

and

ϕ(·, xn)− q+xn → 0 uniformly on (0, a)n−1 when xn → ∞. (4.32)

This solution also satisfies (4.29) with

‖f ‖1,α,[0,a]n−1 ≤ C0σ, (4.33)

and, for every k = 1, 2, . . . ,

‖ϕ − q+xn‖(k)1;α;�+(ϕ) ≤ Ckσ, (4.34)

where Ck depends only on k, n, a, γ , and q+
0 . That is, when xn → ∞,

ϕ(x) uniformly converges to the linear function q+xn with respect to x ′ ∈
(0, a)n−1 at a rate faster than any algebraic order.

(iii) If ϕ− ∈ C2,α(�1), in addition to the previous assumptions, then ϕ ∈
C2,α(�+(ϕ)) and f ∈ C2,α([0, a]n−1), and

‖D2f ‖0,α,[0,a]n−1 ≤ C(n, a, α, γ, q+
0 , σ, ‖D2ϕ−‖0,α,�1) < ∞, (4.35)

‖D2ϕ‖(k)0;α;�+(ϕ) ≤ C(n, a, α, γ, q+
0 , σ, ‖D2ϕ−‖0,α,�1, k) < ∞, (4.36)

for k = 1, 2, . . . . Moreover, if ‖ϕ− − q−
0 xn‖2;α;�1 ≤ Cσ , then a solution

satisfying (4.31) and (4.32) is unique.
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Remark 4.1. Theorem 4.1 indicates that, given any supersonic solution ϕ−(x)
in the upstream region, the necessary and sufficient condition for the existence
of a transonic shock solution in an infinite cylinder� is that the uniform velocity
state ων0, ν0 = (0, . . . , 0, 1), at infinity in the downstream direction must be
q+ν0 determined uniquely by ϕ−(x). This means that, for this problem, one can
apriori prescribe the uniformity condition of the flow, but can not prescribe a
velocity state, at infinity in the downstream direction in general; otherwise the
problem is overdetermined.

Furthermore, as a consequence of the uniqueness, non-degeneracy, and regu-
larity of solutions of Problem (MTS), we have the following stability theorem.

Theorem 4.2. There exist a nonnegative function � ∈ C([0,∞)) satisfying
�(0) = 0 and σ0 > 0 depending only upon n, a, α, γ, and q+

0 such that, if
σ < σ0, ϕ−(x) and ϕ̂−(x) satisfy ‖ϕ− − ϕ̂−

0 ‖2,α,�1 ≤ σ and

‖ϕ− − ϕ̂−‖1,α,�1 ≤ κ, (4.37)

with κ < σ , then the unique solutions ϕ(x) and ϕ̂(x) of Problem (MTS) for
ϕ−(x) and ϕ̂−(x), respectively, satisfy

‖fϕ − fϕ̂‖1,α,(0,a)n−1 ≤ �(κ), (4.38)

where fϕ(x ′) and fϕ̂(x ′) are the free boundary functions in (4.29) with ϕ(x) and
ϕ̂(x), respectively.

Similarly, we can establish the existence and stability of multidimensional
transonic shocks near flat shocks in the whole space and near spherical transonic
shocks in R

n, n ≥ 3.

4.3 Free boundary iterations for the Transonic Shock Problem (MTS)

The transonic shock problems can be formulated into a one-phase free boundary
problem for a nonlinear elliptic equation: Given ϕ− ∈ C1,α(�), find a function
ϕ(x) that is continuous in � and satisfies

ϕ ≤ ϕ− in �̄; (4.39)

the nonlinear equation (4.3) and the ellipticity condition (4.5) in the non-coin-
cidence set

�+ = {ϕ < ϕ−};
the free boundary condition (4.10) on the boundary S = ∂�+ ∩ �; and the
prescribed conditions (4.23)–(4.25) on the fixed boundary ∂� and at infinity.
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The free boundary is the location of the shock, and the free boundary condition
(4.10) is the Rankine-Hugoniot condition (4.9). Note that condition (4.39) is
motivated by the similar properties (4.20) of non-perturbed shocks; and, locally
on the shock, (4.39) is equivalent to the entropy condition (4.18). Condition
(4.39) transforms the transonic shock problem, in which the subsonic region�+
is determined by the gradient condition |Dϕ(x)| < p1

sonic, into a free boundary
problem, in which �+ is the non-coincidence set.

In order to solve this free boundary problem, we first modify equation (4.3)
to make it uniformly elliptic and, correspondingly, modify the free boundary
condition (4.10). Then we solve this modified free boundary problem. Since
ϕ−(x) is a small C1,α perturbation of ϕ−

0 (x), we show that the solution ϕ(x) of
the free boundary problem is a small C1,α perturbation of the given subsonic
shock solution ϕ+

0 (x) in �+. In particular, the gradient estimate implies that
ϕ(x) in fact satisfies the original free boundary problem, hence the transonic
shock problem.

The modified free boundary problem does not directly fit into the variational
framework of Alt-Caffarelli [1] and Alt-Caffarelli-Friedman [2] and the regular-
ization framework of Berestycki-Caffarelli-Nirenberg [9] via the penalty method.
Also, the nonlinearity of (4.40) makes it difficult to apply the Harnack inequality
approach of Caffarelli [23]. In particular, a boundary comparison principle for
positive solutions of nonlinear elliptic equations in Lipschitz domains is unavail-
able yet for the equations that are not homogeneous with respect to D2u,Du,

and u, which however is our case.
The free boundary method we develop is an iteration scheme based on the non-

degeneracy of the free boundary condition: the jump of the normal derivative
of a solution across the free boundary has a strictly positive lower bound. Our
iteration process is as follows: We start with �+

0 and S0 = ∂�+
0 \ ∂�. Suppose

the domain �+
k is given so that Sk := ∂�+

k \ ∂� is C1,α. We solve the oblique
derivative problem in �+

k obtained by rewriting the (modified) equation (4.3)
and the free boundary condition (4.10) in terms of the function u := ϕ − ϕ+

0 .
Then the problem has the following form:

divA(x,Du) = F(x) in �+
k := {u > 0} ∩�,

A(x,Du) · ν = G(x, ν) on S := ∂�+
k \ ∂�, (4.40)

in addition to the fixed boundary conditions on ∂�+
k ∩ ∂� and the conditions

at infinity. The equation is quasilinear, uniformly elliptic, A(x, 0) ≡ 0, while
G(x, ν) has a certain structure. Let uk ∈ C1,α(�+

k ) be the solution of (4.40).
We estimate that ‖uk‖C1,α(�+

k )
is small if the perturbation is small, where we use

appropriate weighted Hölder norms in the unbounded domains. Then we extend
the function ϕk := ϕ+

0 + uk from �+
k to � so that the C1,α norm of ϕk − ϕ+

0 in
� is controlled by ‖uk‖C1,α . We define �+

k+1 := {x ∈ � : ϕk(x) < ϕ−(x)}
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for the next step. Note that, since ‖ϕk − ϕ+
0 ‖C1,α(�) and ‖ϕ− − ϕ−

0 ‖C1,α(�) are
small, we have |Dϕ−| − |Dϕk| ≥ δ > 0 in �, and this nondegeneracy implies
that Sk+1 := ∂�+

k+1 \ ∂� is C1,α and its norm is estimated in terms of the data
of the problem.

The fixed point �+ of this process determines a solution of the free boundary
problem since the corresponding solution ϕ(x) satisfies �+ = {ϕ < ϕ−} and
the Rankine-Hugoniot condition (4.10) holds on S := ∂�+ ∩�.

On the other hand, the elliptic estimates alone are not sufficient to get the
existence of a fixed point, because the right-hand side of the boundary condition
in problem (4.40) depends on the unit normal ν of the free boundary. We use the
following feature of the flat or spherical shocks:

ρ(|Dϕ+
0 |2)Dϕ+

0 = ρ(|Dϕ−
0 |2)Dϕ−

0 in � (4.41)

to obtain better estimates for the iteration and to prove the existence of a fixed
point. Note that this is a vector identity, and the Rankine-Hugoniot condition
(4.10) is the normal part of (4.41) on the non-perturbed free boundary S0.

We remark in passing that the method we described above is mainly for han-
dling the nonlinear free boundary problems in some bounded domains with
appropriate fixed boundary conditions. For a unbounded domain, say the infi-
nite cylinder (0, a)n−1 × (−∞,∞), we first use the free boundary method to
construct the approximate solutions of the free boundary problem in appropriate
bounded approximate domains, then make some uniform estimates of the solu-
tions independent of the size of the approximate domains, and finally prove that
the approximate solutions strongly converge to a solution of the original free
boundary problem in the unbounded domain.

The uniqueness and stability of solutions for the transonic shock problem is
obtained by using the regularity and nondegeneracy of solutions.

For more details, see Chen-Feldman [32].

5 Further Methods and Trends

In Sections 2–4, we have discussed some of selected recent methods to deal with
nonlinear partial differential equations of divergence form. These methods are
only samples and do not reflect fully the scope of nonlinear partial differential
equations of divergence form. For example, some recent methods for nonlinear
dispersive equations and Navier-Stokes equations were not covered; see [95,
91, 13], [85, 101, 140, 65, 66], and references cited therein. It will also be
emphasized that some current trends go far beyond the materials discussed here.
It is important to develop further the methods; some of them have briefly been
mentioned above.

We would like to conclude with a few more examples of such developments,
which are not covered above.
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Compensated compactness methods have still great potential to be further de-
veloped to solve various important nonlinear partial differential equations, for ex-
ample, some recent results on the existence and compactness of entropy solutions
of the Euler equations with general pressure laws in [39] and for isothermal fluids
in [87], and a new understanding of the relation between the large-time behavior
of entropy solutions and the compactness of solution operators for hyperbolic
conservation laws in [34] (also see [30, 37]). The theory of divergence-measure
fields was motivated by the ideas of compensated compactness. The averag-
ing compactness methods have similar connections [79, 80, 81, 122]. Other
related methods include H -measures of Tartar [139] and Gérard [69] and the
related Wigner measures by Lions-Paul [102] and Gérard [70]; also see Gérard-
Markowich-Mauser-Poupaud [71].

Test function methods have become more important to handle with solutions
of partial differential equations of divergence form that are not continuous. The
doubling variables techniques were first developed by Kruzhkov [92] to establish
the well posedness in L∞ for scalar hyperbolic conservation laws; see [16, 31,
38, 27, 89, 63] for recent developments and applications. The perturbed test
function method, which entails various modifications of the test functions by
lower order correctors; applications include homogenization for elliptic PDEs of
divergence form and approximations of quasilinear parabolic PDEs by systems
of Hamilton-Jacobi equations; see Evans [61] for the details. The Holmgren
method and the Haar’s method have been applied to solve the uniqueness and
stability of weak entropy solutions for hyperbolic conservation laws; see [50, 86,
97, 105, 126, 128, 118, 119] and the references cited therein.
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