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A Littlewood-Paley type inequality

Stevo Stevié

Abstract. In this note we prove the following theorem:

Let u be a harmonic function in the unit ball B € R" and p € [%, 1]. Then there is a
constant C = C(p, n) such that

sup / u(ro)|Pdo () < C (IM(O)I” +/ IVu)lP(1 - IXI)”_ldV(x))
S B

0<r<l1
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1 Introduction

Throughout this note # is an integer greater than or equal to 3, B(a,r) = {x €
R" | |x —a| < r}denotes the open ball centered at a of radius r, where | x| denotes
the norm of x € R” and B is the open unit ball in the n-dimensional Euclidean
space R". § = dB = {x € R"||x| = 1} is the Euclidean boundary of B.
Further, dV (x) denotes the Lebesgue volume measure on B, do the normalized
surface measure on S.

Let U be the unit disc in the complex plane and dm(z) = rdr % the normalized
Lebesgue area measure on U. Let H (U) be the space of all harmonic functions
on U and H ?(U) the Hardy harmonic space i.e., the set of harmonic functions
on U such that

O<r<l

1/p
lullstr@w) = sup (/ Iu(re”)l”dt> < 400.
U
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It is well known that when p > 1 for a given u* € LP(0U), the harmonic
extension of u* on U, denoted by u, is

1 -z, 5
u(z) = — ——u*(e')dt, for zeU (D)
21 Joy leit —z|?

Also it is well known that

lim u(re'™) = u*(e'), ae.on U
r—1-0

andu € H?(U).
The following theorem has been recently proved in [7].

Theorem A. Suppose p > 1 and 0 < s < 1. Then there is a constant C > 0
such that for any harmonic extension u of u™ € LP(QU) the following estimate
holds:

1 = w12y, < C/ VulP (1~ 12?7 dm ).
U

It is interesting that the proof given there holds also in the case p € (0, 1],
s = 0. Hence, when p = 1 we have

ot — u(O)|7p 0y < C/ [Vul? (1 = |z~ dm (), 2)
U

for any harmonic extension u of u* € L£'(dU). The proof is based on the fact
that the integral means of subharmonic functions are nondecreasing.

Inequality (2) can be viewed as a Littlewood-Paley type inequality. The in-
equality of Littlewood and Paley is the one contained in the following theorem,
see [4], [5] and [8].

Theorem B. Ifu* is a function in L?(0U) and if u is the harmonic function
defined via Poisson integral of u*, then

/|Vu<z>|”<1—|z|2)"—ldm<z>sC/ WPdo  for pz2
U 104

and

f IVu@)|”(1 — |z|)? 'dm(z) > Cf lu*|Pdo for pe(1,2]
U U
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where C is a constant indepedent of u and p.

Theorem A motivated us to investigate analogous estimate when p € (0, 1].
We consider similar estimate in the case of harmonic functions on the unit ball
B. Let H (B) be the space of all harmonic functions on B and  ?(B) the Hardy
harmonic space on B. In this paper we prove the following theorem.

Theorem 1. Suppose p € [2=2, 1] and u € H (B). Then there is a constant

n—17
C = C(p, n) such that

sup flu(rs“)l”da({) =C (Iu(o)l” +f IVu ()P (1 — IXI)”_ldV(X))-
N B

0<r<l1

In particular, iffB [Vu)|?(1 — |x)?~'dV (x) < oo, thenu € HP?(B).

2 Auxiliary results and the proof of the main result

In order to prove the main result we need three auxiliary results. Throughout the
paper C denotes a positive constant that may change from one step to the next.

The first one is well known Fefferman-Stein lemma that was proved in [1], see
also [3].

Lemmal. Let0 < p < 0o. Then for every multy-index B,

C
|DPu(a)|? < —/ |DPu|PdV  whenever B(a,r) C B,
" JBa.r)

forall u € H (B) and some constant C depending only on B, p and n.

Lemma 2. Suppose 0 < p < oo and o € R. Then there is a constant C =
C(p, a, n) such that

ML T/8) = max )l

=C <|u(0)|” +/ Vu )P (1 — IXI)’”“dV(x)) ;
B

forallu € H (B).
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Proof. Since u(xo) —u(0) = [ u'(txo)dt = [, (Vu(1xo), x0)d1, by elemen-
tary inequalities we obtain

lu(xo)l” = ¢p (IM(O)I’”r IXOI”|§1<37>;8|VM(X)I”), 3)

for each xo € B(0,7/8), wherec, = 1for0 < p < landc, = 27! for p > 1.
On the other hand by Lemma 1 and some simple calculations we obtain

Vu)|? < C/ Vu()IPdV (y)
B(x,1/16)

for each x € B(0, 7/8) and consequently

|H|1<a7§8|Vu(x)|” < max{C 16", C} / [Vu()IP(1 = yD"™dVv(y). @)

B(0,15/16)
From (3) and (4) the result follows. O

Forx € B\ B(0,5/9), x =r¢, ¢ € S, and a continuous function f let define
the following “maximal” function:
1 —1xD 3 = 1xD }

fm”x(X)=SuP{|f(l§)| | IXI—ST<l<|x|+ )

Lemma 3. Letu € H (B). Then there is a constant C = C(p, n) such that

! 1
M (V)" 1) (1 =P " dr < € / M2 (Vu, r)(1 =)',
11/19 0

Proof. Letx =r{ € B\ B(0,11/19), ¢ € S. By Lemma 1 it follows that

(V)" () )P < ——— /

(I =) Jp(r-1550.20-r)
Replacing x in (5) by Ux, where U is an arbitrary orthogonal transformation
of B, then using the change y — Uy and integrating with respect to the Haar
measure on the orthogonal group @(n) we obtain

|[Vul?dV. 5)

[ @urewraw =S [ [ vuwsraveav.

On) Ot B((r—135)¢.3(1-1))
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By Fubini’s theorem and since fO(n) 1gUx)IPdU = [, 1g(1x|2)|?do (¢) we ob-
tain

M2 (V)™ |x]) <

s [ Mewhave. ©

B(r=155)¢.5(1-n))

Multiplying (6) by (1 — r)?~!, then integrating over B \ B(0, 11/19), using
the fact that

%(1 —lxD=1-1Iyl = %9(1 —|x[) for yeB ((r - Tr)é“, Z(l —r)>

and using Fubini’s theorem, we obtain
MP (V)" ™, |x)(1 = r)P~dV (x) <
B\B(0,11/19)
< [ [ a=pr e av ey

B\B(0,11/19) B((r—135)¢,2(1-r))

<c [a=pvr g [ aveavo
B

D(y)

(N

where

1 — x|
4lx|

lx —

D(y) C {x

91 111
x—yl< gl —le)}C{x o=yl < 2 ( —IXI)}-

From (7), since V(D(y)) < V(B)11"(1 — |y|)" and using the polar coordinates
the result follows.

Proof of Theorem 1. Letx € B, x =r¢, ¢ € S. Clearly

1 1
u(x) —u(0) = / u'(tx)dt = / (Vu(tx), x)dt. (8)
0 0

Denote t; = 1 —27%, k € N U {0}. From (8) and using elementary inequalities
we obtain
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p

lu()|” < [u(0)” +

1
f (Vu(tx), x)dt
0

00 174 p
< |u<0>|"+2</ |<Vu<rx),x>|dr) ©
k=1

T—1

< |u(0)|"+2 sup  |[Vu(tx)|”.

2pk te—1<t<tg
Integrating (9) over S using the fact that

sup  [Vu@ry)l” < (Vu)"* (px),

te <t <tgy1

for p € (t;_1, t), applying Lemma 2 and then Lemma 3 to the function f(x) =
Vu(rx) we obtain:

1
M, r)<|u<0>|"+cz Yy / sup [Vu(tro)|Pdo (5)
N

e <t <tgy
=lu(0)1” +C max |u(o)
|x|<7/8
=1
P EETY 1 max »
+C; 2p+D) [;mﬂ?«fwm (or))Pdo(¢)

ilu(O)I”JrC max, |u(x)]

(1 —p)r! / (V)™ (pr¢) )P p"'do (¢)dp

3/4

=C <|“(0)|”+/ (1 —t)”‘lM;,’(Vu,rt)t”—ldz)
0
1

=C ('”(0)|p+/ a —t)”_lM,’,’(Vu,t)t”‘ldt),
0

n—

where in the last inequality we use the fact that for p > ==, the function |Vu|”?
is subharmonic [6, Chap. 7.3], and consequently M}, (Vu s) is nondecreasing
in s. From this the result follows.
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