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A Littlewood-Paley type inequality

Stevo Stević

Abstract. In this note we prove the following theorem:

Let u be a harmonic function in the unit ball B ⊂ Rn and p ∈ [
n−2
n−1 , 1

]
. Then there is a

constant C = C(p, n) such that

sup
0≤r<1

∫
S

|u(rζ )|pdσ(ζ ) ≤ C

(
|u(0)|p +

∫
B

|∇u(x)|p(1 − |x|)p−1dV (x)

)
.
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1 Introduction

Throughout this note n is an integer greater than or equal to 3, B(a, r) = {x ∈
Rn | |x−a| < r} denotes the open ball centered at a of radius r, where |x| denotes
the norm of x ∈ Rn and B is the open unit ball in the n-dimensional Euclidean
space Rn. S = ∂B = { x ∈ Rn | |x| = 1} is the Euclidean boundary of B.

Further, dV (x) denotes the Lebesgue volume measure on B, dσ the normalized
surface measure on S.

Let U be the unit disc in the complex plane and dm(z) = rdr dθ
π

the normalized
Lebesgue area measure on U. LetH (U) be the space of all harmonic functions
on U and H p(U) the Hardy harmonic space i.e., the set of harmonic functions
on U such that

||u||Hp(U) = sup
0<r<1

(∫
∂U

|u(reit )|pdt

)1/p

< +∞.
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It is well known that when p ≥ 1 for a given u∗ ∈ Lp(∂U), the harmonic
extension of u∗ on U, denoted by u, is

u(z) = 1

2π

∫
∂U

1 − |z|2
|eit − z|2 u∗(eit )dt, for z ∈ U (1)

Also it is well known that

lim
r→1−0

u(reit ) = u∗(eit ), a.e. on ∂U

and u ∈ H p(U).

The following theorem has been recently proved in [7].

Theorem A. Suppose p ≥ 1 and 0 < s < 1. Then there is a constant C > 0
such that for any harmonic extension u of u∗ ∈ Lp(∂U) the following estimate
holds:

||u∗ − u(0)||pLp(∂U) ≤ C

∫
U

|∇u|p(1 − |z|)p−ps−1dm(z).

It is interesting that the proof given there holds also in the case p ∈ (0, 1],
s = 0. Hence, when p = 1 we have

||u − u(0)||pLp(∂U) ≤ C

∫
U

|∇u|p(1 − |z|)p−1dm(z), (2)

for any harmonic extension u of u∗ ∈ L1(∂U). The proof is based on the fact
that the integral means of subharmonic functions are nondecreasing.

Inequality (2) can be viewed as a Littlewood-Paley type inequality. The in-
equality of Littlewood and Paley is the one contained in the following theorem,
see [4], [5] and [8].

Theorem B. If u∗ is a function in Lp(∂U) and if u is the harmonic function
defined via Poisson integral of u∗, then

∫
U

|∇u(z)|p(1 − |z|2)p−1dm(z) ≤ C

∫
∂U

|u∗|pdσ for p ≥ 2

and ∫
U

|∇u(z)|p(1 − |z|2)p−1dm(z) ≥ C

∫
∂U

|u∗|pdσ for p ∈ (1, 2]
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where C is a constant indepedent of u and p.

Theorem A motivated us to investigate analogous estimate when p ∈ (0, 1].
We consider similar estimate in the case of harmonic functions on the unit ball
B. LetH (B) be the space of all harmonic functions on B andH p(B) the Hardy
harmonic space on B. In this paper we prove the following theorem.

Theorem 1. Suppose p ∈ [n−2
n−1 , 1] and u ∈ H (B). Then there is a constant

C = C(p, n) such that

sup
0≤r<1

∫
S

|u(rζ )|pdσ(ζ ) ≤ C

(
|u(0)|p +

∫
B

|∇u(x)|p(1 − |x|)p−1dV (x)

)
.

In particular, if
∫
B

|∇u(x)|p(1 − |x|)p−1dV (x) < ∞, then u ∈ H p(B).

2 Auxiliary results and the proof of the main result

In order to prove the main result we need three auxiliary results. Throughout the
paper C denotes a positive constant that may change from one step to the next.

The first one is well known Fefferman-Stein lemma that was proved in [1], see
also [3].

Lemma 1. Let 0 < p < ∞. Then for every multy-index β,

|Dβu(a)|p ≤ C

rn

∫
B(a,r)

|Dβu|pdV whenever B(a, r) ⊂ B,

for all u ∈ H (B) and some constant C depending only on β, p and n.

Lemma 2. Suppose 0 < p < ∞ and α ∈ R. Then there is a constant C =
C(p, α, n) such that

Mp
∞(u, 7/8) = max

x∈B(0,7/8)
|u(x)|p

≤ C

(
|u(0)|p +

∫
B

|∇u(x)|p(1 − |x|)p+αdV (x)

)
,

for all u ∈ H (B).
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Proof. Since u(x0)−u(0) = ∫ 1
0 u′(tx0)dt = ∫ 1

0 〈∇u(tx0), x0〉dt, by elemen-
tary inequalities we obtain

|u(x0)|p ≤ cp

(
|u(0)|p + |x0|p max|x|≤7/8

|∇u(x)|p
)

, (3)

for each x0 ∈ B(0, 7/8), where cp = 1 for 0 < p < 1 and cp = 2p−1 for p ≥ 1.

On the other hand by Lemma 1 and some simple calculations we obtain

|∇u(x)|p ≤ C

∫
B(x,1/16)

|∇u(y)|pdV (y)

for each x ∈ B(0, 7/8) and consequently

max|x|≤7/8
|∇u(x)|p ≤ max{C 16p+α, C}

∫
B(0,15/16)

|∇u(y)|p(1 − |y|)p+αdV (y). (4)

From (3) and (4) the result follows. �
For x ∈ B \B(0, 5/9), x = rζ, ζ ∈ S, and a continuous function f let define

the following “maximal” function:

f max(x) = sup

{
|f (tζ )| | |x| − 5(1 − |x|)

4
< t < |x| + 3(1 − |x|)

4

}
.

Lemma 3. Let u ∈ H (B). Then there is a constant C = C(p, n) such that∫ 1

11/19
Mp

p ((∇u)max, r)(1 − r)p−1rn−1dr ≤ C

∫ 1

0
Mp

p (∇u, r)(1 − r)p−1rn−1dr.

Proof. Let x = rζ ∈ B \ B(0, 11/19), ζ ∈ S. By Lemma 1 it follows that

( (∇u)max(x) )p ≤ C

(1 − r)n

∫
B((r− 1−r

4 )ζ, 9
8 (1−r))

|∇u|pdV . (5)

Replacing x in (5) by Ux, where U is an arbitrary orthogonal transformation
of B, then using the change y → Uy and integrating with respect to the Haar
measure on the orthogonal group O(n) we obtain∫
O(n)

((∇u)max(Ux))pdU ≤ C

(1 − r)n

∫
O(n)

∫

B((r− 1−r
4 )ζ, 9

8 (1−r))

|∇u(Uy)|pdV (y)dU.
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By Fubini’s theorem and since
∫
O(n)

|g(Ux)|pdU = ∫
S
|g(|x|ζ )|pdσ(ζ ) we ob-

tain

Mp
p ((∇u)max, |x|) ≤ C

(1 − r)n

∫

B((r− 1−r
4 )ζ, 9

8 (1−r))

Mp
p (∇u, |y|)dV (y). (6)

Multiplying (6) by (1 − r)p−1, then integrating over B \ B(0, 11/19), using
the fact that

1

8
(1 − |x|) ≤ 1 − |y| ≤ 19

8
(1 − |x|) for y ∈ B

((
r − 1 − r

4

)
ζ,

9

8
(1 − r)

)

and using Fubini’s theorem, we obtain
∫

B\B(0,11/19)

Mp
p ((∇u)max, |x|)(1 − r)p−1dV (x) ≤

≤C

∫
B\B(0,11/19)

∫

B((r− 1−r
4 )ζ, 9

8 (1−r))

(1 − |y|)p−1−nMp
p (∇u, |y|)dV (y)dV (x)

≤C

∫
B

(1 − |y|)p−1−nMp
p (u, |y|)

∫
D(y)

dV (x)dV (y)

(7)

where

D(y) ⊂
{
x

∣∣∣∣ |x − 1 − |x|
4|x| x − y| <

9

8
(1 − |x|)

}
⊂

{
x

∣∣∣∣ |x − y| <
11

8
(1 − |x|)

}
.

From (7), since V (D(y)) ≤ V (B)11n(1 −|y|)n and using the polar coordinates
the result follows.

Proof of Theorem 1. Let x ∈ B, x = rζ, ζ ∈ S. Clearly

u(x) − u(0) =
∫ 1

0
u′(tx)dt =

∫ 1

0
〈∇u(tx), x〉dt. (8)

Denote tk = 1 − 2−k, k ∈ N ∪ {0}. From (8) and using elementary inequalities
we obtain
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|u(x)|p ≤ |u(0)|p +
∣∣∣∣
∫ 1

0
〈∇u(tx), x〉dt

∣∣∣∣
p

≤ |u(0)|p +
∞∑

k=1

(∫ tk

tk−1

|〈∇u(tx), x〉|dt

)p

≤ |u(0)|p +
∞∑

k=1

1

2pk
sup

tk−1<t<tk

|∇u(tx)|p.

(9)

Integrating (9) over S using the fact that

sup
tk<t<tk+1

|∇u(trζ )|p ≤ (∇u)max(ρx),

for ρ ∈ (tk−1, tk), applying Lemma 2 and then Lemma 3 to the function f (x) =
∇u(rx) we obtain:

Mp
p (u, r) ≤|u(0)|p + C

∞∑
k=0

1

2p(k+1)

∫
S

sup
tk<t<tk+1

|∇u(trζ )|pdσ(ζ )

≤|u(0)|p + C max|x|≤7/8
|u(x)|

+ C

∞∑
k=3

1

2p(k+1)

∫
S

min
tk−1<ρ<tk

( (∇u)max(ρrζ ) )pdσ(ζ )

≤|u(0)|p + C max|x|≤7/8
|u(x)|

+ C

∫ 1

3/4
(1 − ρ)p−1

∫
S

( (∇u)max(ρrζ ) )pρn−1dσ(ζ )dρ

≤C

(
|u(0)|p +

∫ 1

0
(1 − t)p−1Mp

p (∇u, rt)tn−1dt

)

≤C

(
|u(0)|p +

∫ 1

0
(1 − t)p−1Mp

p (∇u, t)tn−1dt

)
,

where in the last inequality we use the fact that for p ≥ n−2
n−1 , the function |∇u|p

is subharmonic [6, Chap. 7.3], and consequently M
p
p (∇u, s) is nondecreasing

in s. From this the result follows.
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