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Groups whose non-subnormal subgroups
have a transitive normality relation

F. de Giovanni, A. Russo and G. Vincenzi

Abstract. This article investigates the structure of groups in which every subgroup
either is subnormal or has a transitive normality relation, with special attention to the
case in which subnormal subgroups have bounded defect.
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1 Introduction

The structure of groups for which the set of non-normal subgroups is small in
some sense has been investigated by several authors. In particular, Romalis and
Sesekin ([13],[14],[15]) considered soluble groups whose non-abelian subgroups
are normal (metahamiltonian groups), proving that such groups have derived
length at most 3 and finite commutator subgroup with prime power order.

A group G is said to be a T -group if all its subnormal subgroups are normal, i.e.
if normality in G is a transitive relation. The structure of finite soluble T -groups
has been described by Gaschütz [4], while Robinson [10] investigated infinite
soluble groups with the property T . Recently, attention has been given to groups
in which many subgroups have a transitive normality relation (see for instance
[2]), and in particular the last two authors [17] considered groups in which all
non-normal subgroups are T -groups.

The aim of this article is to study groups in which every non-subnormal sub-
group has the property T . For each non-negative integer k, we shall denote by
Xk the class of all groups in which subgroups are either T -groups or subnormal
with defect at most k. A famous example by Heineken and Mohamed (see [6])
proves that there exist metabelian periodic groups with all subgroups subnor-
mal, but with no bounds for the defects of the subgroups. It follows easily that
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⋃
k Xk is properly contained in the class X∞ consisting of groups in which all

non-subnormal subgroups are T -groups. Note that X1 is precisely the class of
groups studied in [17].

In Section 2, among other solubility results, we prove that X∞-groups having an
ascending series with locally (soluble-by-finite) factors are soluble, and that such
a group has derived length at most 4, provided that it is not locally nilpotent. The
last section is devoted to the structure of Xk-groups. In particular, it is shown that
any periodic locally graded Xk-group is either finite-by-nilpotent or a T -group.
Moreover, we prove that if G is a non-periodic locally soluble Xk-group, then
each non-abelian subgroup of G is subnormal with defect at most k. Groups with
this latter property are also studied, and it is proved that the results of Romalis
and Sesekin on metahamiltonian groups can be extended to this case.

Most of our notation is standard and can be found in [12]. In particular, if
H is a subgroup of a group G, the series of normal closures of H in G is
defined inductively by the positions HG,0 = G and HG,k+1 = HHG,k

for each
non-negative integer k. Thus H is subnormal in G with defect k if and only if
HG,k = H and k is the smallest non-negative integer with this property.

2 X∞-groups

Clearly the class X∞ (as well as the class Xk for each non-negative integer k)
is closed with respect to subgroups and homomorphic images. Moreover, as
subnormal subgroups of T -groups are likewise T -groups, we have that every
T -group in the class X∞ is a T̄ -group, i.e. a group in which all subgroups have
the property T . Therefore the following lemma holds.

Lemma 2.1. Let G be an X∞-group (respectively: an Xk-group for some k ≥ 0).
Then every subgroup of G is either subnormal (respectively: subnormal with
defect at most k) or a T̄ -group.

Lemma 2.2. Let G be a finite X∞-group. Then G is soluble.

Proof. As finite T̄ -groups are soluble, it can be assumed that the group G

contains a proper non-trivial normal subgroup N . Then the groups N and G/N

belong to the class X∞, and hence they are soluble by induction on the order of
G. Therefore G is a soluble group. �

By a relevant theorem of Roseblade [16], there exists a function f such that if
G is any group in which all subgroups are subnormal with defect bounded by a
non-negative integer k, then G is nilpotent with class at most f (k).
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Lemma 2.3. Let G be a group, and let H be a subgroup of G such that all
subgroups of G containing H are subnormal with defect at most k. Then H

contains the subgroup G(n), where n = k([log2f (k)] + 1) and f is the function
of Roseblade’s theorem.

Proof. For each non-negative integer i < k, all subgroups of the group
HG,i/HG,i+1 are subnormal with defect at most k, so that HG,i/HG,i+1 is nilpo-
tent of class at most f (k) by Roseblade’s theorem, and hence it has derived
length at most [log2f (k)]+1. Since HG,k = H , it follows that G(n) is contained
in H . �

The example of Heineken and Mohamed quoted in the introduction shows that
a group whose subgroups are subnormal need not be nilpotent. On the other hand,
Möhres [7] proved that such groups must be soluble. Therefore the argument of
the proof of Lemma 2.3 can also be used to obtain the following result.

Lemma 2.4. Let G be a group, and let H be a subgroup of G such that all
subgroups of G containing H are subnormal. Then there exists a non-negative
integer n such that G(n) is contained in H .

Corollary 2.5. Let G be a perfect X∞-group. Then every proper subgroup of G

is a T -group.

Proof. Since G = G(n) for each non-negative integer n, it follows from Lemma
2.4 that all proper subgroups of G are T -groups. �

A group G is said to be locally graded if every finitely generated non-trivial
subgroup of G contains a proper subgroup of finite index. Obviously, all locally
(soluble-by-finite) groups are locally graded; it is also clear that every group
having no infinite simple sections is locally graded.

Corollary 2.6. Let G be a perfect locally graded X∞-group. Then G is a
T̄ -group.

Proof. By Corollary 2.5 every proper subgroup of G is a T -group. Assume by
contradiction that G is not a T -group. Since the property T is local, it follows
that G is finitely generated, so that it has a finite non-trivial homomorphic image
Ḡ. The group Ḡ is soluble by Lemma 2.2, and this contradiction proves the
corollary. �

Corollary 2.7. Let G be an X∞-group having no infinite simple sections. Then
G is hypoabelian and G(ω+2) = {1}.
Bull Braz Math Soc, Vol. 34, N. 2, 2003
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Proof. It is well known that T̄ -groups having no infinite simple sections are
metabelian, so that it follows from Corollary 2.6 that G does not contain perfect
non-trivial subgroups. Thus G is hypoabelian. Suppose that G is not soluble,
so that also the factor group G/G(ω) is not soluble. By Möhres’ theorem there
exists a non-subnormal subgroup of G containing G(ω), so that G(ω) is a T̄ -group
and hence G(ω+2) = {1}. �

Since periodic locally graded T̄ -groups are metabelian, the argument used in
the proof of Corollary 2.7 also shows that periodic locally graded X∞-groups are
hypoabelian with length at most ω + 2.

Recall that a subgroup H of a group G is said to be pronormal if for each
element g of G the subgroups H and Hg are conjugate in 〈H, Hg〉. It is well
known that groups rich of pronormal subgroups are closely related to T -groups.

The consideration of the alternating group of degree 4 shows that finite
X∞-groups need not be supersoluble. On the other hand, as a consequence
of our next result it turns out that such groups must have a Sylow tower.

Theorem 2.8. Let G be a non-trivial locally finite X∞-group. Then G contains
a non-trivial normal Sylow subgroup.

Proof. Assume by contradiction that the theorem is false, and let p be any prime
in the set π(G). If P is a Sylow p-subgroup of G, there exist elements x ∈ P

and y ∈ G such that xy does not belong to P . Thus 〈P, xy〉 is not a p-group, and
so P contains a finite subgroup E such that x ∈ E and 〈E, xy〉 is not a p-group.
Let a and g be elements of G such that the order of a is a power of p. Consider
the finite soluble group X = 〈E, y, a, g〉, and let Y be a Sylow p-subgroup of X

containing E. Clearly Y is not normal in X, and so the normalizer NX(Y ) is not
subnormal in X. Then NX(Y ) must be a T -group, so that all subgroups of Y are
normal in NX(Y ), and hence 〈a〉 is a pronormal subgroup of X (see [12], p.298).
In particular, the subgroups 〈a〉 and 〈ag〉 are conjugate in 〈a, ag〉, and so 〈a〉 is
pronormal also in G. Therefore all cyclic subgroups of G are pronormal, and
G is a T̄ -group (see for instance [5], Lemma 3.5). It follows that [G′, G] is an
abelian Hall subgroup of G (see [12], p.405), and hence G contains a non-trivial
normal Sylow subgroup. This contradiction proves the theorem. �

Our next lemma shows in particular that soluble X∞-groups are locally poly-
cyclic.

Lemma 2.9. Let G be a finitely generated soluble X∞-group. Then G is either
nilpotent or abelian-by-finite.
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Proof. Suppose that the group G is not nilpotent, so that it must contain a non-
subnormal subgroup A of finite index (see [12], p.477). Clearly A is a finitely
generated soluble T -group, so that A is either finite or abelian, and hence G is
abelian-by-finite. �

Theorem 2.10. Let G be an X∞-group having an ascending series with locally
(soluble-by-finite) factors. Then G is soluble. Moreover, if G is not locally
nilpotent, then it has derived length at most 4.

Proof. Let

{1} = G0 < G1 < . . . < Gα < Gα+1 < . . . < Gτ = G

be an ascending series of G whose factors are locally (soluble-by-finite). Assume
that the group G is not soluble, and let µ ≤ τ be the least ordinal such that Gµ is
not soluble, so that Gα is soluble for each ordinal α < µ. If µ is a limit ordinal,
then

Gµ =
⋃

α<µ

Gα

is locally soluble; on the other hand, if µ is not a limit, the factor group Gµ/Gµ−1

is locally soluble by Lemma 2.2, and hence Gµ is locally soluble also in this case.
Since soluble T -groups are metabelian, the group Gµ must contain a finitely
generated subgroup E which is not a T -group. It follows from Lemma 2.1 that
all subgroups of G containing E are subnormal, and so by Lemma 2.4 there is
a positive integer n such that G(n) is contained in E. This contradiction proves
that G is soluble. Suppose now that G is not locally nilpotent, and assume
by contradiction that G(4) �= {1}, so that G contains a finitely generated non-
nilpotent subgroup K with K(4) �= {1}. Since K is polycyclic by Lemma 2.9,
there exists a normal subgroup L of K such that K/L is a finite non-nilpotent
group with derived length at least 5. Replacing G by K/L, it can be assumed
without loss of generality that G is a finite non-nilpotent group, and of course
G can be chosen of smallest possible order. It follows from Theorem 2.8 that
G contains a non-trivial normal Sylow subgroup P , and G = PQ where Q is a
subgroup of G with P ∩ Q = {1}. If Q is subnormal in G, then G = P × Q,
so that Q is not nilpotent and Q(4) = {1}; in this case P ′′ is not a T -group and
G/P ′′ must be nilpotent, a contradiction by P.Hall’s nilpotency criterion. Thus
the subgroup Q is not subnormal, so that it is a T -group and G′′ is contained in
P . Clearly G′′ is not a T -group, so that G/G′′ is nilpotent and Q is a Dedekind
group. As G is not nilpotent, it follows that also its commutator subgroup G′
is not nilpotent, so that in particular G′ is not contained in P . Thus Q is a
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hamiltonian group and P has odd order. Again the nilpotency criterion of P.
Hall yields that G/G(3) is not nilpotent, so that the subgroup G(3) of P is a
T -group, and hence it is abelian. This last contradiction completes the proof of
the theorem. �

The proof of Theorem 2.10 also shows that under the additional assumption
that the group G has no sections isomorphic to the quaternion group of order 8,
the derived length of G is at most 3.

3 Xk-groups

We begin this section with the following solubility criterion for periodic Xk-
groups. This is a consequence of Theorem 2.10.

Corollary 3.1. Let G be a periodic Xk-group having an ascending series with
locally graded factors. Then G is soluble.

Proof. By Theorem 2.10 it is enough to prove that every periodic locally graded
Xk-group G is soluble. Put n = k([log2f (k)] + 1), where f is the function of
Roseblade’s theorem. If H is any subgroup of G which is not a T -group, then
all subgroups of G containing H are subnormal with defect at most k, and hence
G(n) is contained in H by Lemma 2.3. It follows that every proper subgroup of
G(n) is a T -group, so that either G(n) is a T̄ -group or it is finitely generated. In
any case, G(n) contains a subgroup of finite index which is a T̄ -group, and hence
G(n) is soluble by Lemma 2.2. Therefore G is a soluble group. �

Let G be an Xk-group, where k is any non-negative integer. If H is a subnormal
subgroup of G and HG,k+1 �= H , the subgroup HG,k+1 is subnormal in G with
defect k +1, so that it is a T -group, and hence H is normal in HG,k+1. It follows
that every subnormal subgroup of an Xk-group has defect at most k + 2.

Lemma 3.2. Let G be a locally nilpotent Xk-group. Then every subgroup of G is
subnormal with defect at most k + 2, and in particular G is nilpotent with class
at most f (k + 2), where f is the function of Roseblade’s theorem.

Proof. Let X be any subgroup of G which is not subnormal with defect at most
k. Then X is a T̄ -group, and so even a Dedekind group. Clearly every join of a
chain of Dedekind subgroups of G is likewise a Dedekind subgroup, and so by
Zorn’s Lemma X is contained in a maximal Dedekind subgroup M of G. Let L

be the set of all subgroups of G properly containing M , and let H be any element
of L. Then H is not a T̄ -group, and hence it is subnormal in G with defect at

Bull Braz Math Soc, Vol. 34, N. 2, 2003



GROUPS WHOSE NON-SUBNORMAL SUBGROUPS 225

most k. It follows that also the intersection L of all members of L is a subnormal
subgroup of G with defect at most k. On the other hand, either M = L or M is
a maximal subgroup of L, so that in particular M is normal in L. Therefore X

is subnormal in G with defect at most k + 2. �
We need the following extension of the theorem of Roseblade, that has been

recently obtained by E. Detomi (see [3], Theorem 3).

Lemma 3.3. Let G be a periodic group for which the set π(G) is finite. If there
exists a finite subgroup E of G such that all subgroups of G containing E are
subnormal with defect at most k for some fixed non-negative integer k, then G is
finite-by-nilpotent.

Theorem 3.4. Let G be a periodic locally graded Xk-group. Then either G is a
T̄ -group or it is finite-by-nilpotent.

Proof. It follows from Corollary 3.1 that the group G is soluble, and so also
locally finite. Suppose that G is not a T̄ -group, so that it contains a finite subgroup
E which is not a T -group. Let π be the set of prime divisors of the order of E.
Since every subgroup of G containing E is subnormal with defect at most k, the
normal closure EG of E is a π -group and the factor group G/EG is nilpotent
by Roseblade’s theorem. By Lemma 3.2 it can be assumed that G is not locally
nilpotent, so that there exists a prime number p such that the Sylow p-subgroups
of G are not normal. Let K/EG be the unique Sylow p-subgroup of G/EG.
Then K is normal in G and the set π(K) is finite, so that K is finite-by-nilpotent
by Lemma 3.3 and hence it contains a finite normal subgroup L of G such that
K/L is nilpotent. Let P be any Sylow p-subgroup of G; then P is contained
in K and PL/L is the unique Sylow p-subgroup of K/L. In particular, PL is
normal in G and G/PL is a p′-group, so that all Sylow p-subgroups of G are
contained in PL. Since the Sylow p-subgroups of PL are pairwise conjugate, it
follows from Frattini’s argument that G = LNG(P ). On the other hand, NG(P )

is a proper selfnormalizing subgroup of G, and hence NG(P ) is a T -group; thus
G/L is a T -group, and so the finite subgroup EL is normal in G. Therefore EG

is contained in EL, so that EG is finite and the group G is finite-by-nilpotent.
The theorem is proved. �

Let k be a non-negative integer. A group G is called k-metahamiltonian if
every non-abelian subgroup of G is subnormal with defect at most k. Obviously,
any k-metahamiltonian group belongs to the class Xk, and 1-metahamiltonian
groups are precisely the metahamiltonian groups considered by Romalis and
Sesekin.
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Let G be a group. Recall that the FC-centre of G is the characteristic subgroup
consisting of all elements of G having finitely many conjugates, and that G is
an FC-group if it coincides with its FC-centre.

Theorem 3.5. Let G be a locally soluble non-periodic Xk-group. Then G is
k-metahamiltonian.

Proof. Let X be any non-abelian subgroup of G. If X is not periodic, then it is
not a T̄ -group, and so X is subnormal in G with defect at most k. Suppose now
that X is periodic, and let x be any element of the subgroup XG,k. Then there
exists a finite non-abelian subgroup Y of X such that x belongs to YG,k. Let a be
an element of infinite order of G, and put E = 〈Y, a〉. It follows from Lemma 2.9
that E is polycyclic. Let u be any element of E such that the cyclic subgroup 〈u〉
is not subnormal in E. Since 〈u〉 is intersection of subgroups of finite index of E

(see [18], p.18), there exists a subgroup of finite index U of E such that u ∈ U

and U is not subnormal with defect at most k. Thus U is a finitely generated
T -group, so that U is abelian and hence it is contained in the centralizer CE(u).
It follows that u has finitely many conjugates in E, and hence E = F ∪C, where
F is the Fitting subgroup and C is the FC-centre of E. Therefore E either
is nilpotent or an FC-group. As finitely generated FC-groups are central-by-
finite, we obtain that the centre Z(E) of E contains an element of infinite order
b. Then Y is a characteristic subgroup of 〈Y, b〉 = Y × 〈b〉; moreover, 〈Y, b〉
is not a T -group, so that it is subnormal in G with defect at most k, and hence
also Y is subnormal with defect at most k. Therefore YG,k = Y ≤ X, so that
X = XG,k is subnormal in G with defect at most k, and G is a k-metahamiltonian
group. �

A finite group G is called a �-group if Z(G) = {1} and each subgroup of
G is either subnormal or nilpotent. It has been proved by Phillips and Wilson
[9] that a finite non-trivial group G is a �-group if and only if it is a semidirect
product G = C � A, where A is an abelian minimal normal subgroup of G and
C is a cyclic non-trivial subgroup such that each non-trivial element of C acts
irreducibly on A by conjugation. Therefore all �-groups are metabelian. It also
follows that every finite k-metahamiltonian group is nilpotent-by-cyclic, and in
particular it has nilpotent commutator subgroup.

Our last theorem extends the results of Romalis and Sesekin on metahamilto-
nian groups to k-metahamiltonian groups for any non-negative integer k.

Theorem 3.6. Let G be a locally graded k-metahamiltonian group which is
not nilpotent. Then G is soluble with derived length at most 3, the factor group

Bull Braz Math Soc, Vol. 34, N. 2, 2003



GROUPS WHOSE NON-SUBNORMAL SUBGROUPS 227

G/Z(G) is finite and the commutator subgroup G′ of G is finite with prime-power
order.

Proof. Let H be any non-abelian subgroup of G. Then every subgroup of
G containing H is subnormal with defect at most k, and hence it follows from
Lemma 2.3 that the subgroup G(n) is contained in H , where

n = k
([log2f (k)] + 1

)
.

Therefore every proper subgroup of G(n) is abelian, and so G(n) contains an
abelian subgroup of finite index. As finite k-metahamiltonian groups are soluble,
it follows that the group G is soluble. By Lemma 3.2 we have that G is not
locally nilpotent, and in order to prove that the index |G : Z(G)| is finite, it
can be assumed that G is a Černikov group (see [9], Theorem C(i)). Let E be
a finite non-abelian subgroup of G. Then every subgroup of G containing E

is subnormal with defect at most k, and in particular the factor group G/EG is
nilpotent. On the other hand, E has finitely many conjugates in G (see [11] Part
1, Theorem 5.49), so that EG is finite and G is finite-by-nilpotent. It follows that
G/Z(G) is finite, so that also G′ is finite by Schur’s theorem. Let X be a finitely
generated subgroup of G such that G = XZ(G). Clearly Z(X) = X ∩ Z(G) is
finitely generated, and so it contains a torsion-free subgroup K such that X/K

is finite. Since X is not nilpotent and G′ = X′ � X′K/K , replacing G by X/K

it can be assumed without loss of generality that the group G is finite. It follows
from Theorem 2.8 that G contains a non-trivial normal Sylow p-subgroup P

for some prime number p, and so there exists also a subgroup Q of G such
that G = PQ and P ∩ Q = {1}. If Q is abelian, then G′ ≤ P has order a
power of p. Suppose now that Q is not abelian, so that Q is subnormal in G

and G = P × Q. Thus Q is not nilpotent, and so it contains a non-subnormal
subgroup L. It follows that PL is not subnormal in G, so that P is abelian and
by induction on the order of G we obtain that G′ = Q′ has prime-power order.
Finally, since G′ is nilpotent, the factor group G/G′′ cannot be nilpotent, so that
G′′ is abelian and G has derived length at most 3. �

Corollary 3.7. Let G be a locally soluble Xk-group. Then either G is a T̄ -group
or it is finite-by-nilpotent.

It has been proved by S.N. Černikov (see [1], Theorem 2.1) that every soluble
non-periodic metahamiltonian group is metabelian. This result cannot be ex-
tended to k-metahamiltonian groups for k ≥ 2. In fact, let G = 〈x〉 � Q be the
semidirect product of a normal subgroup Q isomorphic to the quaternion group
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of order 8 and an infinite cyclic subgroup 〈x〉 such that x acts on Q as an auto-
morphism of order 3; if X is any non-abelian subgroup of G, then |XQ : X| ≤ 2
and hence X is subnormal in G with defect at most 2. Therefore G is a soluble
non-periodic 2-metahamiltonian group with derived length 3.
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