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Abstract. Some properties of complex secondary classes are discussed. It is shown
that the Godbillon-Vey class and the Bott class are related via complexification.
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Introduction

Secondary characteristic classes are one of the main tools in studying foliations.
In the holomorphic category, there are some results on complex secondary char-
acteristic classes, e.g. [5, 9, 1], but their properties are not yet fully understood.
In this paper, the space of complex secondary characteristic classes, denoted by
H*(WU,), is studied and the following results are shown:

Theorem A. There exists a spectral sequence
EY* = H' (W, ®W,) ® H” (BGL(g; C)) = H*(WU,).

In fact, d, = 0 forr > 2¢*> + 4q + 1.

Theorem B. Complexification of foliations induces a natural isomorphism be-
tween H*'(WU,) and H*'*'(W,) if q is even, between

H2q+l (Wq ®W_q)/H2q+l (WUq)
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252 TARO ASUKE

and H*™ (W) if q is odd.

See the first section for definitions concerning secondary characteristic classes.
Complexification is introduced in the second section with an example.

The meaning of Theorem A is as follows, namely, the differential induces a
natural mapping from the classifying space BFqC for transversely holomorphic
foliations of complex codimension g to BGL(g; C). Its homotopy fiber BF_qC is
the classifying space for transversely holomorphic foliations of complex codi-
mension g with trivialized complex normal bundle. Thus the cohomology of
BFqC might be calculated, if H *(BF_qC) were known, by using the Serre spectral
sequence whose E,-termis H* (BF_qC) ® H*(BGL(g; C)), because BGL(g; C) is
simply connected. Theorem A asserts that this is still valid for secondary classes.
See Section 1 for more details.

Theorem A will be shown by constructing a certain differential graded algebra
W'uq which is isomorphic to (W, ®Wq) ®Cl[by, by, - - -, by] as graded algebras
and whose cohomology H*(WU,) is isomorphic to H*(WU,). This is done in
the first section. Theorem B will be shown in the second section.

The author is grateful to the referee for his valuable comments, especially for
suggesting a simplified proof of Lemma 1.5.

1 Definitions and Proof of Theorem A

First recall secondary characteristic classes in order to fix notations. The coeffi-
cient of cohomology is chosen as C unless otherwise stated.

Complex secondary classes are defined in terms of the following differential
graded algebras (DGA’s for short).

Definition 1.1 WU, and W, ®W_q are DGA’s defined as follows. First let

C[vy, - -+, v,] be the polynomial ring with generators vy, - - - , v,. The degree
of v;, denoted by deg v;, is set to be 2i. Let I, be the ideal generated by mono-
mials of degree greater than 2¢, and set C,[vy, -+, v4] = Clvy, -+, v,1/1,.
C,[v1, -+, v,] is defined by replacing v; with v;. We set

WUq = /\[ﬁl, ) ﬁq] 02 Cq[vla R vq] ® Cq[l_)l’ T l_)q]»
Wq®vq=/\[ul,"' ,uq]/\/\[’/_‘l,"' »ﬁq]®cq[vl,"' ,vq]
® Cq[l_)l’ T l_)q]
The differential is defined by requiring du; = v; — v;, du; = v;, dit; = v; and

dv; = dv; = 0. We setdegu; = degu; = degit; = 2i — 1. Elements of DGA’s
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COMPLEXIFICATION OF FOLIATIONS AND COMPLEX SECONDARY CLASSES 253

are expressed as usual by using multi-indices, for example, u; = u;, - - - u;, and
vy =" v for I = {iy, -~ ,i,yand J = (i, -+, Ji)-

The cohomologies of these DGA’s are regarded as the spaces of complex sec-
ondary classes for foliations as follows. First let Bl“qC be the classifying space
for transversely holomorphic foliations of complex codimension ¢, then the dif-
ferential induces a natural mapping from BFqC to BGL(g; C). Its homotopy
fiber, denoted by BF_qC, is the classifying space for transversely holomorphic
foliations of complex codimension g with trivialized complex normal bundle. It
is known that elements of H*(WU,) (resp. H*(W, ®Wq)) determine charac-
teristic classes of transversely holomorphic foliations of complex codimension
q (resp. transversely holomorphic foliations of complex codimension g with
trivialized complex normal bundle). Indeed, there are homomorphisms

x¢:H*(WU,) — H*(BI'y) and X¢:H*(W,®W,) - H*(BIS)

called the universal characteristic mappings [5, 10]. In particular, the elements
of H*(WU,) and H*(W, ®W_q) which involve u;, u; or i; are called complex
secondary classes. Let ¢ be the natural mapping from Bl’_qc, to BFqC and * be the
induced mapping on the cohomology. If we define a homomorphism of DGA’s,
say ¢/, from WU, to W, ®W_q by the formulae ' (;) = u; — u;, (' (v;) = v; and
t'(v;) = v;, then the induced mapping ¢, : H*(WU,) — H*(W, ®W_q) and the
mapping ¢* together with the universal characteristic mappings as above form
the following commutative diagram:

H*(WU,) —— H*(W,®W,)

‘| b

H*(BI'y) —— H*(BL)).
l*

By abuse of notation we denote the mapping ¢, again by ¢*.

Real secondary classes are defined in terms of the following DGA’s. Coefficients
are chosen to be in C for simplicity.

Definition 1.1 WO, and W, are DGA’s defined as follows. Let Cy[cy, - -+ , ¢4]
be the truncated polynomial ring obtained by replacing v; with ¢;. The degree
of ¢; is set to be 2i. We now set

WOq = /\[hl’h3v e 7h[q]] ®Cq[cl9 ch]v
Wq = /\[hl’hZ’ ,hq]@Cq[Cl, 9Cq]’
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where [¢] denotes the greatest odd integer which is not greater than ¢g. The
differential is defined by requiring dh; = ¢; anddc; = 0. Wesetdeg h; = 2i —1.

Let BI, be the classifying space for real foliations of real codimension g.
Then there is again a natural mapping from BI7, to BGL(g; R). The homotopy
fiber is denoted by BFq and it is the classifying space for real foliations of real
codimension ¢ with trivialized normal bundle. As in the complex case, there is
the following commutative diagram:

H*(WO,;) —— H*(W,)

l l

H*(BI,) —— H*(BT,),

where the vertical mappings are the universal characteristic mappings and the
mapping in the bottom line is the mapping induced by the natural mapping
BFq — BI}. Finally, the mapping in the top line is induced by the obvious
inclusion from WO, to W,,.

Elements of H*(WO,) (resp. H*(W,)) can be considered as characteristic
classes for real foliations of real codimension g (resp. real foliations of real
codimension g with trivialized normal bundle). The elements of H*(WO,) and
H*(W,) which involve h; are called real secondary classes.

Remark 1.2. If R is chosen as the coefficients in Definition 1.1°, it suffices to
consider H*(BI,; R) and H *(BE; R). This is indeed the usual formulation.

The following classes are significant:

Definition 1.3.

1) The Godbillon-Vey class GV, is the element of H 2 “(Wq) or
H?*7t1(WO,) defined by the cocycle h;cf.

2) The Bott class Bott, is the element of H 2q+1(Wq ®Wq) defined by the
cocycle ujvf.

3) The imaginary part of the Bott class &, is the element of H?/*!'(WU,)
defined by the cocycle v/— 11} (v + 0975y + -+ - + 7).

Itis known that (*£, = —2Im Bott, = +/—1(u;v! —it;v?) in H*T1(W, @W,,).

One of the ways to realize elements of H*(WU,) as elements of the de Rham
cohomology [10] leads us to the following
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Definition 1.4. We set

Wuq = /\[klkas tt akq] A /\[121’1229 algq] ®Cq[vl’ Vg, ==, Uq]
®Cq[l_]1’ 52’ ,l_)q]®C[b1,b2, abq]v

where degk; = degk; = 2i — 1 and degv; = degv; = degh; = 2j. WU,
is equipped with the differential determined by requiring dk; = v; — b;, dk; =
v; —b; anddv; = dv; = db; = 0. Note that the element k; — k; can be naturally
identified with #;, and under this identification, WU, is naturally a sub-DGA of
‘WU,. The inclusion is formally denoted by «.

By following the usual construction, using connections, of the universal map-
ping x¢ : H*(WU,) — H*(BFqC), the universal mapping x¢ : H*(WU,) —
H*(B Fqc) can be constructed, and they satisfy x¢ = X€ o a,. Moreover, they
are essentially the same:

LemmalsS. Leta: WU, — W’Uq be the inclusion as in Definition 1.4, then
the induced mapping a.: H*(WU,) — H*(WU,) is an isomorphism.

Proof. The proof presented here is suggested by the referee. The original proof
was more computational.
First define a sub-DGA B of WU, by setting

B:/\[IEI,---,Eq]®C[b/,~-,b;],

where b, = b; — ;. Note that WU, = B ® WU, as DGA’s, where WU, is
considered as a sub-DGA via «. We now introduce a filtration on WU, by
setting

F, =<c-c’ € WU, |c' € B and degc’ > p>,

where the right hand side means the subspace generated by the elements inside
the bracket. Note that F, is closed under d. It is straightforward to see that
E, =B® H*(WU,), E; = H*(B) ® H*(WU,) and thatd, = 0if r > 2 in
the resulting spectral sequence, where d, : E, — E, denotes the differential
induced on E,. Since it is well-known that H*(B) = C, this completes the
proof. (]
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Remark 1.6. One can show by direct calculations that the inverse mapping of
a, is induced by the mapping &’ determined by

1 -
o (ki) = Eﬁia o (ki) = _Eﬁia o' (v) = vj,
1
(X/(l_)j) = l_)j and Ol/(bj) = E(vj + l_)j)
The original proof was based on this fact.

Proof of Theorem A. Let F), be the subspace of WU, defined by
Fp = (kikyvsOxby |2|1L] = 2(L 4+ 2L + -+ 4+ qlg) = p).

then W’Uq =FDF =F D>F=F;D- - and F), is closed under d. The
E;-terms of the associated spectral sequence satisfy ET* = HP™(F,/F,41),
where

(kikyv 0xbr|2|L] = p)  if piseven

Fy/Fpu) =
Fr =00 if p is odd.

Let B, be the subspace of C[by,---, b,;] which consists of the elements of
degree 2p, then F,/F,;1 = W, ®W_q ® B, as DGA’s if p is even. Thus
E, = H*(W, ®W_q) ® H*(BGL(q; C)). Noticing that d; = 0, we see that
EDY = EPY,

As H*(W, ®VTq) ={0}if x > 2> +4q [7].d, =0 forr > 2g> +4q + 1
and this spectral sequence converges to H *(Wuq) = H*(WU,). O

Remark 1.7. There is another spectral sequence which converges to H*(WUy,)
faster [3]. The meaning of the filtration is however not clear.

Let us now determine the space H*(WU,) in lower degrees. There are three
important mappings. First, let T = d, : E*"~! — E"° be the transgression
map. Second, the projection from WU, to Fy/Fy = W, ®W_q induces at the
cohomology level the natural mapping ¢* via the identification of Lemma 1.5.
Finally, we denote by 7 * the mapping from H*(BGL(g; C)) = C[by, - - - , by] to
H*(WU,) = H *(quq) induced by the inclusion. This corresponds naturally
to the mapping induced by the projection from BT’ qc to BGL(q; C).
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Lemma 1.8. The cohomology H*(WU,) in lower degrees is determined as
follows:

1) H"(BGL(g; C)) = H"(WU,) forn < 2q.

2) The following sequence is exact:

0— H¥T\(WU,) 5> H2H (W, @W,)
5 H**2(BGL(g; C)) — 0.

3) H2T2(WU,) = {0}.

Proof. First, H"(W,) = {0} for 0 < n < 2q + 1 [7]. On the other hand,
one can easily see that H'(WU,) = {0}. It follows from general properties of
spectral sequences that there is the following exact sequence in positive degrees
upton =2q + 2:
— H"'(BGL(¢:C)) = H"'(WU,) & H"'(W,8W,)
5  H"(BGL(¢;C)) —
—  HYX2(W,®W,).

Since H*(W, ®W,) = H*(W,) ® H*(W,,), we see that H"(W, ®@W,) = {0}
if 1 < n < 2q. Moreover, one can see from the form of the Vey basis [7] that
H 2qu2(Wq) = {0}. Indeed, if h;h;c; represents a member of the Vey basis
which is of degree 2¢g + 2, then the number of the entries of / is odd. We may
now assume that i’ > i for any i’ € I, then it is shown in [7] that &;c; is also a
member of the Vey basis. In particular %;c; is of degree at least 2g + 1. On the
other hand, 4, is of degree at least 3, which is absurd. Hence

H* (W, ®W,) = {0}.

The claims now follow from the facts that H*'*!'(BGL(q; C)) = {0} and that
m* = Oindegrees greater than 24 (this corresponds to the Bott vanishing theorem
[5D. g

Let

_’R:{C+E
2

ce H*\(W, ®w_q)}

and

g:{C_E c e H* (W ®VT)}.
2 /—_1 q q
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Recalling that the Vey basis of H*+! (W) is of the form h;c; with i + |J| =
g + 1 [7], let ¥ be the linear mapping from H>*1(W, ®W,) to H**'(W,)
satisfying the conditions ¥ (u;v;) = ~/—1h;c; and ¥ (it;0;) = —~/—1h;cy, and
sety = you*. Letu be the linear mapping from H*+1(W, @W,) to H>1T1(W,)
determined by the condition w(u;v;) = u(u;vy) = hicy.

As t(u;vy) = t(u;vy) = —b;by, 1* is an isomorphism from HZ‘HI(WUq) to
7. The exact sequence in 2) of Lemma 1.8 then can be read as follows:

Corollary 1.9.
1) y is an isomorphism from H 2"“(WUq) =7t H 2"“(Wq) such that
y(~1e,) =GV,

2) w is an isomorphism from R to H*1*! (W) such that u(Re Bott,) = GV,
and p(Im Bott,) = 0.

Remark 1.10. The inverse mapping y ~!

ple, when g = 2,

is in general complicated. For exam-

1

P () (v + 02) + up(v) + vy)) .

y ) =

2 Relation with Complexifications

Definition 2.1. Let (N, G) be a transversely real analytic foliation of real
codimension ¢g. A transversely holomorphic foliation (M, F) of complex codi-
mension ¢ is said to be a complexification of (N, G) if there is an embedding
i:(N,G) — (M, F)such that G is transversely totally real with respect to F.

Note that the complexifications discussed here are different from the ones
considered by Haefliger and Sundararaman [8].
The mappings y and u are related to complexification as follows.

Proposition 2.2. Let (N, G) be a real foliation of codimension g whose normal
bundle is trivial. Leti: (N, G) — (M, F) be a complexification. Assume that
the complex normal bundle of F is trivial when q is odd. Theni* : H*T'\(M) —

H?1TY(N) induces (—l)qzju if q is odd, (—1)#)/ if q is even.
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Proof. Let Q(F) be the complex normal bundle of F, namely, Q(F) is the
complex vector bundle locally spanned by 337] cee % modulo T F ® C, where
(z1, -+, z¢4) is alocal holomorphic coordinate system in the transversal direction
and T F is the set of leaf tangent vectors (see [2] for details). Similarly let Q(G)
be the normal bundle of G which is the real vector bundle locally spanned by
the vectors 3%1’ cee % modulo TG, where (y1, --- , y4) is a local coordinate
system in the transversal direction.

Suppose for a while that Q (F) is trivial and let s be a trivialization. Let V be
the flat connection with respect to s. As G is totally real with respect to F, we
may assume that i *s is the complexification of a trivialization, say, sg of Q(G)
and i *V; is the complexification of the flat connection for sg. Similarly, if Vg be
a complex Bott connection on Q (F) then i*Vp is the complexification of a Bott
connection on Q(G). Hence by suitably choosing Hermitian and Riemannian
metrics on Q(F) and Q(G) ® C, we may assume that i*u; = (—/=1)'h;. It
follows that i*@f; = 2 (—+/—1)' h; if i is odd and that i*%i; = 0 if i is even. Let

uivy; € H*¥'(W, ®W,), then i*(u;v;) = (—v/=1D""hc,,
where |J| = ji +2jo + - - - + qj,;. Assume now that g is odd, then
i*(u,-vj + l/_lil_)j) = 2(—1)6%1th‘] and i*(u,-v] — L_til_)j) =0.

Here we used the fact that 2i — 1 + 2 |J| = 2¢g + 1. On the other hand, if g is
even, then i*(u;vy — i;0;) = 2(=1)3 (—v/=Dhic; and i*(u;v; + #;v;) = 0.
Noticing that u;v; — it;0; is in the image of «* : H*(WU,) — H*(W, ®W,)
and such classes can be constructed without using trivializations but only using
connections, we see that the triviality of Q () is unnecessary if g is even. This
completes the proof. U

Theorem B now follows from Corollary 1.9 and Proposition 2.2.

Remark 2.3. Let « be the mapping from W, ®VTq to W, defined by the for-
mulae

k) = (—/=D'h;,  «(@@) = (V=D'h,
k() = (—v/=1)¢e; and K(¥;) = (v/~Dc;,

then the induced mapping «,.: H*(W, ®W_q) — H*(W,) coincides with the
complexification. Note that the above proof in fact shows that ¥ induces a
mapping k. : H*(WU,) — H*(WO,). Notice also that

H2q+] (qu) o~ H2q+1 (Wq)
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if g is even.

The following fact is a simple consequence of the Bott vanishing theorem and
the form of the Vey basis. An element of H*(W, ®W_q) is said to be a product
class if it is the product of elements of H*(W,) and H* (W_q) of positive degree.

Proposition 2.4. «, : H*(W, ®W_q) — H*(W,) annihilates product classes.

Proof. Letu;u;v;andu; i v, be elements of H*(W,) and H*(Wq). We may
assume that i 4+ |J| > g and i < k, where k is the minimum integer such that
Jjk #017]. Hence 2 |J| > g. Similarly 2|J'| > g and thus 2(|J| + |J'|) > 24.
Therefore ¢;c; = 0. O

Beginning with a transversely holomorphic foliation, one can first forget its
transverse structure and then complexify it. Associated with this procedure, there
is a composition of the mappings

H*(WUy,) % H*(WO,) & H*(WU,),

where [A] is the mapping obtained by forgetting transverse holomorphic struc-
tures [1]. Similarly, one can first consider a real foliation and complexity it, then
forget its transverse structure. The resulting sequence is

H*(WO,,) & H*(WU,) 5 H*(WO,).

We know little about [A] o «,, while we have the following

Proposition 2.5. The composition k, o [A] is equal to zero when restricted to
the secondary characteristic classes.

Proof. Letc € H*(WO,,) be a secondary class. By [7], we may assume that
¢ =hih;c; with2i — 14+ 2|J| > 4q, where I might be empty. The image of ¢
under «, o [A] will be a linear combination of classes of the form A; h; c; with
2i'—1+2|J'| =2i —1+2|J| butnow i’ < g. This implies that |J'| > ¢ and
hence ¢, = 0 by the Bott vanishing theorem. 0

Example 2.6. Let I" be a lattice in SL(g + 1; C) such that M = I'\ SL(g +
1; C)/ SU(gq) is a closed manifold, where SU(q) = {1}®SU(g) C SL(g+1; C).
Assume moreover that N = I'g\ SL(g + 1; R)/ SO(q) is also a closed manifold,
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where IR = I' N SL(g + 1; R) and SO(g) = {1} & SO(¢) C SL(g + 1; R). It
is well-known that such a I" exists [4]. Let H be the subgroup of SL(g + 1; C)
defined by

H={<g lb)) eSL(g+1;C)|aeC, be (i, DEM(Q;C)}
and set Hg = H NSL(g + 1; R).

Let F be the foliation of M induced by the cosets of H, namely, the foliation
whose leaves are of the form gH SU(g), where g € SL(g + 1; C). Similarly,
we denote by Fr the foliation of N induced by Hg. It is classically known that
the Bott class of F and the Godbillon-Vey class of Fr are non-trivial. They
are represented as follows, namely, first let w;;, 0 < i, j < g be the natural
dual basis of M (g + 1; C), where rows and columns are counted from zero.
Note that w;; are naturally decomposed into the real and the imaginary parts:
wij = nij + ~/—1v;;. The Bott class of T is represented by the (2g + 1)-form

g+1\!
w = (—ﬁ) woo N\ (dw()o)q

while the Godbillon-Vey class of Fg is given by the (2g + 1)-form

q +1 q+1
WR = (—7) noo A (dnoo)?.

It follows that
(=Dt i*Bott, (F)) = GV(Fr),

where i : N — M is the natural inclusion. Noticing that

1
Im BOttq(.T) = _qu(j:)»

one can see that i * coincides with either i or y according to the codimension g.
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