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that the Godbillon-Vey class and the Bott class are related via complexification.
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Introduction

Secondary characteristic classes are one of the main tools in studying foliations.
In the holomorphic category, there are some results on complex secondary char-
acteristic classes, e.g. [5, 9, 1], but their properties are not yet fully understood.
In this paper, the space of complex secondary characteristic classes, denoted by
H ∗(WUq), is studied and the following results are shown:

Theorem A. There exists a spectral sequence

E
p,s

2
∼= Hs(Wq ⊗Wq) ⊗ Hp(BGL(q; C)) ⇒ Hp+s(WUq).

In fact, dr = 0 for r > 2q2 + 4q + 1.

Theorem B. Complexification of foliations induces a natural isomorphism be-
tween H 2q+1(WUq) and H 2q+1(Wq) if q is even, between

H 2q+1(Wq ⊗Wq)/H
2q+1(WUq)
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and H 2q+1(Wq) if q is odd.

See the first section for definitions concerning secondary characteristic classes.
Complexification is introduced in the second section with an example.

The meaning of Theorem A is as follows, namely, the differential induces a
natural mapping from the classifying space BΓ C

q for transversely holomorphic
foliations of complex codimension q to BGL(q; C). Its homotopy fiber BΓ C

q is
the classifying space for transversely holomorphic foliations of complex codi-
mension q with trivialized complex normal bundle. Thus the cohomology of
BΓ C

q might be calculated, if H ∗(BΓ C
q ) were known, by using the Serre spectral

sequence whose E2-term is H ∗(BΓ C
q )⊗H ∗(BGL(q; C)), because BGL(q; C) is

simply connected. Theorem A asserts that this is still valid for secondary classes.
See Section 1 for more details.

Theorem A will be shown by constructing a certain differential graded algebra
WUq which is isomorphic to (Wq ⊗Wq)⊗C[b1, b2, · · · , bq] as graded algebras
and whose cohomology H ∗(WUq) is isomorphic to H ∗(WUq). This is done in
the first section. Theorem B will be shown in the second section.

The author is grateful to the referee for his valuable comments, especially for
suggesting a simplified proof of Lemma 1.5.

1 Definitions and Proof of Theorem A

First recall secondary characteristic classes in order to fix notations. The coeffi-
cient of cohomology is chosen as C unless otherwise stated.

Complex secondary classes are defined in terms of the following differential
graded algebras (DGA’s for short).

Definition 1.1 WUq and Wq ⊗Wq are DGA’s defined as follows. First let
C[v1, · · · , vq] be the polynomial ring with generators v1, · · · , vq . The degree
of vi , denoted by deg vi , is set to be 2i. Let Iq be the ideal generated by mono-
mials of degree greater than 2q, and set Cq[v1, · · · , vq] = C[v1, · · · , vq]/Iq .
Cq[v̄1, · · · , v̄q] is defined by replacing vi with v̄i . We set

WUq = ∧[̃u1, · · · , ũq] ⊗ Cq[v1, · · · , vq] ⊗ Cq[v̄1, · · · , v̄q],
Wq ⊗Wq = ∧[u1, · · · , uq] ∧ ∧[ū1, · · · , ūq] ⊗ Cq[v1, · · · , vq]

⊗ Cq[v̄1, · · · , v̄q].
The differential is defined by requiring dũi = vi − v̄i , dui = vi , dūi = v̄i and
dvi = dv̄i = 0. We set deg ũi = deg ui = deg ūi = 2i − 1. Elements of DGA’s
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are expressed as usual by using multi-indices, for example, uI = ui1 · · · uir and

vJ = v
j1
1 · · · vjq

q for I = {i1, · · · , ir} and J = (j1, · · · , jq).

The cohomologies of these DGA’s are regarded as the spaces of complex sec-
ondary classes for foliations as follows. First let BΓ C

q be the classifying space
for transversely holomorphic foliations of complex codimension q, then the dif-
ferential induces a natural mapping from BΓ C

q to BGL(q; C). Its homotopy
fiber, denoted by BΓ C

q , is the classifying space for transversely holomorphic
foliations of complex codimension q with trivialized complex normal bundle. It
is known that elements of H ∗(WUq) (resp. H ∗(Wq ⊗Wq)) determine charac-
teristic classes of transversely holomorphic foliations of complex codimension
q (resp. transversely holomorphic foliations of complex codimension q with
trivialized complex normal bundle). Indeed, there are homomorphisms

χC : H ∗(WUq) → H ∗(BΓ C
q ) and χ̃C : H ∗(Wq ⊗Wq) → H ∗(BΓ C

q )

called the universal characteristic mappings [5, 10]. In particular, the elements
of H ∗(WUq) and H ∗(Wq ⊗Wq) which involve ũi , ui or ūi are called complex
secondary classes. Let ι be the natural mapping from BΓ C

q , to BΓ C
q and ι∗ be the

induced mapping on the cohomology. If we define a homomorphism of DGA’s,
say ι′, from WUq to Wq ⊗Wq by the formulae ι′(̃ui) = ui − ūi , ι′(vi) = vi and
ι′(v̄i) = v̄i , then the induced mapping ι′∗ : H ∗(WUq) → H ∗(Wq ⊗Wq) and the
mapping ι∗ together with the universal characteristic mappings as above form
the following commutative diagram:

H ∗(WUq)
ι′∗−−−→ H ∗(Wq ⊗Wq)

χC

� �χ̃C

H ∗(BΓ C
q ) −−−→

ι∗
H ∗(BΓ C

q ).

By abuse of notation we denote the mapping ι′∗ again by ι∗.

Real secondary classes are defined in terms of the following DGA’s. Coefficients
are chosen to be in C for simplicity.

Definition 1.1’ WOq and Wq are DGA’s defined as follows. Let Cq[c1, · · · , cq]
be the truncated polynomial ring obtained by replacing vi with ci . The degree
of ci is set to be 2i. We now set

WOq = ∧[h1, h3, · · · , h[q]] ⊗ Cq[c1, · · · , cq],
Wq = ∧[h1, h2, · · · , hq] ⊗ Cq[c1, · · · , cq],
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where [q] denotes the greatest odd integer which is not greater than q. The
differential is defined by requiring dhi = ci and dci = 0. We set deg hi = 2i−1.

Let BΓq be the classifying space for real foliations of real codimension q.
Then there is again a natural mapping from BΓq to BGL(q; R). The homotopy
fiber is denoted by BΓq and it is the classifying space for real foliations of real
codimension q with trivialized normal bundle. As in the complex case, there is
the following commutative diagram:

H ∗(WOq) −−−→ H ∗(Wq)� �
H ∗(BΓq) −−−→ H ∗(BΓq),

where the vertical mappings are the universal characteristic mappings and the
mapping in the bottom line is the mapping induced by the natural mapping
BΓq → BΓq . Finally, the mapping in the top line is induced by the obvious
inclusion from WOq to Wq .

Elements of H ∗(WOq) (resp. H ∗(Wq)) can be considered as characteristic
classes for real foliations of real codimension q (resp. real foliations of real
codimension q with trivialized normal bundle). The elements of H ∗(WOq) and
H ∗(Wq) which involve hi are called real secondary classes.

Remark 1.2. If R is chosen as the coefficients in Definition 1.1’, it suffices to
consider H ∗(BΓq; R) and H ∗(BΓq; R). This is indeed the usual formulation.

The following classes are significant:

Definition 1.3.

1) The Godbillon-Vey class GVq is the element of H 2q+1(Wq) or
H 2q+1(WOq) defined by the cocycle h1c

q

1 .

2) The Bott class Bottq is the element of H 2q+1(Wq ⊗Wq) defined by the
cocycle u1v

q

1 .

3) The imaginary part of the Bott class ξq is the element of H 2q+1(WUq)

defined by the cocycle
√−1ũ1(v

q

1 + v
q−1
1 v̄1 + · · · + v̄

q

1 ).

It is known that ι∗ξq = −2 Im Bottq = √−1(u1v
q

1 −ū1v̄
q

1 ) in H 2q+1(Wq ⊗Wq).

One of the ways to realize elements of H ∗(WUq) as elements of the de Rham
cohomology [10] leads us to the following
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Definition 1.4. We set

WUq = ∧[k1, k2, · · · , kq] ∧ ∧[k̄1, k̄2, · · · , k̄q] ⊗ Cq[v1, v2, · · · , vq]
⊗Cq[v̄1, v̄2, · · · , v̄q] ⊗ C[b1, b2, · · · , bq],

where deg ki = deg k̄i = 2i − 1 and deg vj = deg v̄j = deg bj = 2j . WUq

is equipped with the differential determined by requiring dki = vi − bi , dk̄i =
v̄i −bi and dvj = dv̄j = dbj = 0. Note that the element ki − k̄i can be naturally
identified with ũi , and under this identification, WUq is naturally a sub-DGA of
WUq . The inclusion is formally denoted by α.

By following the usual construction, using connections, of the universal map-
ping χC : H ∗(WUq) → H ∗(BΓ C

q ), the universal mapping χ̂C : H ∗(WUq) →
H ∗(BΓ C

q ) can be constructed, and they satisfy χC = χ̂C ◦ α∗. Moreover, they
are essentially the same:

Lemma 1.5. Let α : WUq → WUq be the inclusion as in Definition 1.4, then
the induced mapping α∗ : H ∗(WUq) → H ∗(WUq) is an isomorphism.

Proof. The proof presented here is suggested by the referee. The original proof
was more computational.

First define a sub-DGA B of WUq by setting

B = ∧[k̄1, · · · , k̄q] ⊗ C[b′
1, · · · , b′

q],
where b′

i = bi − v̄i . Note that WUq = B ⊗ WUq as DGA’s, where WUq is
considered as a sub-DGA via α. We now introduce a filtration on WUq by
setting

Fp = 〈
c · c′ ∈ WUq | c′ ∈ B and deg c′ ≥ p

〉
,

where the right hand side means the subspace generated by the elements inside
the bracket. Note that Fp is closed under d. It is straightforward to see that
E1

∼= B ⊗ H ∗(WUq), E2
∼= H ∗(B) ⊗ H ∗(WUq) and that dr = 0 if r ≥ 2 in

the resulting spectral sequence, where dr : Er → Er denotes the differential
induced on Er . Since it is well-known that H ∗(B) ∼= C, this completes the
proof. �
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Remark 1.6. One can show by direct calculations that the inverse mapping of
α∗ is induced by the mapping α′ determined by

α′(ki) = 1

2
ũi , α′(k̄i) = −1

2
ũi , α′(vj ) = vj ,

α′(v̄j ) = v̄j and α′(bj ) = 1

2
(vj + v̄j ).

The original proof was based on this fact.

Proof of Theorem A. Let Fp be the subspace of WUq defined by

Fp = 〈
kI k̄MvJ v̄KbL 2 |L| = 2(l1 + 2l2 + · · · + qlq) ≥ p

〉
,

then WUq = F0 ⊃ F1 = F2 ⊃ F3 = F4 ⊃ · · · and Fp is closed under d. The
E1-terms of the associated spectral sequence satisfy E

p,s

1
∼= Hp+s(Fp/Fp+1),

where

Fp/Fp+1
∼=

{〈
kI k̄MvJ v̄KbL 2 |L| = p

〉
if p is even

0 if p is odd.

Let Bp be the subspace of C[b1, · · · , bq] which consists of the elements of
degree 2p, then Fp/Fp+1

∼= Wq ⊗Wq ⊗ Bp as DGA’s if p is even. Thus
E1

∼= H ∗(Wq ⊗Wq) ⊗ H ∗(BGL(q; C)). Noticing that d1 = 0, we see that
E

p,s

2
∼= E

p,s

1 .
As H ∗(Wq ⊗Wq) = {0} if ∗ > 2q2 + 4q [7], dr = 0 for r > 2q2 + 4q + 1

and this spectral sequence converges to H ∗(WUq) ∼= H ∗(WUq). �

Remark 1.7. There is another spectral sequence which converges to H ∗(WUq)

faster [3]. The meaning of the filtration is however not clear.

Let us now determine the space H ∗(WUq) in lower degrees. There are three
important mappings. First, let τ = dr : E0,r−1

r → Er,0
r be the transgression

map. Second, the projection from WUq to F0/F1
∼= Wq ⊗Wq induces at the

cohomology level the natural mapping ι∗ via the identification of Lemma 1.5.
Finally, we denote by π∗ the mapping from H ∗(BGL(q; C)) = C[b1, · · · , bq] to
H ∗(WUq) ∼= H ∗(WUq) induced by the inclusion. This corresponds naturally
to the mapping induced by the projection from BΓ C

q to BGL(q; C).
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Lemma 1.8. The cohomology H ∗(WUq) in lower degrees is determined as
follows:

1) Hn(BGL(q; C)) ∼= Hn(WUq) for n ≤ 2q.

2) The following sequence is exact:

0 → H 2q+1(WUq)
ι∗→ H 2q+1(Wq ⊗Wq)

τ→ H 2q+2(BGL(q; C)) → 0.

3) H 2q+2(WUq) = {0}.

Proof. First, Hn(Wq) = {0} for 0 < n < 2q + 1 [7]. On the other hand,
one can easily see that H 1(WUq) = {0}. It follows from general properties of
spectral sequences that there is the following exact sequence in positive degrees
up to n = 2q + 2:

· · · → Hn−1(BGL(q; C))
π∗→ Hn−1(WUq)

ι∗→ Hn−1(Wq ⊗Wq)
τ→ Hn(BGL(q; C)) → · · ·

· · · → H 2q+2(Wq ⊗Wq).

Since H ∗(Wq ⊗Wq) ∼= H ∗(Wq) ⊗ H ∗(Wq), we see that Hn(Wq ⊗Wq) = {0}
if 1 ≤ n ≤ 2q. Moreover, one can see from the form of the Vey basis [7] that
H 2q+2(Wq) = {0}. Indeed, if hihI cJ represents a member of the Vey basis
which is of degree 2q + 2, then the number of the entries of I is odd. We may
now assume that i ′ > i for any i ′ ∈ I , then it is shown in [7] that hicJ is also a
member of the Vey basis. In particular hicJ is of degree at least 2q + 1. On the
other hand, hI is of degree at least 3, which is absurd. Hence

H 2q+2(Wq ⊗Wq) = {0}.
The claims now follow from the facts that H 2n+1(BGL(q; C)) = {0} and that
π∗ = 0 in degrees greater than 2q (this corresponds to the Bott vanishing theorem
[5]). �

Let

R =
{

c + c

2
c ∈ H 2q+1(Wq ⊗Wq)

}
and

I =
{

c − c

2
√−1

c ∈ H 2q+1(Wq ⊗Wq)

}
.
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Recalling that the Vey basis of H 2q+1(Wq) is of the form hicJ with i + |J | =
q + 1 [7], let γ̃ be the linear mapping from H 2q+1(Wq ⊗Wq) to H 2q+1(Wq)

satisfying the conditions γ̃ (uivJ ) = √−1hicJ and γ̃ (ūi v̄J ) = −√−1hicJ , and
set γ = γ̃ ◦ι∗. Let µ be the linear mapping from H 2q+1(Wq ⊗Wq) to H 2q+1(Wq)

determined by the condition µ(uivJ ) = µ(ūi v̄J ) = hicJ .
As τ(uivJ ) = τ(ūi v̄J ) = −bibJ , ι∗ is an isomorphism from H 2q+1(WUq) to

I . The exact sequence in 2) of Lemma 1.8 then can be read as follows:

Corollary 1.9.

1) γ is an isomorphism from H 2q+1(WUq) ∼= I to H 2q+1(Wq) such that
γ (− 1

2ξq) = GVq .

2) µ is an isomorphism fromR to H 2q+1(Wq) such that µ(Re Bottq) = GVq

and µ(Im Bottq) = 0.

Remark 1.10. The inverse mapping γ −1 is in general complicated. For exam-
ple, when q = 2,

γ −1(h1c2) = 1

4
√−1

(̃u1(v2 + v̄2) + ũ2(v1 + v̄1)) .

2 Relation with Complexifications

Definition 2.1. Let (N,G) be a transversely real analytic foliation of real
codimension q. A transversely holomorphic foliation (M,F) of complex codi-
mension q is said to be a complexification of (N,G) if there is an embedding
i : (N,G) → (M,F) such that G is transversely totally real with respect to F .

Note that the complexifications discussed here are different from the ones
considered by Haefliger and Sundararaman [8].

The mappings γ and µ are related to complexification as follows.

Proposition 2.2. Let (N,G) be a real foliation of codimension q whose normal
bundle is trivial. Let i : (N,G) → (M,F) be a complexification. Assume that
the complex normal bundle ofF is trivial when q is odd. Then i∗ : H 2q+1(M) →
H 2q+1(N) induces (−1)

q+1
2 µ if q is odd, (−1)

q+2
2 γ if q is even.
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Proof. Let Q(F) be the complex normal bundle of F , namely, Q(F) is the
complex vector bundle locally spanned by ∂

∂z1
, · · · , ∂

∂zq
modulo TF ⊗ C, where

(z1, · · · , zq) is a local holomorphic coordinate system in the transversal direction
and TF is the set of leaf tangent vectors (see [2] for details). Similarly let Q(G)

be the normal bundle of G which is the real vector bundle locally spanned by
the vectors ∂

∂y1
, · · · , ∂

∂yq
modulo TG, where (y1, · · · , yq) is a local coordinate

system in the transversal direction.
Suppose for a while that Q(F) is trivial and let s be a trivialization. Let ∇s be

the flat connection with respect to s. As G is totally real with respect to F , we
may assume that i∗s is the complexification of a trivialization, say, sR of Q(G)

and i∗∇s is the complexification of the flat connection for sR. Similarly, if ∇B be
a complex Bott connection on Q(F) then i∗∇B is the complexification of a Bott
connection on Q(G). Hence by suitably choosing Hermitian and Riemannian
metrics on Q(F) and Q(G) ⊗ C, we may assume that i∗ui = (−√−1)ihi . It
follows that i∗ũi = 2

(−√−1
)i

hi if i is odd and that i∗ũi = 0 if i is even. Let

uivJ ∈ H 2q+1(Wq ⊗Wq), then i∗(uivJ ) = (−√−1)i+|J |hicJ ,

where |J | = j1 + 2j2 + · · · + qjq . Assume now that q is odd, then

i∗(uivJ + ūi v̄J ) = 2(−1)
q+1

2 hicJ and i∗(uivJ − ūi v̄J ) = 0.

Here we used the fact that 2i − 1 + 2 |J | = 2q + 1. On the other hand, if q is
even, then i∗(uivJ − ūi v̄J ) = 2(−1)

q
2 (−√−1)hicJ and i∗(uivJ + ūi v̄J ) = 0.

Noticing that uivJ − ūi v̄J is in the image of ι∗ : H ∗(WUq) → H ∗(Wq ⊗Wq)

and such classes can be constructed without using trivializations but only using
connections, we see that the triviality of Q(F) is unnecessary if q is even. This
completes the proof. �

Theorem B now follows from Corollary 1.9 and Proposition 2.2.

Remark 2.3. Let κ be the mapping from Wq ⊗Wq to Wq defined by the for-
mulae

κ(ui) = (−√−1)ihi, κ(ūi) = (
√−1)ihi,

κ(vi) = (−√−1)ici and κ(v̄i) = (
√−1)ici,

then the induced mapping κ∗ : H ∗(Wq ⊗Wq) → H ∗(Wq) coincides with the
complexification. Note that the above proof in fact shows that κ induces a
mapping κ∗ : H ∗(WUq) → H ∗(WOq). Notice also that

H 2q+1(WOq) ∼= H 2q+1(Wq)
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if q is even.
The following fact is a simple consequence of the Bott vanishing theorem and

the form of the Vey basis. An element of H ∗(Wq ⊗Wq) is said to be a product
class if it is the product of elements of H ∗(Wq) and H ∗(Wq) of positive degree.

Proposition 2.4. κ∗ : H ∗(Wq ⊗Wq) → H ∗(Wq) annihilates product classes.

Proof. Let uiuIvJ and ūi′ ūI ′ v̄J ′ be elements of H ∗(Wq) and H ∗(Wq). We may
assume that i + |J | > q and i ≤ k, where k is the minimum integer such that
jk �= 0 [7]. Hence 2 |J | > q. Similarly 2

∣∣J ′∣∣ > q and thus 2(|J | + ∣∣J ′∣∣) > 2q.
Therefore cJ cJ ′ = 0. �

Beginning with a transversely holomorphic foliation, one can first forget its
transverse structure and then complexify it. Associated with this procedure, there
is a composition of the mappings

H ∗(WU2q)
κ∗→ H ∗(WO2q)

[λ]→ H ∗(WUq),

where [λ] is the mapping obtained by forgetting transverse holomorphic struc-
tures [1]. Similarly, one can first consider a real foliation and complexify it, then
forget its transverse structure. The resulting sequence is

H ∗(WO2q)
[λ]→ H ∗(WUq)

κ∗→ H ∗(WOq).

We know little about [λ] ◦ κ∗, while we have the following

Proposition 2.5. The composition κ∗ ◦ [λ] is equal to zero when restricted to
the secondary characteristic classes.

Proof. Let c ∈ H ∗(WO2q) be a secondary class. By [7], we may assume that
c = hihI cJ with 2i − 1 + 2 |J | > 4q, where I might be empty. The image of c

under κ∗ ◦ [λ] will be a linear combination of classes of the form hi′hI ′cJ ′ with
2i ′ − 1 + 2

∣∣J ′∣∣ = 2i − 1 + 2 |J | but now i ′ ≤ q. This implies that
∣∣J ′∣∣ > q and

hence cJ ′ = 0 by the Bott vanishing theorem. �

Example 2.6. Let Γ be a lattice in SL(q + 1; C) such that M = Γ \ SL(q +
1; C)/ SU(q) is a closed manifold, where SU(q) = {1}⊕SU(q) ⊂ SL(q+1; C).
Assume moreover that N = ΓR\ SL(q +1; R)/ SO(q) is also a closed manifold,
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where ΓR = Γ ∩ SL(q + 1; R) and SO(q) = {1} ⊕ SO(q) ⊂ SL(q + 1; R). It
is well-known that such a Γ exists [4]. Let H be the subgroup of SL(q + 1; C)

defined by

H =
{(

a b

0 D

)
∈ SL(q + 1; C)

∣∣∣ a ∈ C, b ∈ Cq, D ∈ M(q; C)

}
and set HR = H ∩ SL(q + 1; R).

Let F be the foliation of M induced by the cosets of H , namely, the foliation
whose leaves are of the form gH SU(q), where g ∈ SL(q + 1; C). Similarly,
we denote by FR the foliation of N induced by HR. It is classically known that
the Bott class of F and the Godbillon-Vey class of FR are non-trivial. They
are represented as follows, namely, first let ωij , 0 ≤ i, j ≤ q be the natural
dual basis of M(q + 1; C), where rows and columns are counted from zero.
Note that ωij are naturally decomposed into the real and the imaginary parts:
ωij = ηij + √−1νij . The Bott class of F is represented by the (2q + 1)-form

ω =
(

− q + 1

2π
√−1

)q+1

ω00 ∧ (dω00)
q

while the Godbillon-Vey class of FR is given by the (2q + 1)-form

ωR =
(

−q + 1

2π

)q+1

η00 ∧ (dη00)
q.

It follows that
(
√−1)q+1i∗(Bottq(F)) = GV(FR),

where i : N → M is the natural inclusion. Noticing that

Im Bottq(F) = −1

2
ξq(F),

one can see that i∗ coincides with either µ or γ according to the codimension q.
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