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On the Pesin set of expansive geodesic flows
in manifolds with no conjugate points

Rafael O. Ruggiero and Vladimir A. Rosas Meneses

Abstract. In this paper, we show that the Pesin set of an expansive geodesic flow in
compact manifold with no conjugate points and bounded asymptote coincides a.e with
an open and dense set of the unit tangent bundle. We also show that the set of hyperbolic
periodic orbits is dense in the unit tangent bundle.
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Introduction

The purpose of this paper is to study the Pesin set of expansive geodesic flows
in manifolds without conjugate points.
Recall that the Pesin set of aC∞ flowϕt : M → Mwithout singularities acting on
a differentiable Riemannian manifoldM is the set � of all points inM that satisfy
the following property: For all p ∈ � there exists a subspace �̂(p) ⊂ TpM
which is transversal to the flow where the Lyapunov exponent of every vector is
nonzero.

Definition. Let ϕt : M → M be a continuous flow acting on a metric space
(M, d). The flow ϕt is said to be expansive if there exists a constant ε > 0 such
that for every p ∈ M, we have the following property: If for a given q ∈ M
there exists a continuous surjective map ρ : R → R, with ρ(0) = 0 such that

d(ϕt (p), ϕρ(t)(q)) ≤ ε

for every t ∈ R, then there exists t0 ∈ R such that ϕt0(p) = q.
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In other words, two different orbits of an expansive flow become eventually
separated by a distance of at least ε. Geodesic flows of compact, Riemannian
manifolds with negative curvature are examples of expansive flows.

Recall that a Riemannian manifold M is said to have no conjugate points if,
the exponential map at every point is non-singular.

The results in our paper are motivated, by the theory of rank one on manifolds
of nonpositive curvature (expansive geodesic flows in such manifolds clearly
imply rank one) and by the following result due to G. Knieper [10]: If a com-
pact manifold without conjugate points and bounded asymptote has zero metric
entropy, then it is a torus.

We say that a manifold with no conjugate points has bounded asymptote if
there exists a positive constant C such that for any unit speed geodesic γ in M
and any stable Jacobi vector field J on γ , ‖ J (t) ‖≤ C ‖ J (0) ‖ ∀t ≥ 0 (For
the definition of stable Jacobi field, see section 1).

Therefore by Knieper’s result, a manifoldMwith no conjugate points, bounded
asymptote and whose universal covering M̂ is a Visibility manifold (or a Gro-
mov hyperbolicity space, see Ruggiero [16]) has positive metric entropy (for the
definition of topological and metric entropy see for instance Mañe [12]). By a
result of Ruggiero [16], the topological entropy of an expansive geodesic flow in
a compact manifold with no conjugate points is positive and the universal cover-
ing of the manifold is a Visibility manifold. This result, together with Knieper’s
theorem imply that expansive geodesic flows in compact manifolds with no con-
jugate points and bounded asymptote, have positive metric entropy. The main
result of the paper is that in fact, the Pesin set of such flows has positive measure.

Theorem A. Let M be a compact Riemannian manifold with no conjugate
points, bounded asymptote and whose geodesic flow is expansive. Then the
Pesin set of the geodesic flow coincides a.e with an open and dense set of the
unit tangent bundle. Moreover, the set of closed hyperbolic geodesics is dense
in the unit tangent bundle.

We would like to point out that the Pesin set of the geodesic flow of a compact
rank one manifold of nonpositive curvature coincides a.e with an open and dense
set. Theorem A extends this feature to the family of expansive geodesic flows in
compact manifolds with bounded asymptote.

It is interesting to notice that many important convexity results of the theory
of rank one manifold of nonpositive curvature, like the Flat strip theorem, might
not hold just assuming bounded asymptote (Burns [4]).
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1 Preliminaries

In this section we recall some basic notions. Throughout the paper, M denotes
a C∞ compact Riemannian manifold of dimension n ≥ 2 with no conjugate
points. The tangent and unit tangent bundles ofM are denoted by TM and SM
respectively. Let π : SM → Mbe the natural projection onM and π̂ : M̂ → M
its universal covering. For any v ∈ TM denote by K : TvTM → Tπ(v)M the
connection map. Using the natural projection and the connection map, we obtain
a Riemannian metric onTM called the Sakaki metric. That is, let v ∈ TM and
ζ , η ∈ TvTM, then

〈ζ, η〉v = 〈dπζ, dπη〉π(v) + 〈K(ζ ),K(η)〉π(v).

Let v = (p, θ) ∈ SM, we shall denote by γv the unit speed geodesic on M
such that γv = p and γ ′

v(0) = θ . Let J(v) be the 2n-dimensional vector space of
Jacobi vector fields on γv. If w ∈ Tπ(v)M, let Jw,t ∈ J(v) be the unique Jacobi
vector field on γv such that Jw,t (0) = w and Jw,t (t) = 0. If w is perpendicular
to v, Green [7] proves that limt→∞ Jw,t and limt→−∞ Jw,t always exist and these
limits are Jacobi vector fields on γv.

For all v ∈ SM, let Js(v) and Ju(v) be respectively, the set of all perpendicular
Jacobi vector fields on γv such that Jw,t → J as t → ∞, t → −∞ where Jw,t

is defined above. Let Jc(v) = Js(v) ∩ Ju(v).

Definition 1.1. Let v ∈ SM, a Jacobi vector field J on γv is called stable if
J ∈ Js(v), J is called unstable if J ∈ Ju(v) and J is called central if J ∈ Jc(v).

Let v ∈ SM, let G(v) be the (unit) vector tangent to the geodesic flow and let
Nv be the subspace of TvSM that is normal to G(v) in the Sakaki metric.

In fact, letting Hv = Ker(K) and Vv = Ker(dπ) we have that TvSM =
Hv ⊕Vv ⊕G(v). Hv, Vv and G(v) are mutually orthogonal in the Sakaki metric,
so each ζ ∈ Nv can be expressed in coordinates by ζ = (dπ(ζ ),K(ζ )). Let Jζ

be the Jacobi vector field defined on γv whose initial conditions are Jζ (0) = dπζ

and J ′
ζ (0) = K(ζ ). This Jacobi field is unique and the map ζ → (Jζ (0), J ′

ζ (0))

commutes with the action of dϕt , that is, dϕtζ = (Jζ (t), J
′
ζ (t)) for all t ∈ R.

The images in TvSM of the sets Js(v), Ju(v) and Jc(v) under the above
isomorphism will be denoted by Xs(v), Xu(v) and Xc(v) respectively.

The following proposition can be found in Eberlein [6].

Proposition 1.1. Let M be a compact Riemannian manifold with no conjugate
points. Let v ∈ SM and k > 0 such that −k2 is a lower bound of the sectional
curvature. Then
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1. For any ζ ∈ Xs(v) or Xu(v) we have that ‖ K(ζ ) ‖≤ k ‖ dπζ ‖.

2. Let ζ ∈ TvSM such that 〈ζ, G(v)〉 = 0 and ‖ dπdϕtζ ‖ is bounded above
for all t ≥ 0 (respectively for all t ≤ 0). Then ζ ∈ Xs(v) (respectively
ζ ∈ Xu(v)).

2 Bounded Asymptote and Regular vectors

Definition 2.1. M satisfies the bounded asymptote condition if there is a positive
constant C such that for all v ∈ SM and J ∈ Js(v),

‖ J (t) ‖≤ C ‖ J (0) ‖ ∀t ≥ 0.

Note that by 1 of proposition 1.1,M satisfies the bounded asymptote condition
if and only if there is a positive constant C such that for all ζ ∈ Xs(v),

‖ dϕtζ ‖≤ C ‖ ζ ‖ ∀t ≥ 0.

Manifolds with no focal points satisfy the bounded asymptote condition. Gul-
liver [8] gives an example of a compact manifold with no focal points whose
sectional curvature change sign.

If M has bounded asymptote, based on the notion of rank in manifolds of
nonpositive curvature, we define the rank of v (rank(v)) as the dimension of the
vector space Jc(v) plus one. The vector v is called regular if there exists an open
neighborhood U of v such that for all w ∈ U , rank(w) = rank(v). The set of
all regular vectors will be denoted by R.

For a reference of the following result see Eberlein [6] for instance.

Lemma 2.1. LetM be a compact Riemannian manifold with no conjugate points
and bounded asymptote.

1. The sets

As =
⋃

v∈SM

Xs(v) and Au =
⋃

v∈SM

Xu(v)

are closed subbundles of T (SM), that is, v → Xs(v) and v → Xu(v) are
continuous maps.

2. The map v → rank(v) is an upper semicontinuous function.

Bull Braz Math Soc, Vol. 34, N. 2, 2003



ON THE PESIN SET OF EXPANSIVE GEODESIC FLOWS 267

The following result is straightforward from the fact that the rank is an upper
semicontinuous entire function, its proof is completely analogous to the case of
nonpositive curvature (see for instance Ballmann [2]).

Lemma 2.2. LetM be a compact Riemannian manifold with no conjugate points
and with bounded asymptote. The set R of all regular vectors is an invariant,
dense set in SM.

Proof. By definition R is invariant. Also R is the set of continuity points of
v → rank(v). Since v → rank(v) is upper semicontinuous, its set of continuity
points is generic, in particular, dense. �

Next we state a basic lemma.

Lemma 2.3. Let M be a compact Riemannian manifold with no conjugate
points and with bounded asymptote. Let v ∈ SM a regular vector such that
rank(v) ≥ 2. Then there exists a continuous vector field F defined on an open
neighborhood U of v such that F(w) ∈ Xc(w) for all w ∈ U .

Proof. We give a sketch of proof for the sake of completeness. By the bounded
asymptote condition, there exists a neighborhood V ⊂ R of v such that Xc(w)

depends continuously on w for all w ∈ V . Without loss of generality we can
suppose that V is a convex neighborhood of v. Let ζ ∈ Xc(v) a fixed vector.
For any w ∈ V , let Pvw be the parallel transport of ζ along the unique geodesic
joining v, w and let F(w) be the orthogonal projection of Pvw on Xc(w).

By continuity there exists an open neighborhood of W ⊂ V v such thatF(w)

is non-trivial for all w ∈ W . Note that by construction, F is a continuous vector
field on W . �

The following result would be a straightforward application of the Flat strip
theorem if we assumed nonpositive curvature. However if we allow focal points,
the flat strip theorem is no longer true (see Burns [4]).

Lemma 2.4. Let M be a compact Riemannian manifold with no conjugate
points and with bounded asymptote. If the geodesic flow is expansive, then for
all v ∈ R, rank(v) = 1.

Proof. For otherwise, there would exist a regular vector v ∈ SM̂ such that
rank(v) ≥ 2. By lemma 2.3 there exists an open neighborhood U of v and
a continuous vector field F such that for all w ∈ U , F(w) ∈ Xc(w). By
the theorem of existence and uniqueness of differential equations, there exists a
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δ > 0 an a curve α such that α : (−δ, δ) → Û , with α(0) = v and F(α(s)) =
α′(s), s ∈ (−δ, δ). We obtain a geodesic variation αs(t) = π(ϕt(α(s))) (where
π is the canonical projection of SM̂ on M̂) whose variational fields Js(t) =

∂
∂(s)

(πϕt(α(s))), are central Jacobi vector fields. So, if s1 < s2 we have that

d(αs2(t), αs1(t)) ≤
∫ s2

s1

‖ ∂

∂s
αs(t) ‖ ds =

∫ s2

s1

(‖ Js(t) ‖2 + ‖ J ′
s (t) ‖2)1/2 ds

By bounded asymptote and proposition 1.1, we conclude that

d(αs2(t), αs1(t)) ≤
∫ s2

s1

(C2 ‖ Js(0) ‖2 +k2 ‖ Js(0) ‖2)1/2 ds ∀t ∈ R

where −k2 is a lower bound of the sectional curvature of M.
Therefore, there exists a positive constant Ĉ such that

d(αs2(t), αs1(t)) ≤ Ĉl(π(α(s))), s ∈ (s1, s2) ∀t ∈ R.

Hence, αs1 and αs2 are two different asymptotic geodesics which contradicts the
expansivity of the geodesic flow if we take δ small enough. �

Corollary 2.1. Let M be a compact Riemannian manifold without conjugate
points and bounded asymptote. If the geodesic flow is expansive, we have that
v ∈ SM is a regular vector if and only if rank(v) = 1.

Proof. If v is a regular vector then rank(v) = 1 by lemma 2.4.
Conversely, suppose that v is a non-regular vector, then there exists a sequence

wn → v such that rank(wn) �= rank(v). As the rank function defines an upper
semicontinuous entire function, it follows that rank(wn) < rank(v) and then,
rank(v) > 1, but this is a contradiction. �

3 Pesin Set: Lyapunov Exponents

Let us recall the notion of Lyapunov exponent.

Definition 3.1. Let v ∈ SM. Let ζ ∈ TvSM. The Lyapunov exponent Xv(ζ ) is
defined by:

Xv(ζ ) = lim
t→∞

1

t
log ‖ dϕtζ ‖ .
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According to the definition of the Pesin set given in the introduction, the Pesin
set of the geodesic flow is the set � of all points in SM that satisfy the following
property: For all v ∈ � there exists a codimension one subspace Nv of T SM
that is orthogonal to the geodesic field G(v) and suchXv(ζ ) �= 0 for all ζ ∈ Nv.

In order to prove theorem A, we first study the behaviour of the norm of the
stable and unstable vectors.

Lemma 3.1. LetM be a compact Riemannian manifold with no conjugate points
and bounded asymptote. Let v ∈ SM a rank one, regular, recurrent vector and
ζ ∈ Xs(v), then

lim
t→∞ ‖ dϕtζ ‖= 0.

Proof. By hypothesis, there exists a neighborhood U ⊂ R of v and a sequence
of real numbers tn such that limn→∞ tn = ∞ and limn→∞ ϕtnv = v.

We can assume without loss of generality that for all n, ϕtnv ∈ U .
Claim:

lim
n→∞ ‖ dϕtnζ ‖= 0 for all ζ ∈ TvSM.

Otherwise, there would exist ζ ∈ Xs(v) and ε > 0 such that ‖ dϕtnζ ‖≥ ε ∀n.
Let ζn = dϕtnζ . Then ζn ∈ Xs(ϕtn(v)) and

‖ ζn ‖≥ ε. (1)

For every r ≥ −tn, by bounded asymptote,

‖ dϕrζn ‖≤ C ‖ dϕ−tnζn ‖= C ‖ ζ ‖ . (2)

Also by bounded asymptote, the distribution Xs is continuous. Then ζn → ζ̂ ,
where ζ̂ is a non-trivial stable vector in Xs(v) (equation 1). From equation 2 we
have that

‖ dϕt ζ̂ ‖≤ C ‖ ζ ‖ ∀t ∈ R.

That is, ζ̂ is a non-trivial central vector. But this is a contradiction because
rank(v) = 1 (central vectors fields do not exist in Xs(v)).

It follows that

lim
n→∞ ‖ dϕtnζ ‖= 0 ∀ζ ∈ Xs(v).
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To show lemma 3.1, we have to show that ∀ε > 0 ∃T = T (ε); ∀t > T

‖ dϕtζ ‖≤ ε. This follows at once from the Claim and the fact that

‖ dϕtζ ‖≤ C ‖ dϕtnζ ‖ ∀t ≥ tn �
Applying lemma 3.1 to a basis ζ1,..., ζn−1 for Xs(v), we conclude that if v is a
regular and recurrent vector, then

lim
t→∞ ‖ dϕt |Xs(v) ‖= 0.

Lemma 3.2. LetM be a compact Riemannian manifold with no conjugate points
and bounded asymptote. Let v ∈ SM be a regular, recurrent vector and ε > 0.
Then there exist a neighborhood U = U(v, ε) of v in R and a real number
T = T (v, ε) such that for all w ∈ U and ζ ∈ Xs(v) with ‖ ζ ‖= 1,

‖ dw(ϕt )ζ ‖≤ ε ∀t ≥ T .

Proof. By lemma 3.1 limt→∞ ‖ dϕt |Xs(v) ‖= 0, so given ε0 > 0, there exists
T = T (ε0) > 0 such that for all t ≥ T (ε0), ‖ dϕt |Xs(v) ‖≤ ε0

2 . By the
continuity of the map v → Xs(v), there exists a neighborhood U of v such
that ‖ dϕT |Xs(w) ‖≤ ε0 for all w ∈ U .

By bounded asymptote, ‖ dϕt |Xs(w) ‖≤ Cε0 ∀t ≥ T ∀w ∈ U .
Now take ε0 = ε

C
. �

Our goal is to prove that the Pesin set of the geodesic flow coincides a.e with
R.

Remark. Let v be a regular, recurrent vector and let ε be a real number such
that 0 < ε < 1. Let U be the neighborhood of v and T the positive number
given by lemma 3.2. Let µ be the normalized Lebesgue measure on SM.

Let fU be the characteristic function of U . Since ϕT : SM → SM is measure
preserving, by Birkhoff’s theorem [3], the orbital average f̂U of fU exists in a full
measure set XT and if Û = {w ∈ U ∩ XT ; f̂U (w) > 0}, then µ(Û) = µ(U).

So we give the next lemma.

Lemma 3.3. Let M be a compact Riemannian manifold with no conjugate
points and bounded asymptote. Let v be a regular, recurrent vector, 0 < ε < 1
and let U(v, ε), and T (v, ε) be as in lemma 3.2. Then for all w ∈ Û (v, ε) ⊂
U(v, ε) ∩ XT ,

lim inf
t→∞

1

t
log ‖ dϕt |Xs(w) ‖< 0.
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Proof. Let sn = #{0 ≤ j ≤ n − 1; ϕjT (w) ∈ U}.
For n ∈ N, let

{jk; 0 ≤ jk ≤ n − 1, ϕjkT (w) ∈ U 1 ≤ k ≤ sn}
be an increasing sequence of natural numbers.

Note that for t and r real numbers we have that

‖ dϕt+r |Xs(w) ‖≤‖ dϕt |Xs(ϕrw) ‖ . ‖ dϕr |Xs(w) ‖ .

Then

‖ dϕnT |Xs(w) ‖≤‖ dϕ(n−jsn )T |Xs(ϕjsn T (w)) ‖ . ‖ dϕjsnT |Xs(w) ‖

‖ dϕjsnT |Xs(w) ‖≤‖ dϕ(jsn−jsn−1)T |Xsϕjsn−1T (w) ‖ . ‖ dϕjsn−1T |Xs(w) ‖ .

And

‖ dϕj2T |Xs(w) ‖≤‖ dϕ(j2−j1)T |Xs(ϕj1T (w)) ‖ . ‖ dϕj1T |Xs(w) ‖ .

Then

‖ dϕnT |Xs(w) ‖≤
‖ dϕ(n−jsn )T |Xs(ϕjsn T (w)) ‖ . ‖ dϕj1T |Xs(w) ‖ .

∏sn
k=2 ‖ dϕ(jk−jk−1)T |Xs(ϕ(jk−1)T (w)) ‖ .

Since jk − jk−1 ≥ 1 and ϕjknT (w) ∈ U by hypothesis and bounded asymptote,
we have that

‖ dϕnT |Xs(w) ‖≤ C2
sn∏

k=2

ε = C2εsn−1.

And then

lim
n→∞

1

n
log ‖ dϕnT |Xs(w) ‖≤ lim

n→∞
1

n
(sn − 1) log ε = f̂U (w) log ε < 0.

Therefore, we conclude that

lim inf
t→∞

1

t
log ‖ dϕt |Xs(w) ‖< 0. �

Corollary 3.1. Let M be a compact Riemannian manifold with no conjugate
points and bounded asymptote whose geodesic flow is expansive. Let R0 be the
set of all regular vectors v such that

lim inf
t→∞

1

t
log ‖ dϕt |Xs(v) ‖< 0.

Then µ(R0) = µ(R), where µ is the normalized Lebesgue measure on SM.
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Proof. By lemma 2.4 every regular vector v has rank(v) = 1. Now apply
lemma 3.3 to get the corollary.

Proof of Theorem A. From Oseledec’s theorem [13], there exists a total prob-
ability Borel set �0 such that at each v ∈ �0, limt→∞ 1

t
log ‖ dϕtζ ‖ exists for

all ζ ∈ TvSM. And then, using Corollary 3.1 there exists a subset

∑
= {v ∈ R; lim

t→±∞
1

t
log ‖ dϕtζ ‖< 0 ∀ζ ∈ Xs(v)}

such that µ(
∑

) = µ(R).
If S : SM → SM is the map which takes a vector v into −v, then this map is

an isometry such that Xu(v) = dSXs(−v) for all vector v.
Notice that S(�) = � µ-a.e., since S(R) = R (S preserves the behaviour of

Jacobi fields) and hence

0 = µ(R− �) = µ(S(R− �)) = µ(S(R) − S(�)) = µ(R− S(�)).

Thus, � and S(�) are subsets ofR of total (relative) Lebesgue measure so they
coincide up to a null measure subset of R.

Let v ∈ ∑
and η ∈ Xu(v). Then there exists a vector ζ ∈ Xs(−v) such that

η = dSζ . Since Sϕt = ϕ−tS for all t ∈ R, we have that

dϕtη = dSdϕ−t ζ.

And since S is an isometry,

‖ dϕtη ‖=‖ dϕ−t ζ ‖ .

Then

lim
t→+∞

1

t
log ‖ dϕtη ‖= − lim

t→+∞
1

−t
log ‖ dϕ−t ζ ‖ .

But, −v ∈ ∑
and ζ ∈ Xs(−v), then

lim
t→+∞

1

t
log ‖ dϕtη ‖> 0.

Therefore, for all v ∈ ∑
, ζ ∈ Xs(v) and η ∈ Xu(v), the Lyapunov exponents

Xv(ζ ) and Xv(η) are negative and positive respectively and then we conclude
that

∑ ⊂ �.
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Hence we conclude that µ(
∑

) ≤ µ(�) ≤ µ(R). That is,

µ(�) = µ(R).

To finish the proof of theorem A, let us show that the set of closed hyperbolic
orbits of the geodesic flow is dense in the unit tangent bundle.

Let v be a regular, periodic vector, let U(v, ε), T (v, ε) be given by lemma 3.2,
without loss of generality we can suppose that T is a period of v and the orbital
average f̂U (v) > 0 . Applying lemma 3.3 and using the fact that v is a periodic
vector, we have that there exist A, B > 0 such that

‖ dϕnT |Xs(v) ‖≤ Ae−nBT ,

which implies immediately that the orbit of v is hyperbolic.
Let V ∈ SM be an arbitrary open set. Since the set of regular points is a

dense set, then there exists a regular vector v such that v ∈ V . Let V̂ be a small
neighborhood of v such that V̂ ⊂ V ∩R. Since the geodesic flow is expansive,
the set of the periodic points is dense in SM (Ruggiero [18] ). Then there exists
a periodic vector v̂ ∈ V̂ ⊂ V . Since v̂ is a regular periodic vector, we have that
the closed orbit of v̂ is hyperbolic. �
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