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Asymptotic properties of two interacting maps

Gamaliel Blé, Víctor Castellanos and Manuel J. Falconi

Abstract. In this paper we consider a system whose state x changes to σ(x) if a
perturbation occurs at the time t , for t > 0, t /∈ N. Moreover, the state x changes to
the new state η(x) at time t , for t ∈ N. It is assumed that the number of perturbations
in an interval (0, t) is a Poisson process. Here η and σ are measurable maps from a
measure space (E,A, µ) into itself. We give conditions for the existence of a stationary
distribution of the system when the maps η and σ commute, and we prove that any
stationary distribution is an invariant measure of these maps.
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1 Introduction

The issue of random perturbations in dynamical systems has received consid-
erable attention. This is an interesting question both from the theoretical point
of view and for the applications. An important problem in this matter arises
when considering a deterministic dynamical system where some of its param-
eters varies in an unpredictable way. Mathematical ecology is a rich source
of examples of this kind of problems, where it is frequent to assume that the
size of a population is determined by a discrete dynamical system of the form
xn = F(xn−1; r). The parameter r changes randomly in a set R, due to, say,
environmental fluctuations. The simplest case is when the set R has only two
elements.

Many interesting problems have been studied in this area. Some of them are
concerned with the balance between chaos and randomness. More precisely, can
the random choice of the parameter r damp the chaotic fluctuations of one of the
maps? About this topic, see for example [DA], [HT], [LM], [P], [SEK], [St]. In
this paper we consider a system whose state x changes to σ(x) if a perturbation
occurs at the time t , for t > 0, t /∈ N. Moreover, the state x changes to the new
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state η(x) at integer time t ∈ N. It is assumed that the number of perturbations in
an interval (0, t) is a Poisson process. Here η and σ are measurable maps from
a measure space (E,A, µ) into itself. We are interested in the relation between
the stationary distribution of the system and the corresponding ones for the maps
η and σ .

In Section 2 we give some basic definitions and we describe a heuristical
approach to get a differential equation in L1(E,A, µ) whose solution Tt(f ) is
the density of the probability distribution of the state of the system at time t ,
when f is the initial density.

The main results are stated in Section 4. Here, we prove that any stationary
distribution of the system is always a common stationary distribution of both
η and σ (see Theorems 4.1 and 4.2). The frequency of perturbation only con-
tributes to the choice of this common distribution. It is important to work in
a L1−space as we see from Example 4.2, where we consider two commutative
affine maps. In this case, it is possible to have a stationary distribution for certain
frequencies of the perturbations, not withstanding the fact that one of the maps
has no stationary distribution.

These results show an interesting interaction between the dynamics of two
commuting maps. Roughly speaking, the asymptotic evolution of a discrete dy-
namical system cannot be affected by perturbations produced by a commutative
map. The likelihood of two commuting maps is also investigated in [S], through
the analysis of the orbits for each map.

2 The Mathematical Model

We consider a discrete dynamical system given by

xk+1 = η(xk), k ∈ N,

where η : E → E is a continuous map defined in a measure space (E,A, µ).
We assume that in every interval (k, k + 1) perturbations occur according to a
Poisson distribution; that is, the probability to have l fluctuations in an interval
(0, t) is

Pl(t) = (λt)l

l! e−λt . (1)

After a fluctuation, the state x of the system changes to σ(x). Thus, if the state
of the system at time k is η(xk), and a perturbation occurs at time k + t , with
0 < t < 1, then the new state is σ(η(xk)). Here, σ : E → E is a non-singular
map. That means that µ(A) = 0 implies µ(σ−1(A)) = 0.
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In this way, we obtain a stochastic process {Xt}t∈R+ , where Xt is the state of
the system at time t . The probability distribution of this process is P(Xt ∈ A) =∫
A

u(t, x)dµ(x), where u(t, x) is the density of the probability distribution at
time t , if it exists.

Let f : E → R
+ be the density of an initial probability distribution of the

states of the system and A a measurable subset of E. The increment of the
probability that the state of the system belongs to A during an interval �t at time
t is given by

P(Xt+�t ∈ A) − P(Xt ∈ A) =
∫

A

u(t + �t, x) dµ(x) −
∫

A

u(t, x)dµ(x), (2)

where t and t + �t are in [k, k + 1).
We take �t small enough, so that the probability to have more than one per-

turbation is negligible. The probability that the state of the system belongs to A

after a fluctuation is

λ�t

∫
σ−1(A)

u(t, x) dµ(x), (3)

since P1(�t) = λ�te−λ�t ≈ λ�t . Therefore, the increment of the probability
that a state remains in A after a perturbation is given by

λ�t

∫
σ−1(A)

u(t, x) dµ(x) − λ�t

∫
A

u(t, x)dµ(x). (4)

From equations (2) and (4) we get the following relation∫
A

[u(t + �t, x) − u(t, x)] dµ(x) =

λ�t

(∫
σ−1(A)

u(t, x)dµ(x) −
∫

A

u(t, x)dµ(x)

)
.

The above equation can be written as∫
A

[u(t + �t, x) − u(t, x)] dµ(x) = λ�t

∫
A

[−u(t, x) + Pσ u(t, x)]dµ(x),

where Pσ is the Frobenius–Perron operator corresponding to the map σ . Dividing
the above equation by �t and passing to the limit �t → 0, we obtain∫

A

∂u(t, x)

∂t
dµ(x) = λ

∫
A

[−u(t, x) + Pσu(t, x)]dµ(x). (5)

Bull Braz Math Soc, Vol. 34, N. 2, 2003



336 GAMALIEL BLÉ, VÍCTOR CASTELLANOS and MANUEL J. FALCONI

From this, we have

∂u(t, x)

∂t
= −λ [u(t, x) − Pσu(t, x)]

for almost all x ∈ E, and for all t ∈ [k, k + 1).
In order to obtain the density of the probability distribution u(t, x) we have to

solve the following initial condition problem

∂u(t, x)

∂t
= −λ [u(t, x) − Pσu(t, x)] , (6)

with initial condition u(0, x) = f (x), for t ∈ [0, 1) and u(i, x) = Pη(u
−(i, x))),

for t ∈ [i, i + 1), i ∈ N. Here u−(i, x) denotes the left hand side limit of u(t, x)

when t approaches i.

3 Solution of the Model

After a change of scale, equation (6) can be written in the form

∂u(t, x)

∂t
= (Pσ − I )u(t, x), (7)

and the initial conditions take the form

u(iλ, x) =
{

f (x), t ∈ [0, λ),

Pη(u
−(iλ, x)) for t∈ [iλ, (i + 1)λ),

(8)

where i ∈ N ∪ {0}.
It is well known [DS] that the solution of equation (7) with initial condition

u(0, x) = f (x) is a semigroup of operators {St}t≥0 in the space L1(µ) given by

Stf = et(Pσ −I ) f = e−t

∞∑
n=0

tn

n!P
n
σ f.

Then it follows easily that the solution Tt of equation (7) with initial conditions
(8) coincides with St in the interval [0, λ). Notice that u−(λ, x) satisfies

u−(λ, ·) = lim
t→λ− Stf,

so, Tλf (x) = Pη(u
−(λ, x)). Thus, if we make the change of variable τ = t − λ

in (7) and (8) we obtain

Ttf = e(t−λ)(Pσ −I ) (Pη(e
(Pσ −I ) f )) = Sτ (Pη(Sλf )),
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for t ∈ [λ, 2λ). In general, the solution is

Ttf = Sτ (

k−t imes︷ ︸︸ ︷
PηSλ · · · PηSλ(f )), τ = t − kλ,

for t ∈ [kλ, (k + 1)λ), k ∈ N ∪ {0}.

4 Stationary distributions of the Model

Lemma 4.1. For any f1, f2 ∈ L1 we have that

|| Ttf1 − Ttf2|| ≤ ||f1 − f2||
for all time t ≥ 0.

Proof. We consider t ∈ [(m − 1)λ, mλ) with m ∈ N and we do induction over
m.

Let f1, f2 be functions in L1. If m = 1 then,

||Ttf1 − Ttf2|| = ||Stf1 − Stf2|| ≤ ||St ||||f1 − f2|| ≤ ||f1 − f2||.
So the inequality holds for t ∈ [0, λ).

Now, we assume that the inequality holds for m ≤ k and we prove that it is
true for m = k + 1. In this case

||Ttf1 − Ttf2|| = ||Sτ (

k−t imes︷ ︸︸ ︷
PηSλ · · · PηSλ(f1)) − Sτ (

k−t imes︷ ︸︸ ︷
PηSλ · · · PηSλ(f2))||

≤ ||
k−t imes︷ ︸︸ ︷

PηSλ · · · PηSλ(f1) −
k−t imes︷ ︸︸ ︷

PηSλ · · · PηSλ(f2) ||

≤ ||
k−t imes︷ ︸︸ ︷

SλPη · · · Sλ(f1) −
k−t imes︷ ︸︸ ︷

SλPη · · · Sλ(f2) ||
The last two inequalities follow from the properties of the semigroup St and the
operator Pη, respectively.

Finally, by the induction hypothesis we have,

||Ttf1 − Ttf2|| ≤ ||f1 − f2||, for t ∈ [0, (k + 1)λ).

So for every t ≥ 0 and for all f1, f2 ∈ L1

||Ttf1 − Ttf2|| ≤ ||f1 − f2||. �
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Proposition 4.1. If η and σ commute, then the operators Pη and Pσ also com-
mute.

Proof. Let A ⊂ E be a measurable set. Then∫
A

Pσ (Pηf )dµ(x) = ∫
σ−1(A)

Pηf dµ(x) = ∫
η−1(σ−1(A))

f dµ(x)

= ∫
(σ◦η)−1(A)

f dµ(x) = ∫
(η◦σ)−1(A)

f dµ(x)

= ∫
σ−1(η−1(A))

f dµ(x) = ∫
η−1(A)

Pσf dµ(x)

= ∫
A

PηPσf dµ(x).

Since this is true for any f ∈ L1(E) and for every measurable set, we have that
PσPη = PηPσ . �

It is clear that the reciprocal is false.

Lemma 4.2. If the operators Pη and Pσ commute, then

Ttf = St(P
k
η f ) for all t ∈ [kλ, (k + 1)λ).

Proof. If t ∈ [0, λ), then

Ttf = St(f ) = St(P
0
η f ).

So the statement holds for k = 0.
If k = 1, then t ∈ [λ, 2λ) and we have

Ttf = St−λ(Pη(Sλf )) = St−λPη(e
−λ

∑∞
n=0

λn

n! P
n
σ f )

= St−λ(e
−λ

∑∞
n=0

λn

n! P
n
σ (Pηf )

= St−λ(Sλ(Pηf )) = St(Pηf ).

Now, suppose that the statement holds for k ≤ m, i. e. that

Ttf = St(P
k
η f ) ∀ t ∈ [kλ, (k + 1)λ),

for every k = 0, 1, . . . , m. We will demonstrate that this equality is true for
k = m + 1. If t belongs to [(m + 1)λ, (m + 2)λ), then

Ttf = St−(m+1)λ(

(m+1)−t imes︷ ︸︸ ︷
PηSλ · · · PηSλ)f

= St−(m+1)λ(PηSλ)Tmλf

= St−(m+1)λ(PηSλ)SmλP
m
η f

= St−(m+1)λS(m+1)λP
m+1
η f

= StP
m+1
η f.
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Thus, the statement holds for all k ∈ N and we have that

Ttf = St(P
k
η f ) for t ∈ [kλ, (k + 1)λ) �

Lemma 4.3.

(a) Given f ∈ L1 the norm

||Ttf ||
is a non increasing function of time t .

(b) If Pη and Pσ commute then

||Tt+mf || ≤ ||Tt(Tmf )||,
for t, m ∈ R

+ ∪ {0}.

Proof. To prove this lemma we use that for all f1, f2 ∈ L1

||Stf1 − Stf2||
is a non increasing function of time t and ||Pηf1|| ≤ ||f1|| (see [LM]).

(a) Suppose that t1 < t2, t1 = k1λ + τ1 and t2 = k2λ + τ2 where k1, k2 ∈ N

and τ1, τ2 ∈ [0, λ).
In the case that k1 = k2 then τ1 < τ2 and

||Tt2f || = ||Sτ2(

k2−t imes︷ ︸︸ ︷
PηSλ · · · PηSλ(f ))||

≤ ||Sτ1(

k1−t imes︷ ︸︸ ︷
PηSλ · · · PηSλ(f ))||

= ‖Tt1f ‖
If k1 �= k2 then there exists j ∈ N such that k2 = k1 + j and

||Tt2f || = ||Sτ2(

(k1+j)−t imes︷ ︸︸ ︷
PηSλ · · · PηSλ(f ))||

≤ ||Sλ(

k1−t imes︷ ︸︸ ︷
PηSλ · · · PηSλ(f ))||

≤ ||Sτ1(

k1−t imes︷ ︸︸ ︷
PηSλ · · · PηSλ(f ))||

= ‖Tt1f ‖.
Bull Braz Math Soc, Vol. 34, N. 2, 2003
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(b) We assume that t = k1λ + τ1, m = k2λ + τ2, where k1, k2 ∈ N and
τ1, τ2 ∈ [0, λ).

Since Pη commutes with Pσ

||Tt+mf || = ||St+m(P k
η f )||,

where t + m = (k1 + k2)λ + τ1 + τ2, 0 ≤ τ1 + τ2 < 2λ and k = k1 + k2 + r for
some r ∈ {0, 1}. Hence,

||Tt+mf || = ‖St+m(P k1+k2+r
η f )‖

= ||P r
η St+m(P k1+k2

η f )||
≤ ||St+m(P k1+k2

η f )||
= ||St(SmP k1+k2

η f )||
= ||StP

k1
η (SmP k2

η f )||
= ||Tt(Tmf )|| �

Lemma 4.4. Suppose that Pη and Pσ are commutative. Then,

lim
t→∞[Tt(Pσf ) − Ttf ] = 0

for each f ∈ L1.

Proof. To prove this we closely follow [LM, Section 8.5]. As Pη and Pσ

commute, by lemma 4.2 we have

Ttf = St(P
k
η f ) when t ∈ [kλ, (k + 1)λ)

= e−t
∑∞

n=0

tn

n!P
n
σ (P k

η f )

and

Tt(Pσf ) = St(PσP k
η f ) = e−t

∑∞
n=0

tn

n!P
n+1
σ (P k

η f )

= e−t
∑∞

n=1

tn−1

(n − 1)!P
n
σ

(
P k

η f
)
.
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Therefore,

‖Tt(Pσf ) − Ttf ‖ = ‖e−t

∞∑
n=1

tn−1

(n − 1)!P
n
σ (P k

η f ) − e−t

∞∑
n=0

tn

n!P
n
σ (P k

η f )‖

= e−t‖P k
η (

∞∑
n=0

tn

n!P
n
σ f −

∞∑
n=1

tn−1

(n − 1)!P
n
σ f )‖

≤ e−t‖
∞∑

n=1

(
tn

n! − tn−1

(n − 1)!)P
n
σ f + f ‖.

If t = m and m ∈ N, then

e−t

∞∑
n=1

∣∣∣∣ tnn! − tn−1

(n − 1)!
∣∣∣∣ = 2e−m(

mm

m! − 1

2
)

converges to zero when m goes to infinity. Therefore

e−t

∞∑
n=1

∣∣∣∣ tnn! − tn−1

(n − 1)!
∣∣∣∣

converges to zero when t goes to infinity for all t ∈ N.
As ||Ttf − Tt(Pσf )|| is a non increasing function of time t (see lemma 4.3),

we have the convergence for all t ≥ 0. �

Lemma 4.5. If Pσ commutes with Pη, then the operators Pη, Pσ and Tt commute.

Proof. Let f be a function in L1. From the continuity of Pσ we have that

Pσ (Stf ) = St(Pσf ).

By lemma 4.2,

Ttf = St(P
k
η f ) t ∈ [kλ, (k + 1)λ).

Therefore

Pσ (Ttf ) = Pσ (St (P
k
η f )) = St(Pσ (P k

η f ))

= St(P
k
η (Pσf )) = Tt(Pσf ). �

From these lemmas we have

Theorem 4.1. Suppose that operators Pη and Pσ commute. If for some fixed
point f ∈ L1 of Pη, the limit

l = lim
t→∞ Stf

exists, then limt→∞ Ttf = l and l is a fixed point of Pσ and Pη.
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Proof. Since Pη(f ) = f , using lemma 4.2, we have that

||Ttf − l|| = ||St(P
k
η f ) − l||

= ||Stf − l||,
which implies that limt→∞ Ttf = l.

From the continuity of Pη we obtain

Pηl = limt→∞ StPηf

= limt→∞ Stf = l.

To prove that l is fixed point of Pσ , notice that

Pσ l = Pσ ( lim
t→∞ Ttf ) = lim

t→∞ Pσ (Ttf ).

Now, using lemmas 4.4 and 4.5, we obtain

Pσ l = lim
t→∞ Pσ (Ttf ) = lim

t→∞ Tt(Pσf ) = lim
t→∞ Ttf = l,

therefore, Pσ l = l. �

Remark 4.1. When Pη has a unique fixed point f , the limit

lim
t→∞ Stf

exists and is equal to f . Indeed, as Pη and Pσ commute, we have that Pσ (f ) is
a fixed point of Pη, then Pσ (f ) = f and therefore Stf = f .

Theorem 4.2. If there exists f ∈ L1 such that the limit

l = lim
t→∞ Ttf

exists and Pσ commutes with Pη, then the limit l is a fixed point of the operators
Tt , Pσ and Pη.

Proof. First, we prove that l is a fixed point of Tt . Let m be a non–negative
real number. By lemma 4.3 we have that

‖Ttf − l‖ ≥ ‖Tm(Ttf − l)‖ = ‖TmTtf − Tml‖ ≥ ‖Tm+tf − Tml‖.
This inequality implies that limt→∞ Tt+mf = Tml. Since limt→∞ Tt+mf = l we
get

Tml = l.
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The proof that l is a fixed point of Pσ is the same as the one given in theorem 4.1.
Finally, we prove that l is a fixed point of Pη. From lemma 4.2 we know that

Ttf = St(P
k
η f ) for t ∈ [kλ, (k+1)λ). Moreover, St l = l since Pσ l = l. Hence,

l = lim
t→∞ Tt l = lim

t→∞ St(P
k
η l) = lim

t→∞ P k
η (St l) = lim

k→∞ P k
η l.

From this follows that Pηl = l. �
With the same argument used in the proof of theorem 4.2, we obtain

Corollary 4.1. If the operators Pσ and Pη commute and, for some f ∈ L1, there
is a sequence {tn}∞n=1 such that the limit

f ∗ = lim
n→∞ Ttnf

exists, then f ∗ is a fixed point of Pσ and Pη.
When we speak of an absolutely continuous invariant measure ν, this means

that ν is absolutely continuous with respect to measure µ.

Proposition 4.2. Let σ and η be two commutative maps from E into itself. The
map σ has an absolutely continuous invariant measure if and only if the map η

has an absolutely continuous invariant measure.

Proof. If ν is an absolutely continuous invariant measure for σ and Pσ is a
Frobenius-Perron’s operator of σ , then there exists f ∈ L1(E) such that Pσ (f ) =
f . Since Pη and Pσ commute, it follows that Pη(f ) is a fixed point of Pσ and
the set

C = {g ∈ L1(E) : Pσ (g) = g}
is a convex and compact for the weak topology.

By the Markus–Kakutani’s theorem (see [DS], page 456) the operators Pσ and
Pη have a fixed point in C. Therefore η has an absolutely continuous invariant
measure. �

Remark 4.2. If σ or η has an absolutely continuous invariant measure then it
follows from the proof of the above proposition that σ and η have at least one
common absolutely continuous invariant measure

Example 4.1. If we take σ(x) = 1 − 2x2 and η(x) = 4x3 − 3x defined on
E = [−1, 1], the corresponding system described in Section 2 has a stationary
density.

In this example σ and η are Chebychev’s polynomials, so they commute. In
addition, σ admits an absolutely continuous invariant measure ν (see [AR]). By
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the last remark, the map η has the same absolutely continuous invariant measure
ν. In fact, Adler (see [AR]) proved that µ = ν. By theorem 4.1 the system has
a stationary density f and f is the Radon–Nikodym’s derivative of µ.

Example 4.2. The affine maps

σ

(
x

y

)
=

( 1
2x + 1
1
2y + 2

)
and η

(
x

y

)
=

(
2x − 2
2y − 4

)

are commutative. However, this does not imply that they have a common sta-
tionary density.

In this example we see that the transformations σ and η have an unique fixed
point (2, 4). This point is a global attractor for σ and global repeller for η. So,
σ has a stationary distribution that is the Dirac δ concentrated at the fixed point.
It is clear that η does not have a stationary distribution. This does not contradict
proposition 4.2 because σ has an invariant measure which is not absolutely
continuous.

Moreover we obtain some computational evidence that, for the system corre-
sponding to the interaction of these two linear maps, the existence of a stationary
distribution depends on the mean λ of the Poisson distribution. Indeed, for λ

greater or equal to 1, the system does not have any stationary distribution since
its orbits go to infinity. However, for λ < 1, the orbits go to the point (2, 4),
which is the common fixed point of η and σ . So, in this case the stationary
distribution is the Dirac delta concentrated in (2, 4).

This example shows that the hypothesis f ∈ L1 in theorem 4.1 and 4.2 is
necessary.
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