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Stationary measures and hydrodynamics of zero
range processes with several species of particles

Stefan Großkinsky and Herbert Spohn

Abstract. We study general zero range processes with different types of particles on
a d-dimensional lattice with periodic boundary conditions. A necessary and sufficient
condition on the jump rates for the existence of stationary product measures is estab-
lished. For translation invariant jump rates we prove the hydrodynamic limit on the
Euler scale using Yau’s relative entropy method. The limit equation is a system of con-
servation laws, which is hyperbolic and has a globally convex entropy. We analyze this
system in terms of entropy variables. In addition we obtain stationary density profiles
for open boundaries.
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1 Introduction

The zero range process is a stochastic particle system on the d-dimensional
lattice Zd where the jump rate g(k) of a given particle depends only on the
occupation number k at its current position. This model was originally introduced
as a simple example of an interacting Markov process [1]. Various properties
have been established, among them the existence of the dynamics under very
general conditions, classification of invariant measures, and hydrodynamic limits
[2, 3, 4].

In this paper we generalize the zero range process to n different types of
particles. The jump rate gi of the i-th component depends on the occupation
numbers of all n species at a given site. For the process to have stationary
product measures, these rates cannot be chosen arbitrarily. We find that such
measures exist if and only if the logarithm of the jump rates gi is given as the
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lattice derivative ∇iG of a suitable potentialG. In general, the stationary product
measures do not factorize with respect to the different components.

Recently Evans and Hanney independently introduced a zero range process
with two different kinds of particles to study condensation phenomena in one
dimensional systems [5]. Our goal is the derivation of the hydrodynamical
equations on the Euler scale, which are expected to be given by a system of n
conservation laws. For this purpose we use the relative entropy method of Yau
[6], which, while directly applicable to the present case, has the disadvantage
to yield the desired result only up to the first shock. So far we did not attempt
to extend our result to all times following e.g. the lines in [7]. We show that
the system of conservation laws is hyperbolic and the thermodynamic entropy
of the stationary measure is a Lax entropy. This property follows from certain
reciprocity relations for the steady currents of the components. Such relations
have been established for special zero range processes in [8] and recently for one-
dimensional interacting particle systems restricted to nearest neighbor interaction
and finite occupation numbers [9]. Systems of hyperbolic conservation laws have
been studied in detail due to various applications in physics, ranging from gas
dynamics to traffic models (see e.g. [10] and references therein). Many such
systems are endowed with an entropy, which can be used to single out physically
relevant solutions [11] or to optimize the numerical analysis [12].

One source of motivation for this work comes from the analysis of one-
dimensional driven diffusive systems with open boundaries. For one-component
systems the analysis of the hydrodynamic limit equation led to the theory of
boundary-induced phase transitions which provides a general framework for a
quantitative description of the steady-state selection in systems which are in con-
tact with particle reservoirs at their boundary [13, 14]. In systems with more
than one conserved quantity interesting new phenomena have been found such
as phase separation and spontaneous symmetry breaking [15, 16], for a recent
review see [17]. Again it is natural to ask for principles governing steady-state
selection and the resulting phase diagram in systems with many species of par-
ticles. The macroscopic behavior of such systems has been examined to some
extent only recently [18] and there are very few rigorous results [9, 19]. In our
note we analyze the system of conservation laws for open boundaries in terms
of entropy variables [12]. For stationary solutions the system decouples, and
we are able to derive stationary density profiles, which we state explicitly for
one-dimensional geometry.
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2 Stationary product measures

2.1 The n-component zero range process

Let us consider a zero range process with translation invariant jump rates on the
d-dimensional torus �L = (Z/LZ)d . There are n different species of particles
and let ηi(x) ∈ N be the number of particles of component i ∈ {1, . . . , n} on
site x ∈ �L, where N = {0, 1, 2, . . . }. The state space is given by�L = (Nn)�L

and we denote a particle configuration by

η = (
η(x)

)
x∈�L =

((
η1(x), . . . , ηn(x)

))
x∈�L

.

At a given site x ∈ �L, the number ηi(x) of i-type particles decreases by one after
an exponential waiting time with rate gi

(
η(x)

)
and the leaving particle jumps to

site x + y with probability pi(y). The jump probabilities pi : Z → [0, 1] are
normalized and assumed to be of finite range R ∈ Z+, i.e.∑

y

pi(y) = 1 , pi(0) = 0 and pi(y) = 0 for ‖y‖ > R . (2.1)

To exclude hidden conservation laws the pi’s have to be irreducible, so that
every particle can reach any site of the lattice with positive probability. The rate
function gi : Nn → [0,∞) vanishes for all k = (k1, . . . , kn) ∈ Nn with ki = 0
and is otherwise positive and uniformly bounded from below,

gi(k) = 0 ⇔ ki = 0 and g∗
i := sup

n∈N

inf
‖k‖≥n
ki>0

gi(k) > 0 (2.2)

for all i = 1, . . . , n. With these assumptions the generator of the zero range
process is given by

(Lf )(η) =
∑

x,y∈�L

n∑
i=1

gi
(
η(x)

)
pi(y)

(
f (ηi;x,x+y)− f (η)

)
, (2.3)

regarded as a linear operator on C(�L,R). The configuration ηi;x,x+y results
from η after one particle of component i is moved from x to x+y, i.e.ηi;x,x+y

j (z) =
ηj (z) + δij (δz,(x+y)mod Ld − δz,x) for all z ∈ �L, j = 1, . . . , n. The number of
particles Ni(η) = ∑

x∈�L ηi(x) of component i is conserved, and these are
the only conserved quantities. They divide the configuration space into finite,
invariant subsets with fixed Ni ∈ Z+, i = 1, . . . , n. Restricted to such a subset,
L is a finite dimensional matrix and the process is well defined. However, for
L = ∞ this is true only for “reasonable” initial conditions and under additional
assumptions on the jump rates, which are given in Section 3.1 (cf. [2, 4]).
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2.2 Existence of stationary product measures

For the one-component process n = 1, as well known, there exists a family of
translation invariant stationary product measures (see e.g. [2, 3, 20])

ν̄Lµ(η) =
∏

x∈�L

1

Z(µ)
eµη1(x)

η1(x)∏
k=1

1

g1(k)
with Z(µ) =

∞∑
l=0

eµ l
l∏

k=1

1

g1(k)
. (2.4)

The parameter µ ∈ R is the chemical potential and controls the average particle
density, the normalizing constant Z(µ) is the partition function. Often µ is re-
placed by the fugacity φ = exp[µ] ∈ [0,∞). We use this notation in Section 4.2,
but for Sections 2 and 3 the chemical potential turns out to be more convenient.
In the case n > 1, the stationary measures are of product form only under the
following condition on the jump rates:

Assumption. For every i, j ∈ {1, . . . , n} and k = (k1, . . . , kn) ∈ Nn with
ki, kj > 0 let

gi(k) gj (ki , ki − 1) = gj (k) gi(kj , kj − 1) , (2.5)

using the shorthand (ki , ki − 1) = (k1, . . . , ki−1, ki − 1, ki+1, . . . , kn).

The same relation was found indepently in [5]. This assumption is equivalent
to the existence of a potential G : Nn → R for the logarithm of the jump rates
such that

log gi(k) = G(k)−G(ki , ki − 1) . (2.6)

GivenG, the jump rates defined via (2.6) clearly satisfy (2.5) by construction. On
the other hand for given jump rates gi obeying (2.5) one can defineG recursively
via (2.6) by fixing G(0, . . . , 0) = 0. This construction does not depend on the
order of summation, since by (2.5) the sum over every closed path vanishes. For
example one can choose

G(k) =
k1∑
j1=1

log g1(j1, 0, . . . , 0)+
k2∑
j2=1

log g2(k1, j2, 0, . . . , 0)+

. . .+
kn∑
jn=1

log gn(k1, . . . , kn−1, jn) .

(2.7)
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Theorem 1. (Stationary product measures). The zero range process defined
in (2.3) with more than one component, n > 1, has stationary product measures
if and only if the condition (2.5), equivalently (2.6), is fulfilled. In this case the
family of stationary measures can be written as

ν̄Lµ(η) =
∏

x∈�L

1

Z(µ)
exp

[
−G

(
η(x)

) +
n∑
i=1

µi ηi(x)
]

(2.8)

with the chemical potentials µ = (µ1, . . . , µn) ∈ Dµ as parameters. Dµ is the
domain of convergence of the partition function

Z(µ) =
∑
k∈Nn

exp
[

−G(k)+
n∑
i=1

µi ki

]
. (2.9)

Dµ is a nonempty, convex subset of Rn with infinite volume measure.

Proof. First we assume that (2.5) and (2.6) are satisfied and show that ν̄Lµ
defined in (2.8) is stationary. Since G exists by assumption, the measure ν̄Lµ is
well defined on Dµ and

{
µ ∈ Rn

∣∣µi < log g∗
i , i = 1, . . . , n

} ⊂ Dµ because of
(2.2). ForZ(µ1),Z(µ2) < ∞ it is easy to see thatZ(qµ1 +(1−q)µ2) < ∞ for
all q ∈ [0, 1], thus Dµ is convex. The remainder of the first part of the proof is
a straightforward generalization of the standard argument for n = 1, given e.g.
in [3]. To prove stationarity of ν̄Lµ we have to show that for all f ∈ C(�L,R)

〈Lf 〉ν̄Lµ =
∑

η∈�L

∑
x,y∈�L

N∑
i=1

gi
(
η(x)

)
pi(y)

(
f (ηi;x,x+y)− f (η)

)
ν̄Lµ(η) = 0 . (2.10)

With (2.6) it is easy to show that the one-point marginal ν̄µ satisfies

ν̄µ(k) = ν̄µ(ki , ki − 1)

gi(k)
exp[µi] (2.11)

for all i = 1, . . . , n, k = (k1, . . . , kn) ∈ Nn with ki > 0. For every x, y ∈ �L

one has ∑
η∈�L

gi
(
η(x)

)
f (ηi;x,x+y) ν̄Lµ(η) =

∑
η∈�L

gi

(
(η1, .., ηi + 1, .., ηn)(x)

)
f (η) ν̄Lµ(η

i;x+y,x) ,
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where we introduced the shorthand (η1, ..., ηn)(x) = (
η1(x), ..., ηn(x)

)
. With

this and a change of variables in the summation over x we obtain

〈Lf 〉ν̄Lµ =
∑
η∈�L

f (η)

N∑
i=1

∑
x,y∈�L

pi(y) ν̄µ

(
η(x−y)

)
ν̄µ

(
(η1, .., ηi−1, .., ηn)(x)

)

gi

(
(η1, .., ηi+1, .., ηn)(x−y)

)
ν̄µ

(
(η1, .., ηi+1, .., ηn)(x−y)

)
ν̄µ

(
η(x−y)

) −

gi
(
η(x)

)
ν̄µ

(
η(x)

)
ν̄µ

(
(η1, .., ηi−1, .., ηn)(x)

)

 ∏

z∈�L\{x−y,x}
ν̄µ

(
η(z)

) = 0 , (2.12)

which vanishes by (2.11) for every f ∈ C(�L,R). Thus (2.10) is shown and ν̄Lµ
is stationary.

Assume now that νL is an arbitrary stationary product measure of the zero
range process with generator L. Then

〈Lf 〉νL = 0 for all f ∈ C(�L,R) (2.13)

and, by inserting special functions f , one deduces conditions on the jump rates.
Consider a configuration η̄ where there are k = (k1, . . . , kn) ∈ Nn particles at a
fixed site x and the rest of the lattice is empty, i.e. η̄(y) = δy,xk for all y ∈ �L.
From the stationarity condition (2.13) with the indicator function f = χη̄ we
obtain for the one-point marginal of νL

[
g1(k)+ . . .+ gn(k)

]
ν(k) =

N∑
i=1

ν(ki , ki − 1) , (2.14)

where we set ν(k) = 0 if ki < 0 for some i ∈ {1, . . . , n}. To get (2.14) we used

ν(0, .., 0, ki, 0, .., 0) = ν(0)
ki∏
l=1

1

gi(0, .., 0, l, 0, .., 0)
, (2.15)

as known from the stationary measure of the one component system (2.4). Now
let f be the indicator function of η̄i;x,x+y, with η̄ = (

δz,xk
)

z∈�L as above and
ki > 0. Using (2.13) to (2.15) we obtain

pi(y)ν(0)
[
gi(k) ν(k)− ν

(
ki , ki − 1

)] =
−

∑
j �=i

pj (−y) ν
(
ki,j , ki − 1, kj − 1

)[
gj (ei + ej ) ν(ei + ej ) − ν(ej )

]
. (2.16)
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with the shorthand k = (ki,j , ki, kj ) and ei ∈ Rn the unit vector in direction i.
(2.2) holds for all y ∈ �L and is obviously fulfilled if the two square brackets
vanish individually. Under the assumption that they do not vanish, one can easily
construct a contradiction to (2.14). Thus we obtain

ν(k) = ν(ki , ki − 1)/gi(k) (2.17)

for all i ∈ {1, . . . , n}. Applying (2.17) twice in different order for arbitrary
i �= j we get

ν(k) = ν(ki,j , ki − 1, kj − 1)

gi(k) gj (ki , ki − 1)
= ν(ki,j , ki − 1, kj − 1)

gj (k) gi(kj , kj − 1)
, (2.18)

and (2.5) easily follows. �

Remark. If the jump rates are site dependent and satisfy (2.6) with potential
Gx for every site x, the measure defined analogous to (2.8) is still stationary,
since the terms in (2.12) cancel for each site individually. However, we did not
see how to generalize the reverse argument to space-dependent rates.

2.3 Properties of the stationary measures

The particle density Ri of component i ∈ {1, . . . , n} is translation invariant and
given by

Ri(µ) := 〈
ηi(x)

〉
ν̄µ

= 〈
ηi(0)

〉
ν̄µ

= ∂µi logZ(µ) ≥ 0 (2.19)

as a function of the chemical potentials µ. For µ ∈ ◦
Dµ the measure ν̄µ has some

finite exponential moments as 〈eθ ·η(0)〉ν̄µ = Z(µ+θ)/Z(µ) < ∞ for sufficiently

small θ ∈ Rn. Therefore R = (R1, . . . , Rn) : ◦
Dµ → Dρ is well defined with

Dρ = R
( ◦
Dµ

) ⊂ (0,∞)n. Due to (2.19), logZ(µ) is monotonic increasing on
◦
Dµ and the compressibility is given by the matrix of second derivatives as

DR(µ) :=
(
∂µjRi(µ)

)
ij

= D2 logZ(µ) =

=
(
∂2
µiµj

logZ(µ)
)
ij

=
(
〈ηi(0)ηj (0)〉cν̄µ

)
ij
,

(2.20)

where
〈
ηi(0)ηj (0)

〉c
ν̄µ

:= 〈
ηi(0)ηj (0)

〉
ν̄µ

− 〈
ηi(0)

〉
ν̄µ

〈
ηj (0)

〉
ν̄µ

. Thus DR(µ) is
symmetric and positive definite, because

aT · (
D2 logZ(µ)

)
a =

〈( n∑
i=1

ai ηi(0)
)2〉c

ν̄µ

> 0 (2.21)
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for all a ∈ Rn with |a| = 1. Hence the eigenvalues of D2 logZ(µ) are real and
positive, which ensures that logZ(µ) is strictly convex and R is invertible on
◦
Dµ. Since DR(µ) is also continuous, Dρ is diffeomorphic to

◦
Dµ. We denote

the inverse of R by M = (M1, . . . ,Mn) : Dρ → ◦
Dµ and define the measure

νLρ := ν̄LM(ρ), which is indexed by the particle densities ρ. There exists an α > 0
such that ρ ∈ Dρ for all ‖ρ‖ < α, so νLρ is defined for small densities. In many
cases it isDρ = (0,∞)n, e.g. under the assumption (3.3) or (3.4) in Section 3.1.
However, there are also cases where there is no stationary product measure for
large densities. These systems show an interesting condensation phenomenon
for large ρ and have been studied for one-component systems in [20, 21] and in
[5] for a system with two kinds of particles. In this case the behavior of Z(µ)
and R(µ) at the boundary ∂Dµ is of importance. We will not discuss this point
any further here.

The stationary current of component i is given by

Ji(ρ) = m(pi) 〈gi〉νρ = m(pi) exp
[
Mi(ρ)

]
(2.22)

as a function of the particle densities. Here m(pi) = ∑
y∈�L ypi(y) ∈ Rd

denotes the first moment of the jump probability pi , which in general is non-
zero and determines the direction of the current. The strength is proportional to
exp

[
Mi(ρ)

]
and thus a monotonic increasing function of the chemical potential.

The thermodynamic entropy S(ρ) of the stationary measure is the convex
conjugate of logZ(µ) given by the Legendre transform

S(ρ) = sup
µ∈Dµ

( n∑
i=1

ρiµi − logZ(µ)

)
= ρ · M(ρ)− logZ

(
M(ρ)

)
. (2.23)

With (2.22) we have for all i ∈ {1, . . . , n}
∂ρiS(ρ) = Mi(ρ) = log〈gi〉νρ . (2.24)

Therefore we have the following relation for the determinants, denoted by |..|,∣∣D2S(ρ)
∣∣ = ∣∣DM(ρ)

∣∣ = ∣∣DR(M(ρ))
∣∣−1 = ∣∣D2 logZ(M(ρ))

∣∣−1
> 0 . (2.25)

Thus S is strictly convex on Dρ . Note that due to the structure of the stationary
measure the densities are given as derivatives of the partition function with respect
to the chemical potentials. This leads to (2.24) and thus

∂ρj log〈gi〉νρ = ∂ρi log〈gj 〉νρ , (2.26)

for all i, j ∈ {1, . . . , n}, which can be considered as the macroscopic analogue
of condition (2.5) on the jump rates.
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3 Hydrodynamics

3.1 The hydrodynamic limit

We will show that under Eulerian scaling t → t/L, x → u = x/L in the limit
L → ∞ the time evolution of the local particle densities ρ(t,u) is given by the
following system of conservation laws:

∂tρi(t,u)+
d∑
k=1

∂ukJ
k
i

(
ρ(t,u)

) = 0 , i = 1, . . . , n , (3.1)

where J ki
(
ρ
)

is the k-th spatial component of the i-th current Ji(ρ) defined in

(2.22) and u = (u1, . . . , ud) ∈ � = (
R/Z

)d
is the continuous space variable.

To prove the convergence, the dynamics of the zero range process has to be well
defined in the limit L → ∞ which is guaranteed by (see [2, 3])

sup
i,j∈{1,... ,n}

sup
k∈N

|gi(kj , kj + 1)− gi(k)| < ∞ . (3.2)

We also need to impose an extra condition on the stationary measure, which is
needed for the one block estimate (see [3], Chapter 5), as one important part of
the convergence proof. There are two alternatives, the first one is to require that
the partition function Z(µ) is finite for all µ ∈ Rn, which is equivalent to the
existence of finite exponential moments, i.e.〈

exp[θ · η(0)]〉
ν̄µ

= Z(µ + θ)/Z(µ) < ∞ for all θ ∈ Rn ⇔ Dµ = Rn. (3.3)

Note that this impliesDρ = (0,∞)n, avoiding possible problems in case ρ(t,u)
reaches the boundary of Dρ . Alternatively, we can impose sublinearity of the
jump rates, i.e. for all i ∈ {1, . . . , n} and all b ∈ (0,∞)n there exist ai(b) ∈ R
such that

gi(k) ≤ ai(b)+ b · k and lim
µ→µ∗ Z(µ) = ∞ for all µ∗ ∈ ∂Dµ . (3.4)

The second statement is needed to ensure Dρ = (0,∞)n, since sublinearity
does not rule out Dµ � Rn. Given a solution ρ(t,u) of (3.1) we denote the
corresponding local equilibrium measure by νLρ(t,.), which will be compared to
the time dependent distribution πLt of the zero range process:

νLρ(t,.) :=
∏

x∈�L
νρ(t,x/L) and πLt = πL0 StL , (3.5)
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where StL is the semi-group St associated to the generator L speeded up by L.
The proof of the following theorem is an application of Yau’s relative entropy
method [6], which requires some regularity of the solution ρ(t,u). In general,
solutions of conservation laws develop shocks after a finite time even for smooth
initial data (see e.g. [10]). Thus the convergence proof is valid only up to the
time T of the appearance of the first discontinuity.

Theorem 2. (Hydrodynamic limit). Let ρ ∈ C2
([0, T ] × �, [0,∞)n

)
be a

solution of (3.1) for some T ∈ (0,∞) with smooth and bounded initial profile
ρ(0, .), satisfying ρi(0,u) ≥ ρ∗

i > 0, i = 1, . . . , n. Under the assumptions
(3.2) and (3.3) resp. (3.4) let πL0 be a sequence of probability measures on �L,
whose entropy H

(
πL0

∣∣νLρ(0,.)) relative to νLρ(0,.) is of order o(Ld). Then

H
(
πLt

∣∣νLρ(t,.)) = o(Ld) for all t ∈ [0, T ] . (3.6)

Applying the entropy inequality in the standard way (see [3], Chapter 6),
Theorem 2 implies the following

Corollary. Under the assumption of Theorem 2, for any smooth test function
f : � → R, t ∈ [0, T ] and i = 1, . . . , n, the following limit

lim
L→∞

1

Ld

∑
x∈�L

f (x/L) ηi(t, x) =
∫
�

f (u) ρi(t,u) ddu (3.7)

holds in probability, where η(t, x) denotes the time t configuration of the zero
range process with distribution πLt .

The proof of Theorem 2 is close to the ones given in [3, 9] and its most important
steps will be sketched in Section 3.3.

3.2 Properties of the limit equation

Introducing the matricesDJk(ρ) := (
∂ρj J

k
i

)
ij

one can rewrite (3.1) in the quasi-
linear form

∂tρ(t,u)+
d∑
k=1

DJk
(
ρ(t,u)

)
∂ukρ(t,u) = 0 . (3.8)

The current derivative is given by

DJk(ρ) = �k(ρ)DM(ρ) with �k
ij (ρ) = δij mk(pi) exp

[
Mi(ρ)

]
, (3.9)
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where�k is a diagonal matrix andmk(pi) is the k-th space component of m(pi).
SinceDM(ρ) = D2S(ρ) is symmetric and positive definite, we can write for all
k = 1, . . . , d

DJk = (
D2S

)−1/2
((
D2S

)1/2
�k

(
D2S

)1/2
)(
D2S

)1/2
. (3.10)

Thus DJk is similar to the real symmetric matrix
(
D2S

)1/2
�k

(
D2S

)1/2
, which

implies that
∑d

k=1 ωkDJk is diagonalizable for all (ω1, . . . , ωd) ∈ Rd and that
(3.1) is hyperbolic [12]. The question of strict hyperbolicity, i.e. whether all
eigenvalues of

∑d
k=1 ωkDJk are nondegenerate, cannot be answered in general.

It depends on the dynamics of the zero range process and one has to check for each
system separately. With (3.9) we also see thatDJk(ρ)D2 logZ

(
M(ρ)

) = �k(ρ)

is diagonal and in particular symmetric, constituting the Onsager reciprocity
relations [8, 9] for this system.

With (2.24) and (3.9) it is easy to see that S(ρ) satisfies

n∑
i=1

∂ρiS(ρ)DJkij (ρ) = ∂ρj Fk
(
M(ρ)

)
for all j = 1, . . . , n, k = 1, . . . , d,

(3.11)

provided we set F(µ) = ∑n
j=1 m(pj )(µj−1) exp[µj ]. (3.11) are thedndefining

relations for entropy entropy-flux pairs of hyperbolic systems [10, 12]. For
general systems with dn > d + 1 these equations are overdetermined and the
existence of an entropy entropy-flux pair is not guaranteed. However, as we just
have shown, for a zero range process the Euler equation has always a strictly
convex entropy S, defined in (2.23), with corresponding entropy flux F.

Systems of conservation laws with entropy are studied in detail in [12]. In gen-
eral, by transformation to the so-called entropy variables the quasilinear equation
(3.8) simplifies to a symmetric system. In our case these variables are given by
the chemical potentials µ(t,u) := M

(
ρ(t,u)

)
and the derivative of the current

with respect to µ is even diagonal,

DR
(
µ(t,u)

)
∂tµ(t,u)+

d∑
k=1

�k
(
µ(t,u)

)
∂ukµ(t,u) = 0 , (3.12)

where �k
ij (µ) := δij mk(pi) exp[µi] as defined in (3.9).

To summarize we have shown that the limit equation (3.1) is a hyperbolic sys-
tem with globally convex entropy. General results on the existence and unique-
ness of solutions of such systems are rare, even for the simple form (3.12). So
further results for systems with open boundaries are based on solid arguments
rather than rigorous proofs and presented in Section 4.
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3.3 Proof of Theorem 2

The proof follows closely the one given in [3], Chapter 6, and [9] and we only
sketch the main steps. The only part where the structure of the stationary measure
for n-component systems enters will be (3.18), where we will use the symmetry
of DM(ρ). Since πLt and νLρ(t,.) are absolutely continuous with respect to each
other and with respect to a reference invariant measure νLα , α ∈ (0,∞)n, one can
define the density

ψL
t (η) := dνLρ(t,.)

dνLα
=

∏
x∈�L

Z
(
M(α)

)
Z

(
M(ρ(t, x/L))

) n∏
i=1

exp
[
ηi(x)Mi

(
ρ(t, x/L)

]
exp

[
ηi(x)Mi(α)

] . (3.13)

Let HL(t) := H
(
πLt

∣∣νLρ(t,.)) be the entropy of πLt relative to νLρ(t,.). To establish
the estimate (3.6), we will prove a Gronwall type inequality

HL(t) ≤ HL(0)+ C

∫ t

0
HL(s) ds + o(Ld) (3.14)

with uniform error bound for all t ∈ [0, T ]. The entropy production is bounded
above by

∂tHL(t) ≤
∫
�L

1

ψL
t (η)

(
LL∗ψL

t (η)− ∂tψ
L
t (η)

)
dπLt , (3.15)

where L∗ is the adjoint of L in L2(νLα ). This inequality is proved in [3], Chapter
6, under very general conditions covering our case. Using the regularity of
M

(
ρ(t, .)

)
, the right hand side of (3.15) can be rewritten as

(
ψL
t (η)

)−1
LL∗ψL

t (η) = −
∑

x∈�L

n∑
i=1

d∑
k=1

∂ukJ
k
i

(
ρ(t, x/L)

)

−
∑

x∈�L

n∑
i=1

d∑
k=1

∂ukMi

(
ρ(t, x/L)

)
(3.16)

×
(
mk(pi) gi

(
η(x)

) − J ki
(
ρ(t, x/L)

)) + O(Ld−1)

(
ψL
t (η)

)−1
∂tψ

L
t (η) =

∑
x∈�L

n∑
i=1

∂t Mi

(
ρ(t, x/L)

)(
ηi(x)− ρi(t, x/L)

)
.
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The right hand side of the first line is a telescoping sum and vanishes up to an
errorO(Ld−1). Because of the regularity of M(ρ) a summation by parts permits
to replace the local variables by their block averages. They are defined as

η�i (x) = 1

(2�+ 1)d
∑

|x−y|≤�
ηi(y) , g�i

(
η(x)

) = 1

(2�+ 1)d
∑

|x−y|≤�
gi

(
η(y)

)
(3.17)

for i = {1, . . . , n} and � ∈ Z+. Using the hyperbolic system (3.1) and the
symmetry of DM we obtain

∂tMi

(
ρ(t, x/L)

) = −
n∑
j=1

d∑
k=1

∂ρi J
k
j

(
ρ(t, x/L)

)
∂ukMj

(
ρ(t, x/L)

)
. (3.18)

Inserting (3.17) and (3.18) in (3.16), we get∫
�L

1

ψL
t

(
∂tψ

L
t −LL∗ψL

t

)
dπLt =

∫
�L

∑
x∈�L

n∑
i=1

d∑
k=1

(
mk(pi) g

�
i

(
η(x)

)−J ki (η�(x))) dπLt
+

∫
�L

∑
x∈�L

n∑
i=1

d∑
k=1

∂ukMi

(
ρ(t, x/L)

)
f ki

(
η�(x), ρ(t, x/L)

)
dπLt ,

(3.19)

where

f ki
(
a,b

) = J ki (a)− J ki (b)− ∇J ki (b) · (a − b) . (3.20)

A bound for the second term on the right hand side of (3.19) comes from the
entropy inequality (see [3], Chapter 6). Dropping the argument of f ki we get

∫
�L

∑
x∈�L

n∑
i=1

d∑
k=1

∂ukMi

(
ρ(t, x/L)

) ∣∣f ki ∣∣ dπLt
≤ CH

(
πLt

∣∣νLρ(t,.)) + O(Ld�−1) .

(3.21)

The first term is estimated integrated in time by using the so-called one block
estimate (see [3], Chapter 5)

lim
�→∞

lim
L→∞L

−d
∫ t

0

∫
�L

∑
x∈�L

n∑
i=1

d∑
k=1(

mk(pi) g
�
i

(
η(x)

) − J ki
(
η�(x)

))
dπLs ds = 0.

(3.22)
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This is the only part of the proof where either one of the two regularity assump-
tions on the stationary measure (3.3) or (3.4) is used. Inserting (3.21) and (3.22)
in (3.19) we obtain (3.14) via (3.15) and Theorem 2 follows.

4 Stationary solutions for systems with open boundaries

4.1 Uniqueness criterion for the physical solution

In this section we turn to one of the motivations of our study and apply the
results of the previous sections to determine stationary density profiles of systems
with open boundary conditions. General results on existence and uniqueness of
solutions to systems of hyperbolic conservation laws like (3.1) and (3.12) are not
available and we have no other choice than to base our results on solid arguments
rather than rigorous proofs. We explicitly state our assumptions.

Although (3.12) is derived only up to the first discontinuity, we assume in the
following the validity of the Euler equation in the sense of weak solutions. They
are in general not unique and we have to find a criterion to single out the physical
solution, i.e. the one which describes density profiles of the underlying zero range
process. There has been a lot of work on this problem (see e.g. [10]) and one
possibility is to add a viscosity term with a small parameter ε on the right hand
side of (3.12). A natural choice of this term is the diffusive correction which
was neglected in the derivation of (3.1), where the small parameter is interpreted
as the lattice constant ε = O(L−1). In our context this term is given by the
Green-Kubo formula for the corresponding reversible zero range process with
symmetric jump probabilities (see [22], Chapter II.2.2). Since the symmetric
zero range process is a gradient system, the viscosity is already determined by
the stationary measure itself. We get the following dissipative equation

n∑
j=1

DRij (µ
ε) ∂tµ

ε
j +

d∑
k=1

mk(pi) ∂uk exp[µεi ] =

= ε

d∑
k,l=1

σkl(pi) ∂
2
ukul

exp[µεi ] ,
(4.1)

for i = 1, . . . , n, with σkl(pi) = ∑
x∈�L xkxl pi(x). The solution µε(t,u)

of Equation (4.1) is unique and globally well defined [10], since the second
derivative on the right hand side can be written as

σkl(pi) ∂
2
ukul

= 〈(
x1∂u1 + . . .+ xn∂un

)2〉
pi

and is thus positive definite. If µε(t,u) converges in a proper sense for ε ↘ 0,
the limit µ0(t,u) is a weak solution of (3.12). This convergence is in general
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difficult to show and in the following we will just assume that it holds, for details
see [12] Chapter 3.8 and references therein.

SinceD2S(ρ)
(
δijσkl(pi)∂ρj exp

[
Mi(ρ)

])
ij

is similar to a symmetric, positive

definite matrix (analogous to (3.10)), we have for some δ > 0 and arbitrary
ak ∈ Rn, k = 1, . . . , d,

d∑
k,l=1

aTk D
2S(ρ)

(
δijσkl(pi) ∂ρj exp

[
Mi(ρ)

])
ij

al ≥ δ

d∑
k=1

‖ak‖2
2 ≥ 0 . (4.2)

This expresses the viscous dissipation for the entropy and ensures (see [12],
Chapter 3.8) that µ0(t,u) satisfies the entropy inequality

∂tS
(
R(µ0(t,u))

) +
d∑
k=1

∂ukFk
(
µ0(t,u)

) ≤ 0 , (4.3)

as to be expected for a physical solution. Thus we expect that the zero viscosity
limit of (4.1) describes the macroscopic chemical potential profiles of the zero
range process. Note that for stationary solutions the system (4.1) decouples and
stationary profiles can be obtained very easily. They are only determined by the
first and second moment of the jump probabilities and the boundary conditions,
whereas they are independent of the jump rates. The rates only enter the partition
function Z(µ) and thus the transformation to density profiles via R(µ) (2.19),
which is illustrated in the next section.

4.2 Stationary profiles for one-dimensional systems

There has been considerable activity to understand the structure of the nonequi-
librium steady state of systems with open boundaries. Here we study this issue
in one dimension on the level of the hydrodynamic equations. It turns out that
the fugacity variables φi := exp[µi] are the most convenient choice. As a con-
sequence of (4.1), for d = 1 the stationary fugacity profiles φ0

i (u), u ∈ [0, 1] are
the limit solutions for ε ↘ 0 of the equation

m(pi) ∂uφ
ε
i (u) = ε σ (pi) ∂

2
uφ

ε
i (u) , i = 1, . . . , n , (4.4)

where σ(pi) = ∑
x∈�L x

2pi(x) > 0. The equations are decoupled and for a
system with open boundary conditions φi(u) = exp

[
Mi(ρ(u))

]
for u = 0, 1,

the solution is given by

φεi (u) = φi(0)+ (
φi(1)− φi(0)

)(
qi(ε)

u − 1
)/(

qi(ε)− 1
)
, (4.5)
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Figure 1: Stationary solution of (4.4) with ε = 0.02 for a
one-dimensional two-component system with open boundary conditions
φ1(0) = 1.5, φ1(1) = 1.2, φ2(0) = 2, φ2(1) = 1.2 and jump rates (4.6)
with c1 = 1.3, c2 = 1. Fugacities: dashed lines φ1 (- - -), φ2 (– – –) given
by (4.5), densities: dash-dotted lines ρ1 (-·-·-), ρ2 (–·–·–). Left: m(p1) = 1,
m(p2) = 0.5. Right: m(p1) = 1, m(p2) = −0.5.

where qi(ε) = exp
[
m(pi)/(εσ (pi))

]
. The profiles (4.5) have a very simple

structure. They are bounded above and below by φi(0) resp. φi(1) and for ε ↘ 0
they converge pointwise to flat curvesφ0

i (u)with a jump at one of the boundaries,
if φi(0) �= φi(1). The location of the jump depends on the sign of m(pi), which
corresponds to the direction of the current. The coupled transformation to the
stationary density profile ρ0

i (u) involves the fugacities of all components and is
given by ρ0

i = Ri
(

logφ0
1 , . . . , logφ0

n

)
defined in (2.19).

We illustrate our result with a simple example with two components, for which
the jump rates are given by the potential

G(k1, k2) = k1 log c1 + k2 log c2 + log(k1 + k2)! (4.6)

and thus read gi(k1, k2) = χki>0 ci (k1 +k2), i = 1, 2. The two types of particles
just move with different speeds, but in this case one can calculate the partition
function (2.9) analytically. In terms of the fugacities φ1 and φ2 it is given by

Z(φ1, φ2) =
{

φ1/c1 exp[φ1/c1]−φ2/c2 exp[φ2/c2]
φ1/c1−φ2/c2

, for φ1/c1 �= φ2/c2

exp[φ1/c1](1 + φ1/c1) , for φ1/c1 = φ2/c2
. (4.7)

The transformation to densities is then obtained via Ri(φ1, φ2) = φi∂φZ(φ1, φ2)

(cf. (2.19)). The jump probabilities are chosen such that σ(p1) = σ(p2) = 1
and m(p1) = 1. Therefore the bulk value φ0

1(u), u ∈ (0, 1) is equal to the left
boundary φ1(0). For m(p2) = 0.5 the same is true for φ2 and also the density
profiles are determined by their left boundary value. This can be seen in Figure 1
(left), where we plot the profiles for small ε = 0.02, for better illustration. For
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m(p2) = −0.5 the particle species are driven in opposite directions, leading to
a combination of fugacities in the bulk, which at neither of the two boundaries
is present. So the bulk densities no longer agree with their boundary values, cf.
Figure 1 (right).

4.3 Concluding remarks to steady-state selection

The eigenvalues λi(ρ) of the current derivativeDJ(ρ) defined in (3.9) determine
the characteristic velocities at which small perturbations of a flat fugacity profile
propagate. For zero range processes the sign of λi(ρ) is fixed by the sign of the
first moment of the jump probabilitiesm(pi) and is independent of the densities
ρ. So no matter how the boundary conditions are chosen, the qualitative behavior
of the stationary profiles does not change. This is in contrast to one-dimensional
driven lattice gases with exclusion dynamics, where a change of sign of the char-
acteristic velocities is the key ingredient for boundary induced phase transitions
(see [13, 14]). So our analysis shows that these phenomena are not present in
zero range processes and the selection of stationary states in terms of fugacities
is particularly simple. The construction of stationary profiles as shown above
can be readily generalized to higher space dimensions. Despite the absence of
boundary phase transitions, the zero range process is a very important interacting
particle system, last but not least due to its close relation to exclusion models
[20]. It is one of the few examples of multi-species systems, where the selection
of stationary states is well understood under very general conditions.
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