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The homotopical reduction of a nearest neighbor
random walk*

J. Fontbona and S. Martínez

Abstract. Consider a nearest neighbor random walk on a graph G and discard all the
segments of its trajectory that are homotopically equivalent to a single point. We prove
that if the lift of the random walk to the covering tree of G is transient, then the resulting
"reduced" trajectories induce a Markov chain on the set of oriented edges of G. We
study this chain in relation with the original random walk. As an intermediate result, we
give a simple proof of the Markovian structure of the harmonic measure on trees.
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1 Introduction

Let G = (V , E) be a countable non-oriented graph, where V is the set of vertices
and E the set of non-oriented edges. We write x ∼ y if x, y ∈ V are neighbors,
and we assume that the degree of every x ∈ V , deg(x) = |{y ∈ V : x ∼ y}|
satisfies 2 ≤ deg(x) < ∞.

A path in G is a finite sequence (y0, . . . , yn) of vertices such that yi ∼ yi+1

for all i = 1, . . . n − 1, and we say that it connects y0 with yn. We will assume
that G is connected (i.e. any pair of vertices is connected by a path) and further,
that G has neither loops nor repeated edges. A path (y0, ..., yn) is reduced if
yi �= yi+2 for all i = 0, ..., n − 2, and it is closed if y0 = yn. Every path
contains a unique reduced path. Two paths with same starting and end points y0

and yn are said to be homotopically equivalent if they contain the same reduced
path.

Let (Yn) be a nearest neighbor random walk on G. Denote by τhom
Y0

the stopping
time corresponding to the first moment at which (Yn) comes back to the start-
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ing point, in such way that the closed path (Y0, Y1, ..., Yτhom
Y0

) is homotopically

equivalent to the zero-length path (Y0). The random walk is recurrent if τhom
y0

is
finite Py0 -a.s., but nothing can be said in general if Py0{τhom

y0
< ∞} < 1. We

will interpret this probability as the return probability of the “lifted random walk
of (Yn)”, which is a random walk (Xn) on the covering tree of G that “projects”
onto (Yn).

We will show that if P{τhom
Y0

< ∞} < 1 holds, then the trajectories of (Yn)

can be almost surely simplified or “reduced”, by discarding the segments of the
infinite path (Y0, Y1, ...Yn, ...) which are homotopically equivalent to a single
point. Hence, the resulting trajectories do never backtrack, and we will prove
that they define a Markov chain (Ỹm) on the set of oriented edges

−→
E = {(x, y) ∈

V 2 : x ∼ y} of G. This chain will be called the “homotopical reduction of (Yn)”.

To compute the transition probabilities of (Ỹm), we will use the results of Cartier
[1] on transient nearest neighbor random walks (Xn) on infinite trees. We will
give an elementary proof that the associated harmonic measure is Markovian,
and compute its transition probabilities in terms of the hitting probabilities of
(Xn). By using some elements of covering spaces theory in the graph setting,
we will deduce the transition probabilities of the chain (Ỹm). We shall also prove
a simple characterization of irreducibility for (Ỹm) (in terms of the limit set of
the action of the fundamental group of G on its covering space), and in the
irreducible case, we will prove that the type (recurrent or transient) of (Yn) is
preserved by (Ỹm).

We notice that the trajectories of (Ỹm) live in the space of “geodesic rays” of
the graph G. In the case of a simple random walk (Yn) on an homogeneous
graph G, Coornaert and Papadopoulos proved in [2] that the harmonic measure
of (Xn) corresponds to the Patterson-Sullivan measure of the geodesic flow on
G, and that recurrence of (Yn) is equivalent to the ergodicity of the geodesic
flow. In that case, the chain (Ỹm) corresponds to the one-sided shift associated
to the flow. We think that (Ỹm) is a natural object to take into account, to study
the relation between geodesic flow dynamics and random walks on G in a more
general setting than the one considered in [2].

Let us give some notation. Let (�,B, P) be a probability space, S be a
countable state set and (Xn : � → S, n ∈ N) be an homogeneous Markov chain.
By Px we mean the law of (Xn) when issued from x and Ex denotes the associated
expectation. Put Nx = |{n ∈ N : Xn = x}| and τx = inf{n > 0 : Xn = x}.
We denote by F(x, y) := Px{τy < ∞} the probability of hitting y, and by
G(x, y) =: Ex(Ny) the associated Green kernel. A state x is called recurrent if
G(x, x) = ∞ and transient ifG(x, x) < ∞. We will write x → y ifF(x, y) > 0
and C(x) := {x} ∪ {y ∈ S : y ↔ x}.
Bull Braz Math Soc, Vol. 34, N. 3, 2003



HOMOTOPICAL REDUCTION OF A RANDOM WALK 511

2 Preliminaries

Let us consider a nearest neighbor random walk (Yn) on G = (VG, EG), starting
from y0 ∈ VG. Our first aim is to study the stopping time τhom

y0
and the condition

Py0{τhom
y0

< ∞} < 1. In this purpose we recall some topological facts about
graphs. A graph T = (VT , ET ) satisfying the conditions of Section 1, is a tree if,
further, it does not contain closed paths of positive length. By [x, y] we denote
the unique reduced path connecting x and y in T , also called geodesical segment
between x and y. Its length |x − y| defines a distance on VT . Similarly, a
geodesical ray in T is a sequence of vertices (x0, x1, ...) such that xi ∼ xi+1 and
xi �= xi+2 for all i ∈ N. A geodesic is a bi-infinite sequence (...x−1, x0, x1, ...)

satisfying the same constraints.
Every connected graph G = (VG, EG) has a universal covering, that is, a graph

homomorphism ν : T → G, with T = (VT , ET ) a tree, ν surjective and such
that for every x ∈ VT the restriction of ν to {x}∪ {y ∈ VT : y ∼ x} is a bijection.
We refer the reader to Massey [6], Ch. 5 and 6 for the following facts. The
universal covering is unique up to graph isomorphism, and a realization of it is
the following one. Choose and fix y0 ∈ VG. The set of vertices VT of T is the set
of reduced paths (y0, y1, .., yn) in G starting at y0, and two vertices x, y ∈ VT are
adjacent if and only if x = (y0, y1, ..., yn) and y = (y0, y1, ...yn, yn+1) for some
y0, ..., yn+1 ∈ VG or conversely. The projection ν is given here by ν(x) = xn.
If (y0, y1, ...ym) is a path in G, for each x0 ∈ ν−1(y0) there is a unique “lift”
of it to a path (x0, x1, ..., xm) in T , such that ν(xi) = yi . Two paths in G are
homotopically equivalent if and only if their lifts to T (starting at the same given
point) are homotopically equivalent (see [6] Ch. 5, Sect. 5).

Now, denote by � the group of isomorphisms of the covering ν : T → G

(that is, the group of isometries γ : T → T such that ν ◦ γ = ν), and by
Orb(x) = {γ x : γ ∈ �} the orbit of x ∈ VT . Every stabilizer Est(x) = {γ ∈
� : γ x = x} is trivial. The quotient graph �\T is identified with G by mean
of y ∈ G 
→ Orb(x) ∈ �\T , where x ∈ ν−1(y) (see [6], Ch.5, Sect. 8, and
Coornaert and Papadopoulos [2]). Since G has neither loops nor repeated edges,
it follows that |x − γ x| ≥ 3 for all x ∈ VT and every non trivial γ ∈ � . Let us
recall that � is isomorphic to the fundamental group of G, �1(G). Given a vertex
y0 ∈ VG, �1(G) is the quotient of the set of closed paths in G having extremes
y0, under the relation of homotopical equivalence. The product is induced by
the concatenation of paths and the unity element is the class of the zero-length
path (y0). Up to isomorphism, �1(G) is independent of the base point y0, and
it is a free group (see [6], Ch. 6, Sect. 5).

We introduce now the lift of the random walk (Yn) to the universal covering
T of G. Fix an arbitrary x0 ∈ ν−1(y0). Define a mapping on n−length paths
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(y0, y1, ..., yn) in G, by

ν−1
x0

(y0, y1, ..., yn) = (x0, x1, ..., xn),

where (x0, x1, ..., xn) is the unique lift of (y0, y1, ..., yn) to T starting at x0. We
also denote by ν−1

x0
its natural extension to the set of infinite paths (y0, y1, ...).

Under Py0 , the mapping

ν−1
x0

: (VG)N → (VT )N

is well defined outside a null measure set, and it is measurable as it can be seen
by considering cylinder sets. It is easy to check that

(Xn) := (ν−1
x0

◦ Yn), n ∈ N, (1)

is a Markov chain under Py0 , with transition probabilities given by

p(x, y) = Pν(x){Y1 = ν(y)} if x ∼ y,

and p(x, y) = 0 otherwise. (Xn) is hence a nearest neighbor random walk,
that we call the “lift of (Yn) to T ”. By definition of τhom

y0
, on the event {Y0 =

y0, τ
hom
y0

= n}, a path (Y0, Y1, ..., Yk) with k ≤ n is homotopically equivalent to
the zero-length path (y0) if and only if k = n (even though one can have Yk = y0

for some 0 < k < n). We deduce the following result.

Lemma 2.1. Writing P̂x0 := ν−1
x0

(Py0), we have

Py0{τhom
y0

< ∞} = P̂x0{τx0 < ∞}. (2)

Proof. In the canonical space � = (VG)N, the event Bn = {Y0 = y0, τ
hom
y0

= n}
is a disjoint union of cylinder sets, and it is the same for its image through ν−1

x0
. On

the other hand, the path (y0) lifts to (x0). Then, on Bn, the path ν−1
x0

(Y0, Y1, ..., Yn)

is homotopically equivalent to (x0), so Xn = x0. Also notice that Xk �= x0 if
1 ≤ k < n, because otherwise (X0, ..., Xk) would be homotopically equivalent
to (x0), and then (Y0, Y1, ..., Yk) would be homotopically equivalent to (y0),
contradicting the definition of τhom

y0
. The statement follows directly from these

considerations. �

Remark 2.1. In the case of an homogeneous graph, Coornaert and Papadopou-
los in [2] have considered the lift of a random walk in order to establish alternative
formulations of the ergodicity of the geodesic flow on the graph.

In the sequel we will assume that (Xn) is transient, that is, that the probability in
(2) is strictly less that 1. This condition will allow us to define the “homotopical
reduction” of (Yn) in Section 4. Before we do it, we will prove some elementary
properties of the harmonic measure on trees.
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3 Transient random walks on trees

In this section, T = (V , E) is a given tree and (Xn) is some nearest neighbor
random walk on it, and we assume that it is transient: F(x, x) < 1 for some (or,
equivalently all) x ∈ V . A classic result due to Cartier (see [1]) establishes in
that case that, for all x0 ∈ V , the random walk (Xn) converges Px0 -a.s. to the
“boundary at infinity” of T .

The boundary at infinity ofT or hyperbolic boundary, denoted ∂T , is a compact
metric space consisting of all the “ends” of geodesical rays in T . For details on
the construction of ∂T , see [1], or Coornaert and Papadopoulos [3], Ch. 1 (also
for general facts on hyperbolic spaces). The endpoint ξ of a ray r = (r0, r1, ...)

is denoted by r∞, and we shall usually write r = [r0, r∞).
We will keep in mind the following construction of ∂T . Fix a base point

x0 ∈ V . Then

∂T = {(ynyn+1)n∈N ∈ (
−→
E )N : y0 = x0, yn ∼ yn+1, yn �= yn+2 for all n ∈ N},

endowed with the product topology. Here, (ynyn+1)n∈N is the end point of the
ray r = (x0, y1, y2, ...).

To define a topology on the set V ∪ ∂T , we consider the Gromov product
(x.y)x0 = 1

2 (|x − x0| + |y − x0| − |x − y|) defined on V 2, which in this case is
equal the length of the common segment between [x0, x] and [x0, y]. It extends
naturally to V ∪ ∂T . We define for y ∈ V the sets Ux0(y) = {z ∈ V ∪
∂T : (z.y)x0 = |x0 − y|}, and Ox0(y) = Ux0(y) ∩ ∂T , which is a cylinder set
of ∂T (the topology of ∂T is also induced by the distance (ξ, η) 
→ e−(ξ,η)x0 ).
Hence, a neighborhood basis of ξ = r∞ ∈ V ∪∂T is given by the family Ux0(rn),
n ∈ N. The topology of V is the discrete one and it is an open dense subset in
V ∪ ∂T .

We will denote by T ∪ ∂T the set V ∪ ∂T endowed with this topology, called
the hyperbolic compactification of T . Up to homeomorphism, the boundary and
the compactification of T are independent of the base point x0.

Following Cartier [1] the set

�′ = {ω ∈ � : there exists ξ ∈ ∂T such that Xn → ξ}
is of full measure, that is Px0(�

′) = 1, and the random variable X∞ = lim
n→∞ Xn

is defined Px0 - a.s. Furthermore, the family of measures Px0{X∞ ∈ ·}, x0 ∈ V ,
defined on ∂T , is harmonic:

Px0{X∞ ∈ ·} =
∑
x∼x0

p(x0, x)Px{X∞ ∈ ·}, for all x0 ∈ V,

Bull Braz Math Soc, Vol. 34, N. 3, 2003



514 J. FONTBONA and S. MARTÍNEZ

and one can identify ∂T with the Martin boundary of the transient chain Xn (see
also [7], Ch. 4, Sect. 26).

Lemma 3.1. Let x0, y ∈ V be different and z ∈ V be the unique vertex such
that z ∈ [x0, y], z ∼ y. Then

Px0{X∞ ∈ Ox0(y)} = F(x0, y)
1 −F(y, z)

1 −F(z, y)F(y, z)
.

Proof. First, we show that

Px0{X∞ ∈ Ox0(y)} = G(x0, y)Py{τy = ∞, τz = ∞}. (3)

Consider F = {X∞ ∈ Ox0(y), X0 = x0} and ω ∈ F . Denote by N(ω) the small-
est n(ω) such that Xk(ω) �∈ [x0, y] for all k ≥ n(ω). Then, XN(ω)−1(ω) = y

a.s. The sets Fn = {ω ∈ F : N(ω) = n}, with n ≥ 2 define a partition of F .
Writing s = (s1, . . . sk) ∈ V k and

Wk = {s ∈ V k : x0 ∼ s1, sk ∼ y, si ∼ si+1 for all i = 1, . . . k − 1},
we have Fn = ⋃

s∈Wn−2{X0 = x0, X1 = s1, . . . Xn−2 = sn−2, Xn−1 = y, Xk �∈
[x0, y] for all k ≥ n}. From the Markov property we get,

Px0(Fn) =
∑

s∈Wn−2

P{Xk �∈ [x0, y] for all k ≥ n|Xn−1 = y}

× Px0{X1 = s1, . . . , Xn−1 = y}
= Py{ Xk �∈ [x0, y] for all k ≥ 1}Px0{Xn−1 = y}.

Sincex0 �= y, we deduce that Px0(F ) = Py{Xk �∈ [x0, y] for all k ≥ 1}G(x0, y).

On the other hand, as (Xn) is of nearest neighbor type and T is a tree, we get the
almost sure equality

{X0 = y, Xk �∈ [x0, y] for all k ≥ 1} = {X0 = y, τy = ∞, τz = ∞},
and we conclude (3).

Now, we have

Py{τy = ∞, τz = ∞} = 1 −F(y, y) −F(y, z) + Py{τy < ∞, τz < ∞}. (4)

On another side,

Py{τy < ∞, τz < ∞} = Py{τy < τz < ∞} + Py{τz < τy < ∞}
= Ey(1{τy<τz}1{τy<∞}E(1{τy<τz<∞}|F τy ))

+Ey(1{τz<τy }1{τz<∞}E(1{τz<τy<∞}|F τz)),
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and then, by the strong Markov property we find

Py{τy < ∞, τz < ∞} = Py{τy < τz}F(y, z) + Py{τz < τy}F(z, y) .

Since {X0 = y, τz < τy} = {X0 = y, X1 = z} a.s., we have Py{τz < τy} =
p(y, z) and then

Py{τy < ∞, τz < ∞} = Py{τy < τz}F(y, z) + p(y, z)F(z, y)

= (1 − Py{τy = ∞, τz = ∞}
− p(y, z))F(y, z) + p(y, z)F(z, y).

By replacing this expression in relation (4), we obtain

Py{τy = ∞, τz = ∞} = 1 −F(y, y) + p(y, z)(F(z, y) −F(y, z))

1 +F(y, z)
. (5)

Now, it is proven in [1] that for nearest neighbor random walks on trees the
following relation holds

p(y, z)G(y, y) = 1

F(y, z)−1 −F(z, y)
. (6)

By using (3), (5), (6) and the identities 1 −F(y, y) = (G(y, y))−1 andF(x0, y)

G(y, y) = G(x0, y), we conclude that

Px0{X∞ ∈ Ox0(y)} =G(x0, y)

[
1 −F(y, y) + p(y, z)(F(z, y) −F(y, z))

1 +F(y, z)

]

= F(x0, y)

1 +F(y, z)

(
1 + F(y, z)(F(z, y) −F(y, z))

1 −F(z, y)F(y, z)

)

=F(x0, y)

(
1 −F(y, z)

1 −F(z, y)F(y, z)

)
· �

Now, let us describe the way (Xn) determines X∞, as n tends to ∞. Define
inductively a sequence of random times km ∈ N and random variables X̂m ∈ V

by

• k0 = sup{k ∈ N : Xk = X0} + 1, X̂0 = Xk0,

• km+1 = sup{k ∈ N : Xk = X̂m} + 1, X̂m+1 = Xkm+1, m ≥ 1.

Since (Xn) is transient, the variable km is finite, and by an induction argument
the variables km and X̂m are measurable, for every m ∈ N. By construction, the

Bull Braz Math Soc, Vol. 34, N. 3, 2003



516 J. FONTBONA and S. MARTÍNEZ

sequence (X̂0, X̂1, ..., X̂m, ...) is a geodesic ray issued from X0 with end point
ξ = (X̂mX̂m+1)m∈N, and

Xn ∈ Ux0(X̂m) for all n ≥ km.

Thus, Xn has a limit point X∞ ∈ ∂T equal to ξ .

Now, we set X̃0 = (X0X̂0) and X̃m = (X̂m−1X̂m) for all m ≥ 1, and by P̃
x0

we mean the probability measure induced on (
−→
E )N by (X̃m) when X0 = x0, so

P̃
x0 = Px0{X∞ ∈ ·}.

Proposition 3.1. ((X̃m), P̃
x0) is a Markov chain on E with initial distribution

p̃ = (p̃(xy)) and transition matrix P̃ = (p̃((xy), (zw))) given respectively by

p̃(xy) =
{

µ(x0y) if x = x0
0 otherwise

, p̃((xy), (wz)) =
{

µ(yz)
1−µ(yx)

if w = y, x �= z

0 otherwise
,

where for each (xy) ∈ −→
E , µ(xy) is defined by

µ(xy) = F(x, y)(1 −F(y, x))

1 −F(x, y)F(y, x)
. (7)

Proof. For x ∼ y it holds Px0−a.s. that

{X0 = x, X̂0 = y} = { There exists N ∈ N : XN−1 = x, XN = y,

for all n ≥ N Xn �= x}
= {X∞ ∈ Ox(y)}.

Thus, by Lemma 3.1 we get P̃
x0{X̃0 = (x0y)} = Px0{X∞ ∈ Ox0(y)} =

µ(x0y), so P̃ is a stochastic matrix and p̃ a probability vector. It is clear that
P̃

x0{X̃m+1 = (xy)|X̃m = (uv)} = 0 except if y = u and x �= v. Denote by
(x0, y0, ...ym−2, x, y) the reduced path connecting x0 and y. Then,

{X0 = x0, X̃m = (xy)} = {X̃0 = (x0y0), X̃1 = (y0y1), ..., X̃m = (xy)}.
We deduce that if P̃

x0{X̃m = (xy)} > 0 then

P̃
x0{X̃m+1 = (yz)|X̃m = (xy)}

= P̃
x0{X̃m+1 = (yz), X̃m = (xy), X̃m−1 = (ym−1x), ..., X̃0 = (x0y0)}

P̃x0{X̃m = (xy), X̃m−1 = (ym−1x), ..., X̃0 = (x0y0)}
. (8)
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Hence

P̃
x0{X̃m+1 = (yz)|X̃m = (xy)} =

P̃
x0{X̃m+1 =(yz)|X̃m =(xy), X̃m−1 =(ym−1x), ..., X̃0 = (x0y0)},

proving that P̃
x0 is Markovian. Now,

{X̃0 = (x0y0), X̃1 = (y0y1), . . . , X̃m = (xy)} = {X0 = x0} ∩ {X∞ ∈ Ox0(y)}

Px0 -a.s., which, together with (8), yields

P̃
x0{X̃m+1 = (yz)|X̃m = (xy)} = Px0{X∞ ∈ Oxo

(z)}
Px0{X∞ ∈ Oxo

(y)} . (9)

Since T is a tree, one hasF(x0, z) = F(x0, y)F(y, z), and from (9) and Lemma
3.1 we conclude that

p̃((xy), (yz)) = F(y, z)
1−F(z,y)

1−F(y,z)F(z,y)

1−F(y,x)

1−F(x,y)F(y,x)

= µ(yz)

1 − µ(yx)
. �

Remark 3.1. The previous statement extends to arbitrary trees the result of
Dynkin and Malyutov [4] on the harmonic measure on free groups of finite rank.
See also Ledrappier [5].

At this point, we can define the homotopical reduction of the nearest neighbor
random walk (Xn) on T as the

−→
E valued Markov chain (X̃m). Our aim is to

extend this definition to general graphs G.

4 The homotopical reduction of (Yn)

In this paragraph and in the next lemma, � is a group acting by the left on a given
set S. A matrix A indexed by S is said to be �-invariant if A(x, y) = A(γ x, γy)

for all x, y ∈ S, for all γ ∈ �. If P = (p(x, y) : x, y ∈ S) is a �-invariant
stochastic matrix, it is the same for P n, G, F ; the associated Markov chain (Zn)

is said to be �-invariant.

Let S = �\S be the quotient space and denote by ν : S → S the canonical
projection. For x ∈ S we denote by x ∈ S its orbit or equivalence class.

Lemma 4.1. Let (Zn) be a �-invariant Markov chain on S.
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(i) Zn = ν ◦ Xn defines a Markov chain on S with transition probabilities
given by p(x, y) = ∑

y′∈y p(x, y ′) for all x, y ∈ S and initial distribution
px0

= ∑
y∈x0

py (these quantities are independent of the choice of x ∈ x).

(ii) Let G and F denote respectively denote the Green kernel and the hitting
probabilities of (Zn), and G and F the corresponding functions for (Zn).

(a) If x is a recurrent state for (Zn), then x is a recurrent state for (Zn).

(b) If x is transient for (Zn), then x is recurrent for (Zn) if and only if∑
y′∈x F(x, y ′) = ∞ .

(c) Let y be a transient state and x → y. Then

F(x, y) =
∑

z∈x F(x, z)

1 + ∑
z′∈y\{y}F(y, z′)

,

F(y, y) =
∑

z∈y F(y, z)

1 + ∑
z′∈y\{y}F(y, z′)

.

(d) If y is transient and x → y, then y is recurrent if and only if∑
z∈y F(x, z) = ∞.

Proof. Part (i) is standard. Let us check (ii).

(a): It is obvious from the relation G(x, y) = ∑
y′∈y G(x, y ′) for all x, y ∈ S .

(b): We useG(x, x) = ∑
y′∈x G(x, y ′) = G(x, x)+∑

y′∈x\{x}F(x, y ′)G(y ′, y ′) .

Since G is �- invariant, G(x, x) = (G(x, x))(1 + ∑
y′∈x\{x}F(x, y ′)), and the

equivalence follows from 0 < G(x, x) < ∞.

(c): Take x �= y. We have G(x, y) = ∑
z∈y G(x, z), and the second identity in

the proof of (b) yields

G(x, y) = F(x, y)(G(y, y))(1 +
∑

z′∈y\{y}
F(y, z′)).

Since 0 < G(y, y) < ∞, we obtain

F(x, y)(1 +
∑

z′∈y\{y}
F(y, z′)) =

∑
z∈y

G(x, z)

G(y, y)
=

∑
z∈y

G(x, z)

G(z, z)
=

∑
z∈y

F(x, z) , (10)

the latter holding because x �= z, for every z ∈ y. The first relation in (c) follows.
For the second one, notice that y is transient because y is, so G(y, y) = 1

1−F(y,y)
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(a similar relation holds for G(y, y)). Therefore, the second identity in the proof
of (b) yields

1

1 −F(y, y)
= 1 + ∑

z′∈y\{y}F(y, z′)
1 −F(y, y)

,

and the asserted relation for F(y, y) is obtained.

(d): It follows from (10). �

Remark 4.1. By induction p(n)(x, y) = ∑
y′∈y p(n)(x, y ′). It follows that

C(x) = {y ∈ S : there exist y ′, y ′′ ∈ y with x → y ′ and y ′′ → x} and
C(x) ⊇ ν(C(x)). In particular, (Zn) irreducible implies (Zn) irreducible.

Let us consider again the random walk (Yn) on the graph G = (VG, EG) as
in Section 2. The lifted random walk (Xn) defined in (1) is easily seen to be
invariant for the group � of isomorphisms of the covering ν : T → G. Further,
with the notation of Lemma 4.1 one has Xn = Yn. However, we will apply
Lemma 4.1 in a different way. Indeed, the group � also acts on the left on

−→
E T

by γ (xy) = (γ x γy) and the quotient space �\−→E T is identified with the set−→
E G of oriented edges of G by Orb((xy)) 
→ ν((xy)) := (ν(x)ν(y)). We can
now state our main result.

Theorem 4.1. Let (Yn) be a nearest neighbor random walk on the graph G =
(VG, EG) and assume that

Py0{τhom
y0

< ∞} < 1

for some (or all) y0 ∈ VG. With each sample path (Y0, Y1, ..., Yn...) we associate
a sequence

(Y0, Ŷ0, Ŷ1, ..., Ŷm...)

of vertices of VG by erasing the segments of the original path which are homo-
topically equivalent to a zero-length path. The mapping (Yn)n∈N 
→ (Ŷm)m∈N is
measurable, and if we set

Ỹ0 := (Y0Ŷ0), Ỹm := (Ŷm−1Ŷm), m ≥ 1,

then (Ỹm) is a Markov chain with values in
−→
E G. Let µ(uv) be defined as in (7)

in terms of the hitting probabilitiesF(u, v) of the lifted random (Xn) associated
with (Yn). Then, conditioned to Y0 = y0, the initial distribution and transition
probabilities of (Ỹm) are given respectively by:

p̃(xy) =
{

µ(x0 y ′) if x = x0

0 otherwise
,
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where x0 ∈ ν−1(y0) is arbitrary and y ′ ∈ VT satisfies y ′ ∼ x0 and ν(y ′) = y;
and

p̃((xy), (wz)) =
{

µ(y′z′)
1−µ(y′x′) if w = y, x �= z

0 otherwise
,

where y ′ ∈ ν−1(y) is arbitrary, and x ′, z′ ∈ VT satisfy x ′, z′ ∼ y ′ and ν(x ′) =
x, ν(z′) = z. This chain (Ỹm) will be called the homotopical reduction of (Yn).

Proof. Consider the homotopical reduction (X̃m) of the lift (Xn) of (Yn), as
defined in the previous section. Notice (with the notation therein) that the paths
(X0, ..., Xk1−1) and (X̂m, Xkm+1−1), m ≥ 0, are homotopically equivalent to
the zero-length paths (X0) and (X̂m). Define Ŷm := ν(X̂m) for all m ∈ N.
Then, (Y0, ..., Yk1−1) and (Ŷm, Ykm+1−1), m ≥ 0, are paths in G homotopically
equivalent to the zero-length paths (Y0) and (Ŷm) respectively. On the other
hand, as |X0 − X̃2| = |X̃m − X̃m+2| = 2, we have Y0 �= Ỹ2, Ỹm �= Ỹm+2, and
for all m the path (Y0, Ŷ0, Ŷ1, ..., Ŷm) is reduced. By construction, (Ỹm) is a
measurable transformation of the trajectories of (Yn). Now, from the properties
fulfilled by ν, we get that for each pair (xy), (wz) ∈ −→

E G and any (x ′y ′) ∈ −→
E T

with (ν(x ′)ν(y ′)) = (xy), there exists a unique (w′z′) ∈ ν−1((wz)) such that
z′ ∼ y ′. The result follows from this observation, Lemma 4.1 applied to Z = X̃,
and Proposition 3.1. �

5 Some examples

In this section we supply an example, concerning a question put by the referee.
We notice that computing explicitly the transition probabilities of (Ỹm) (or equiv-
alently of (X̃m)) might not be possible in general. Clearly this should be easier
in presence of symmetry. For instance, let Xn be is a simple random walk on a
regular tree T k, (with deg(x) = k for all x ∈ VT ), or on a bi-regular tree T k,l

(that is, deg(x) = k or l for all x ∈ VT , and x ∼ y implies deg(x) �= deg(y)).
We readily see that in these cases X̃m has associated probabilities p̃(xy) = 1

deg(x)

and p̃((xy)(yz)) = 1
deg(y)−1 . The same is valid for the simple random walk on

Z
d (as follows from the case of the regular tree T 2d).

In these examples however, symmetry has simplified things too much. Indeed,
here we could have obtained the same random walks with reduced trajectories
in a more "naive" way: at each step, simply choose with equal probability one
neighbor among those being different from the vertex visited at the previous step.
(More generally, this could be seen as choosing a neighbor conditioned to not
backtracking.)

Bull Braz Math Soc, Vol. 34, N. 3, 2003



HOMOTOPICAL REDUCTION OF A RANDOM WALK 521

In general, even in presence of symmetry, the homotopical reduction we have
introduced may not coincide with the previous construction. We will now give
a simple example of this on a tree.

Let T be a tree with VT partitioned in two subsets, say VT = V1 ∪ V2. As-
sume that each vertex x ∈ V1 (respectively V2) has deg(x) = k1 (respectively
deg(x) = k2), with ki ≥ 3 and k1 �= k2. Further, every vertex in V1 is connected
to k1 − 1 vertices in V1 and to one vertex in V2. On the other side, every vertex
of V2 is connected to k2 vertices of V1.

We consider a simple random walk Xn on T . For the sake of concreteness we
shall assume k1 = 3, k2 = 4. Let u, u′ be in V1 and v be in V2 and such that u′
and v are neighbors of u. Let us write a := F(u, u′). By symmetry we have
F(u, u′) = F(u′, u) and then from (7) we obtain

µ(uu′) = a − a2

1 − a2
. (11)

On the other hand, also by symmetry one has Pu{X∞ ∈ ∂T } = 1 = 2µ(uu′) +
µ(uv), and we deduce that

µ(uv) = 1 − a

1 + a
. (12)

By similar reasons, it is obtained µ(vu) = 1
4 .

Now, by the harmonic property of Pu{X∞ ∈ ·}, it holds that

µ(uv) = Pu{X∞ ∈ Ou(v)} = 1

3
Pv{X∞ ∈ Oc

v(u)} + 2 · 1

3
Pu′ {X∞ ∈ Ou′(v)}

= 1

4
+ 2

3
µ(u′u)

µ(uv)

1 − µ(uu′)
= 1

4
+ 2

3
aµ(uv). (13)

We have used here the facts that Pv{X∞ ∈ Oc
v(u)} = 3Pv{X∞ ∈ Ov(u)} and

µ(u′u)

1−µ(uu′) = F(u, u′) = a. From (12) and (13) we conclude that a is the unique

solution in ]0, 1[ of 8x2 − 23x + 9 = 0 (in particular a �= 1
2 ).

Now we can easily check that the transition probabilities of the homotopical
reduction X̃m are different from those of the “naive” reduction. In fact, if they
would coincide, we should have

µ(uv)

1 − µ(uu′)
= µ(uū)

1 − µ(uu′)
,

where ū ∈ V1 is the neighbor of u which is different from u′ and v, and we
deduce that µ(uu′) = µ(uv). This together with (11) and (12) imply that a = 1

2 ,
a contradiction.
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6 Irreducibility and recurrence

For u, x, y ∈ VT let us denote u <x y if u ∈ [x, y] and u �= y. The structure of
the Markov chain (X̃m) is very simple: for two different edges (xy), (wz) ∈ −→

E T

one has (xy) → (wz) if and only if y <x w <x z, which is also equivalent to
P̃

x
(xy){X̃m = (wz)} > 0, where m = |x −w| = |y − z|. Of course, the additional

complexity of (Ỹm) comes from the “folding “ of some geodesic segments of T

into closed reduced paths in G, and it is entirely determined by the action of the
group � on T . Let � denote the limit set of �,

� := Adh{Orb(x)} ∩ ∂T

(which is independent of x ∈ VT ). We introduce the notation rk(�) for the rank
of �,

x := ν(x) and (xy) := (ν(x)ν(y)) for every x, y ∈ VT .

We will show the following result.

Proposition 6.1. Assume rk(�) ≥ 2. The following properties are equivalent
(a) (Ỹm) is irreducible.
(b) for all (xy) ∈ −→

E G, (yx) ∈ C(xy).
(c) � = ∂T .

For its proof we will first state some elementary facts. In this purpose we
introduce some new notation. We call e the unity element of �. For each x ∈ VT

and γ ∈ �\{e}, let xγ ∈ VT be the neighbor of x such that xγ ∈ [x, γ x]. The
vertices γ xγ and γ x are adjacent, and one can either have

(1) : γ x <x γ xγ , or (2) : γ xγ <x γ x.

We will write for each x ∈ VT and for i = 1, 2,

�x
i := {γ ∈ � : xγ satifies the condition (i)}.

We remind that the group of graph isomorphisms � acts without fixed points,
and further, |x − γ x| ≥ 3 for all x ∈ VT and γ ∈ �\{e}. Also notice that r <s u

and u <r w imply r, u <s w.

Lemma 6.1.

(a) Let γ ∈ �\{e}. Then γ ∈ �x
2 iff xγ = xγ −1 , and �x

i = (�x
i )−1 for i = 1, 2.

(b) For x ∈ VT , γ ∈ �x
1 , it is verified γ ∈ �z

1 for all z ∈ [x, γ x].
(c) For i = 1, 2, γ ∈ �x

i �⇒ γ n ∈ �x
i for all n ∈ Z\{0}.

Bull Braz Math Soc, Vol. 34, N. 3, 2003



HOMOTOPICAL REDUCTION OF A RANDOM WALK 523

Proof.

(a): Since γ ∈ �x
2 is equivalent to xγ ∈ [γ −1x, x], the statement follows easily.

(b): Consider z = xγ . One has γ x ∈ [x, γ z]. If we had γ ∈ �z
2, then γ zγ = γ x

and consequently, zγ = x and x ∈ [z, γ z]. But also z ∈ [x, γ z], so we would
obtain x = z, a contradiction. One can repeat this argument with z′ = zγ , and
along the whole segment [x, γ x].
(c): From (a) we only need to prove it for n ∈ N. First consider γ ∈ �x

1 . Notice
that

(γ nx)γ = γ nxγ for all n ∈ N\{0}. (14)

By definition, for n = 1 we have that xγ n = xγ and γ nxγ �∈ [x, γ nx]. If this
property is true for some n ≥ 1, from (14) we get (γ nx)γ ∈ [γ nx, γ n+1x],
and then γ nx ∈ [x, γ n+1x]. Thus, xγ n+1 = xγ . Since γ xγ �∈ [x, γ x], we
have γ n+1xγ ∈ [γ nx, γ n+1x], and then γ n+1xγ �∈ [x, γ n+1x], which proves the
property for n + 1. Therefore, γ n+1 ∈ �x

1 .

Now, let us consider γ ∈ �x
2 . The equality (14) also holds in this case. Take

m = |x − γ x|, which satisfies m ≥ 5. Assume for a while that there exists
z ∈ [x, γ x] such that |z − x| ≤ k := �(m − 3)/2� and γ ∈ �z

1, and take a vertex
z with such properties minimizing the distance to x . Let y ∈ [x, z] be such that
y ∼ z. Since γ nzγ = (γ nz)γ , one has γ ∈ �

γ nz

1 for every n ∈ Z, so from (b)
and (a) we deduce that [γ nx, γ ny] ∩ [γ lz, γ mz] = ∅ for all m, n, l ∈ Z.

Now, let n ∈ Z\{0} and write α = γ n. The previous set of equalities imply
that (x.αz)z = 0, and (x.α−1z)z = 0. It follows that (αx.z)αz = 0. We deduce
that [z, αz] ⊆ [x, αx], and since xγ ∈ [x, z] and αxγ ∈ [αx, αz], we find that
[xγ , αxγ ] ⊆ [x, αx], and then α ∈ �x

2 .
It only remains us to prove that the required z exists. Suppose that this is

not true. Let w ∈ [x, γ x] be such that |x − w| = k (k defined as above), and
x0 = x, x1, x2, ..., xm = γ x be the reduced path connecting x with γ x. Then,
x1 = xγ and xm−1 = γ x1. Since γ ∈ �

x1
2 , we also have xm−2 = γ x2, and the

same reasoning up to xk = w gives γ xi = xm−i , for i = 0, ..., k + 1. On the
other hand, for every z ∈ [x, w] one has |z − γ z| = |zγ − γ zγ | + 2, which
implies that m = |x − γ x| = 2(k + 1) + |xk+1 − γ xm−k−1|. We deduce that
|xk+1 − γ xm−k−1| < 3, which is a contradiction. �

Lemma 6.2. Assume that � = ∂T and rk(�) ≥ 2. Then, for all x, y ∈ VT , x ∼
y, there exists z ∈ Ux(y) such that deg(z) ≥ 3.
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Proof. Consider x ∼ y and the nonempty set �x := {γ ∈ � : y = xγ }. If there
exists γ ∈ �x

2 ∩ �x , from the proof of Lemma 6.1 (c) there exists z ∈ [x, γ x]
such that γ ∈ �1

z . From Lemma 6.1 (a) we have zγ �= zγ −1 , and since γ −1 ∈ �z
1,

Lemma 6.1 (b) implies that u = zγ −1 satisfies γ ∈ �u
1 . Thus, the neighbor w ∼ z

in [x, z] is different from zγ and zγ −1 .

Now, suppose that x ∼ y do not satisfy the assertion and �x ⊆ �x
1 . Then

Ux(y) is a geodesic ray. Assume α ∈ �x minimizes {|x − γ x| : γ ∈ �x}. Since
α ∈ �x

1 and for all n ∈ Z the set [αnx, αn+1] is isomorphic to [x, αx] , T is equal
to a geodesic and |x −αnx| = |n||x −αx|. Furthermore, it is not hard to deduce
that � is spanned by α, contradicting rk(�) ≥ 2. �

From Remark 4.1, (wz) ∈ C(xy) if and only if there are γ, γ ′ ∈ � such that
(xy) → (γw γ z) and (wz) → (γ ′x γ ′y). Since (X̃m) is �−invariant, this
yields to (γw γ z) → (γ γ ′x γ γ ′y), and then (xy) → (γ̂ x γ̂ y), with γ̂ = γ γ ′.
Therefore, we have y <x γw <x γ z <x γ̂ x <x γ̂ y and γ̂ ∈ �x

1 , and we can
write

C(xy)={(xy)}∪
{
(wz)∈−→

E G : there exist (w′z′)∈(wz) and γ ∈�x
1

such that xγ =y and w′ <x z′ <x γ x

}
. (15)

Proof of Proposition 6.1.

(b) ⇒ (a): Since y <x w <x z or y <x z <x w, the statement follows easily
from the description of C(xy) done in (15).

(a) ⇒ (c): For x, z ∈ VT , let y ∼ x,w ∼ z be such that y ∈ [x, z] and
w �∈ [x, z]. Since (zw) ∈ C(xy), there exist α, β ∈ � such that xα = y and
βz <x βw <x αx (notice that α �= β). Then, β−1αx ∈ Ux(z), and (c) follows
by taking for each ξ ∈ ∂T a sequence zn → ξ .

(c) ⇒ (b): It suffices to show that for each (xy) ∈ −→
E it holds (xy) → (yx) . Take

(xy) ∈ (xy) and z ∈ Uy(x) satisfying deg(z) ≥ 3 and minimizing the distance
to x (z exists by Lemma 6.2). Let z1, z2 �∈ [x, z] be different neighbors of z. By
hypothesis we can find α, β ∈ � verifying αx ∈ Ux(z1) and βx ∈ Ux(z2), and
we choose them so that |u − z| ≥ |αx − z| for all u ∈ Ux(z1) ∩ Orb(x) and
|u − z| ≥ |βx − z| for all u ∈ Ux(z2) ∩ Orb(x). Observe that y = xα = xβ .

If α or β ∈ �x
2 , the conclusion is easily obtained. Suppose now that α and

β are both in �x
1 . From Lemma 6.1(a) and (b), one has x = yα−1 = yβ−1 so
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l := (α−1y.β−1y)y ≥ 1. If l < min{|α−1y − y|, |β−1y − y|}, it follows that
γ −1x �∈ [y, γ −1y] for γ = α, β. This implies that α−1x, β−1x �∈ [α−1y, β−1y]
and then x, αβ−1x �∈ [y, αβ−1y]. Thus, (xy) → (αβ−1y αβ−1x).

If l = min{|α−1y − y|, |β−1y − y|} we assume without loss of generality that
l = |αy − y|. Then, one has [y, α−1y] ⊆ [y, β−1y] and [α−1x, x] ⊆ [β−1x, x].
As |αmx − x| = |m||αx − x| for every m ∈ Z, there exists n ∈ N such that
α−nx <x β−1x <x α−n−1x (we have α−nx �= β−1x because otherwise αn = β

and [x, αx] ⊆ [x, βx], which contradicts the choice of α and β). Clearly the
following relation holds

(β−1x.α−n−1x)x ≤ |β−1x − x| . (16)

If the equality holds in (16), we deduce that (β−1y.α−n−1y)y < |β−1y−y|, which
together with αn+1, β ∈ �x

1 , yield to (α−n−1x α−n−1y) → (β−1y β−1x), and we
conclude the result. If "<" holds in (16), then β−1x ∈ [α−n−1x, x], and from the
choice of n we get β−1x ∈ [α−n−1x, α−nx]. We also obtain β−2x �∈ [α−n−1x, x].
Since β−1x ∈ [β−2x, x], we deduce that

|β−1x − x| ≤ (α−n−1x.β−2x)x . (17)

Then, we must consider two subcases. In the subcase "<" of (17), the vertex
w ∈ [α−n−1x, x] such that |w − x| = (α−n−1x.β−2x)x , verifies deg(w) ≥ 3
and w ∈ [α−n−1x, β−1x] ⊆ [α−n−1x, α−nx]. Thus, αn+1w ∈ [x, αn+1β−1x] ⊆
[x, αx]. From the choice of α we must have [x, αn+1β−1x] ⊆ [x, z], and since
deg(αn+1w) ≥ 3 we get by definition of z that αn+1w = x or αn+1w = z. The
first relation is not feasible since |w − x| < |α−n−1x − x|. The second leads
(with the definition of α) to αn+1w = αn+1β−1x, and then w = β−1x. This
gives (β−2x β−2y) → (α−n−1y α−n−1x), and the result follows.

Finally, if in (17) the equality holds, one has α−n <x β−1 <x α−n−1 <x β−2

and then β2α−n−1x ∈ [x, βx]. From the choice of β we have [x, β2α−n−1x] ⊆
[x, z], so z ∈ [β2α−n−1x, βx]. This implies that αn+1β−2z ∈ [x, αn+1β−1x] ⊆
[x, αx]. From the choice of α, we necessarily have [x, αn+1β−1x] ⊆ [x, z], and
since deg(αn+1β−2z) = deg(z) ≥ 3 we get αn+1β−2z = x or αn+1β−2z = z.
The latter contradicts the fact that Est(z) is trivial (� is free). If the first relation
holds, we deduce from β−1x ∈ [α−n−1x, α−nx] that αn+1β−1x = z, and then
αn+1β−1αn+1β−2z = z and the same contradiction arises. This finishes the
proof. �

Remark 6.1. If there exists (xy) such that (yx) ∈ C(xy), then it follows from
Lemma 6.1 (c) that rk(�) ≥ 2.
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Finally, we have the following result.

Proposition 6.2. Assume that (Ỹm) is irreducible. Then, it is recurrent if and
only if (Yn) is recurrent.

Proof. Let x ∈ VT be fixed and denote by G the Green function of (Ỹm) and
by F the hitting probabilities of (Xn). By Lemma 4.1, (Yn) is recurrent if and
only if

∑
γ∈� F(x, γ x) = ∞. We will show that

G((xy), (xy)) = ∞ for every y ∼ x if and only if
∑
γ∈�1

F(x, γ x) = ∞;

and (18)

G((xy), (yx)) = ∞ for every y ∼ x if and only if
∑
γ∈�2

F(x, γ x) = ∞.

For y ∼ x, one has G((xy), (xy)) = ∑
γ∈� G((xy), (γ xγy)). Then, if nγ =

|x − γ x|, we have

G((xy), (xy)) = G((xy)(xy)) +
∑
γ∈�1
xγ =y

P̃
x
(xy){X̃nγ

= (γ x γy)}.

Writing n = nγ and (y, y2, ..., yn−1, γ x) for the reduced path connecting y
and γ x, we have

p̃(n)((xy), (γ x γy)) = µ(y1y2)

1 − µ(yx)
· · · µ(yn−1γ x)

1 − µ(yn−1yn−2)

µ(γ x γy)

1 − µ(γ x yn−1)

= µ(γ x γy)

1 − µ(yx)

µ(y1y2)

1 − µ(y1x)
· · · µ(yn−1γ x)

1 − µ(yn−1yn−2)
= µ(xy)

1 − µ(yx)
· · · µ(yn−1γ x)

1 − µ(yn−1yn−2)
.

Now, one has µ(uv)

1−µ(vu)
= F(u, v) for every u ∼ v, so the previous expression

is equal to
F(x, y)F(y1, y2) · · ·F(yn−1, γ x) = F(x, γ x).

We deduce that
∑

y∼x G((xy), (xy)) = deg(x) + ∑
γ∈�1

F(x, γ x), and we
conclude the first equivalence in (18).

Concerning the second equivalence, by using the notation nγ := |x − γy| =
|y − γ x|, we have

G((xy), (yx)) =
∑
γ∈�2
yγ =y

P̃
x
(xy){X̃nγ

= (γy γ x)}.
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Now, if (y, z2, ..., zn−1, γy) is the reduced path connecting x and γy, for
n = nγ we have

p̃(n)((xy), (γyγ x)) = µ(z1z2)

1 − µ(yx)
· · · µ(zn−1γy)

1 − µ(zn−1zn−2)

µ(γy γ x)

1 − µ(γy zn−1)

= µ(γy γ x)

1 − µ(yx)

µ(z1z2)

1 − µ(z1x)
· · · µ(zn−1γy)

1 − µ(zn−1zn−2)
= µ(yx)

1 − µ(yx)
F(y, γy) .

This expression is equal to

µ(yx)

µ(xy)
F(xy)F(y, γy) = 1 − µ(xy)

µ(xy)
F(y, x)F(x, γy) = 1 − µ(xy)

µ(xy)
F(x, γ x).

Therefore,

G((xy), (yx)) = 1 − µ(xy)

µ(xy)

∑
γ∈�2
yγ =y

F(x, γ x) ,

and then

deg(x) min
y∼x

{
1 − µ(xy)

µ(xy)

} ∑
γ∈�2

F(x, γ x) ≤
∑
y∼x

G((xy), (yx))

≤ deg(x) max
y∼x

{
1 − µ(xy)

µ(xy)

} ∑
γ∈�2

F(x, γ x) .

This proves the required relation. �
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