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Ergodicity conditions for a continuous
one-dimensional loss network

Nancy L. Garcia and Nevena Marić

Abstract. One dimensional continuous loss networks are spatial birth-and-death pro-
cesses which can be dominated by a multitype branching process. Using the Peron-
Frobenius theory for sub-criticality of branching process we obtain a sufficient condition
for ergodicity of one-dimensional loss networks on R with arbitrary length distribution
π and cable capacity C.
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1 Introduction

The continuous unbounded one dimensional loss network is a spatial birth and
death process and can be interpreted as a system where users are arranged along
an infinitely long cable and a call between two points on the cable s1, s2 ∈ R

involves just that section of the cable between s1 and s2. Past any point along
its length the cable has the capacity to carry simultaneously up to C calls: a
call attempt between s1, s2 ∈ R, s1 < s2, is lost if past any point of the interval
[s1, s2] the cable is already carrying C calls. Suppose that calls are attempted
at points in R following a homogeneous Poisson process with rate λ. Assume
that the section of the cable demanded by a call has distribution π with finite
mean ρ1 and the duration of a call has exponential distribution with mean one.
Assume that the location of a call, the cable section needed and its duration
are independent. Let m(s, t) be the number of calls in progress past point s

on the cable at time t . Kelly (1991) conjectured that ((m(s, t), s ∈ R), t ≥ 0)

has a unique invariant measure, given by a stationary M/G/∞ queue (Markov
arrivals, general service time and infinite servers) conditioned to have at most C

Received 10 March 2003.



350 NANCY L. GARCIA and NEVENA MARIĆ

clients at all times. Ferrari and Garcia (1998) used a continuous (non-oriented)
percolation argument to prove the above conjecture whenever π has finite third
moment and the arrival rate λ is sufficiently small. Fernández, Ferrari and Garcia
(2002) using an oriented percolation argument and a domination by a branching
process improved this bound to

λ(ρ2 + ρ1 + 1) < 1 (1.1)

where ρ1 and ρ2 are the first and second moment of distribution π respectively.
Their argument is more general and it is based on a graphical representation of
spatial birth and death processes and it is the basis for the perfect simulation
scheme “Backward-Forward Algorithm”, described in Fernández, Ferrari and
Garcia (2002). In this work, using the same graphical representation and the
Peron-Frobenius theory for sub-criticality of branching process for the specific
case of loss networks we obtain a new bound given by

λ(
√

ρ2 + ρ1) < 1. (1.2)

2 Spatial loss networks

Let G be a family of objects γ (γ = (x, u), x ∈ R, u ∈ R+) which we will call
individuals or calls and consider a state space S = {ξ ∈ N

G : ξ(γ ) �= 0 only for
a countable set of γ ∈ G}.

We first introduce the free process which is a birth-and-death process charac-
terized by the fact that its birth rate does not depend on the actual configuration
of the system, that is there exists a Radon measure ν on G such that the calls
are born at intensity ν and last for a random time exponentially distributed with
mean one. The generator of the free process is:

A0F(η) =
∫
G

ν(dγ ) [F(η + δγ ) − F(η)]

+
∑

γ∈G : η(γ )>0

η(γ ) [F(η − δγ ) − F(η)]
(2.1)

Here δγ is the configuration with only one point at γ and (η+ξ)(θ) = η(θ)+ξ(θ)

(coordinatewise sum). This free process always exists and is ergodic whichever
the choice of w. In the particular case where ω(γ ) = λ the invariant measure is
the λ-homogeneous Poisson process.
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For the loss network, its generator can be written (Fernández, Ferrari and
Garcia, 2002) as

AF(η) =
∫
G

ν̄(dγ ) M(γ, η) [F(η + δγ ) − F(η)]

+
∑

γ∈G : η(γ )>0

η(γ ) [F(η − δγ ) − F(η)]
(2.2)

where

ν̄(d(x, u)) = λ π(du) dx , (2.3)

and denoting η(y) = ∑
(x,u)∈η 1{y ∈ (x, x + u)}, the number of calls of η that

uses point y,

M((x, u), η) = 1{(η + δ(x,u))(y) ≤ C, ∀u ∈ R}. (2.4)

The factor ν̄ represents a basic birth-rate density due to an “internal” Poissonian
clock and the factor M acts as an unnormalized probability for the individual
to be actually born once the internal clock has rang. The birth is hindered or
reinforced according to the configuration η.

We introduce a function I : G × G → {0, 1}
I (γ, θ) = 1{supη{|M(γ, η) − M(γ, η + δθ )}| > 0}. (2.5)

where δθ (γ ) = 1{γ = θ} is the configuration having unique individual θ and
the supremum is taken over the set of all configurations ξ such that ξ and ξ + δθ

are in the set of allowed configurations (either {0, 1}G or N
G). The function

I (γ, θ) indicates which individuals θ may have an influence in the birth-rate of
the individual γ , that is if I (γ, θ) =1, the presence (or absence) of θ modifies
the birth rate of γ and then we say that θ is incompatible to γ .

The above arguments induces the graphical representation of the birth and
death process which is the basis for the perfect simulation scheme “Backward-
Forward Algorithm”, described in Fernández, Ferrari and Garcia (2002). This
algorithm involves the “thinning” of a marked Poisson process –the free process–
which dominates the birth-and-death process, and it involves a time-backward
and a time-forward sweep. The initial stage of the construction is done toward
the past, starting with a finite window and retrospectively looking to ancestors,
namely to those births in the past that could have (had) an influence on the current
birth. The construction of the clan of ancestors constitutes the time-backward
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sweep of the algorithm. Once this clan is completely constructed, the algo-
rithm proceeds in a time-forward fashion “cleaning up” successive generations
according to appropriate penalization schemes. The relation “being ancestor of”
induces a backward in time contact/oriented percolation process. The algorithm
is applicable as long as this oriented percolation process is sub-critical.

Let N = { (ξ1, T1), (ξ2, T2),...} be a homogeneous Poisson Process with rate λ in
R×[0, ∞), and let S1, S2, ... be i.i.d. random variables exponentially distributed
with mean one and let U1, U2, ... be i.i.d. random variables with common dis-
tribution π . Assume the family of variables {S1, S2, . . . }, {U1, U2, . . . } and the
Poisson process are all independent. Consider the random rectangles

Ri = {(x, y); ξi ≤ x ≤ ξi + Ui, Ti ≤ y ≤ Ti + Si}.
Then {Ri, i ≥ 1} = {(ξi, Ti) + Di, i ≥ 1} is a Boolean model in R

2 where
Di = [0, Ui] × [0, Si] and represents the free process of calls.

Now, for each rectangle Ri we associate an independent mark Zi ∼ U(0, 1),
and each marked rectangle we identify with the marked point (ξi, Ti, Si, Ui, Zi).
We recognize in the marked point process

R = {(ξi, Ti, Si, Ui, Zi), i = 1, 2, . . . }
a graphical representation of the birth and death process with constant birth rate
λ, and constant death rate, equal to 1. We call this free process α and Zi will
serve as a flag of allowed births. Calling R = (ξ, τ, s, u, z), we use the notation

Basis(R)= (ξ, ξ + u), Birth(R)= τ , Life(R)= [τ, τ+s], Flag(R)= z.

We need a series of definitions:

• For an arbitrary point (x, t) ∈ R
2 and a rectangle R define as their ancestor

sets

A
(x,t)
1 = {R ∈ R| x ∈ Basis(R), t ∈ Life(R)} (2.6)

AR
1 = {R′ ∈ R| Birth(R′) ≤ Birth(R), R′ ∩ R �= ∅} (2.7)

• Define recursively the generations (n > 1) of the above sets that is, the
nth generation of ancestors:

A(x,t)
n = {R′′|R′′ ∈ AR′

1 for some R′ ∈ A
(x,t)
n−1 } (2.8)

AR
n = {R′′|R′′ ∈ AR′

1 for some R′ ∈ AR
n−1} (2.9)
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We say that there is backward oriented percolation if there exists one point
(x, t) such that A(x,t)

n �= ∅ for all n, that is, if there exists one point with
an infinite number of ancestors. Call clan of ancestors of (x, t) the union
of all its ancestors:

A(x,t) =
⋃
n≥1

A(x,t)
n (2.10)

and R[0, t] = {R ∈ R| Birth(R) ∈ [0, t]}.
The existence of the process in infinite volume for any time interval is guaran-

teed as long as the process does not explode, that is, no rectangle has an infinite
number of ancestors in a finite time.

For the existence of the process in infinite time, it is needed that the clan of
ancestors of all rectangles are finite with probability one, that is, there is no
backward oriented percolation. In order to construct the invariant measure for
stationary Markov processes it is usual to construct the process beginning at
−∞ with an arbitrary configuration and look at the process at time 0. If the
configuration at time 0 does not depend on the initial configuration then we have
a sample of invariant measure. The graphical construction described above allow
us to construct the process ηt by a thinning of the free process αt for all t ∈ R.
Moreover, the same argument shows that the distribution of η0 does not depend
on the initial configuration. The above results can be found in Fernández et al.
(2001, 2002) and Garcia (2000).

One way of determining the lack of percolation is the domination through a
branching process. Establishing sub-criticality conditions for the branching pro-
cess we obtain sufficient conditions for lack of percolation. Looking backward,
the ancestors will be the branches. The time of the death will be the birth time for
the branching process. The clan of ancestors in itself is not a branching process
because the lack of independence.

3 Dominating the clan of ancestors by a branching process. Critical value.

Let R be a rectangle with basis γ = (x, x + u) with length u, born at time 0.
Define b̃u

n(v) as the number of rectangles in the nth generation of ancestors of R

having basis with length v:

b̃u
n(v) = |{R′ ∈ AR

n | | Basis(R
′
)| = v}|. (3.1)

The process b̃n is not a Galton-Watson process but it can be dominated by
one (call it bn) as described by Fernández et al. (2001), where each call length

Bull Braz Math Soc, Vol. 34, N. 3, 2003



354 NANCY L. GARCIA and NEVENA MARIĆ

represents a type. The number of types can be finite, countable or uncountable
depending upon the distribution π .

Lemma 3.2. The offspring distribution of bn is Poisson distributed with mean

m(u, v) = λ π(v) (u + v) (3.3)

where m(u, v) is the mean number of children type v for parents type u.

Proof. In the proof we use the terms “parent” and “ancestor” in the original
sense. If γ = (0, u) and we consider the rectangle R born at time 0 such that
Basis(R) = γ , it is easy to see that a rectangle (x, x + v) × (y, y + s) can be a
parent of R if, and only if, x ∈ (−v, u) and y + s > 0.

Let βuv(t) the number of parents of R type v born after time −t . Then

bu
1(v) = lim

t→∞ βuv(t) a.s. (3.4)

Let us call � the set [−v, u] × [−t, 0], and N(�) the homogeneous Poisson
process with rate λ in �. Then, for k = 0, 1, ...

P (βuv(t) = k) =∑
n≥k

P (N(�) = n and among n rectangles k are parents of R type v). (3.5)

Let (x1, y1), . . . , (xn, yn) a realization of N(�). To each point we associate
two independent marks– w, the call length π distributed and s time length ex-
ponentially distributed with mean one. Given N(�) = n, the points (xi, yi) are
uniformly distributed in �, that is, xi ∼ U(−v, u) and yi ∼ U(−t, 0). Consider
the rectangles Ri = [xi, xi + wi] × [yi, yi + si]. Thus,

P(Ri is a parent of R type v) = π(v) P (yi + si > 0). (3.6)

and we have

P(yi + si > 0) =
∫ 0

−t

P (si > −y)
1

t
dy = 1 − e−t

t
. (3.7)

To clarify the computations we use the following notation:

αt = λ (u + v) t, pt = π(v) (1 − e−t )/t.
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From (3.5),(3.6) and (3.7) we have

P(βuv(t) = k) =
∑
n≥k

(
n

k

)
(pt )

k(1 − pt)
n−ke−αt

(αt )
n

n! = e−ptαt
(ptαt )

k

k! . (3.8)

Observe that

lim
t→∞ ptαt = lim

t→∞ λπ(v)(u + v)(1 − e−t ) = λπ(v)(u + v). (3.9)

From (3.4) it follows that βuv(t) converges to bu
1(v) in distribution

P(bu
1(v) = k) = lim

t→∞ P(βuv(t) = k), k = 0, 1, ... (3.10)

Therefore we conclude that bu
1(v) has Poisson distribution with mean

λπ(v)(u + v). �
We are interested to find conditions under which the process bn is sub-critical

and a sufficient condition for this is that the mean of the total number of children
in all generations when the initial parent is of type u is finite for all u. Thus we
are interested in the convergence of the series∑

n≥1

∑
v

m(n)(u, v) (3.11)

where m(n)(u, v) is the mean offspring number of type v from a parent type u in
the nth generation and it is given inductively by

m(n)(u, v) =
∑
w

m(n−1)(u, w)m(w, v). (3.12)

Thus, ∑
v

m(n)(u, v) =
∑

v

∑
v1

. . .
∑
vn−1

λnπ(v1)(u + v1)π(v2)(v1 + v2) . . . π(v)(vn−1 + v). (3.13)

In order to simplify the reading, recall that ρ1 and ρ2 are the first and second
moment of the distribution π respectively.

Observe that∑
v

π(v)(vn−1 + v) = vn−1

∑
v

π(v) +
∑

v

π(v)v

= vn−1 + ρ1 = f1 + vn−1g1

(3.14)
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where f1 = ρ1, g1 = 1. Also,

∑
vn−1

π(vn−1)(vn−2 + vn−1)(f1 + vn−1g1)

=
∑
vn−1

π(vn−1)(vn−2 + vn−1)(vn−1 + ρ1)

=
∑
vn−1

v2
n−1π(vn−1) + vn−1π(vn−1)(vn−2 + ρ1) + π(vn−1)(vn−2ρ1)

= ρ2 + ρ1(vn−2 + ρ1) + vn−2ρ1 = ρ2 + ρ2
1 + vn−22ρ1

= f2 + vn−2g2

(3.15)

where f2 = ρ2 + ρ2
1 , g2 = 2ρ1.

Analogously,

fj+1 = ρ1fj + ρ2gj , gj+1 = fj + ρ1gj (3.16)

or written in matricial form[
fj+1

gj+1

]
= T ·

[
fj

gj

]
= T j ·

[
ρ1

1

]
(3.17)

where

T :=
[

ρ1 ρ2

1 ρ1

]
. (3.18)

From (3) it follows
∑

v

m(n)(u, v) = λn(fn + u gn). (3.19)

Computation of fn and gn. We need to find T n, where T is given by (3.18).
Its eigenvalues are

ε1 = ρ1 + √
ρ2, ε2 = ρ1 − √

ρ2 (3.20)

with corresponding right normalized eigenvectors

x1 = 1√
ρ2 + 1

[ √
ρ2

1

]
, x2 = 1√

ρ2 + 1

[ √
ρ2

−1

]
. (3.21)
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Then

T n = 1

2
√

ρ2

[ √
ρ2(ε

n
1 + εn

2 ) ρ2(ε
n
1 − εn

2 )

εn
1 − εn

2
√

ρ2(ε
n
1 + εn

2 )

]
. (3.22)

Now [
fn

gn

]
= T n−1 ·

[
ρ1

1

]
(3.23)

giving us

fn = 1

2
(εn

1 + εn
2 ), gn = 1

2
√

ρ2
(εn

1 − εn
2 ). (3.24)

The radius of convergence λ∗
c of the series

∑
n

∑
v

m(n)(u, v) =
∑

n

λn(fn + u gn) (3.25)

is given by the Cauchy-Hadamard formula,

λ∗
c = 1

limn→∞(fn + ugn)1/n
. (3.26)

In order to find λ∗
c , notice

fn + ugn = 1

2

[(
1 + u√

ρ2

)
εn

1 +
(

1 − u√
ρ2

)
εn

2

]
(3.27)

= εn
1

1

2

[(
1 + u√

ρ2

)
+

(
1 − u√

ρ2

)(
ε2

ε1

)n]
. (3.28)

We know that ε1 = ρ1 + √
ρ2 is positive since π([0, ∞)) = 1 and if we had

ρ1 = 0 then π({0}) = 1 which can be excluded. Also ε2 is non-positive, since
ρ1 ≤ √

ρ2. Moreover, ε2 + ε1 = 2ρ1 > 0 and we get ε2
ε1

∈ [−1, 0]. Therefore,

1

2
2 min

(
1,

u√
ρ2

)
≤ 1

2

[(
1 + u√

ρ2

)
+

(
1 − u√

ρ2

)(
ε2

ε1

)n]

≤ 1

2
2 max

(
1,

u√
ρ2

)
.

(3.29)
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From (3.29) and (3.28) we get

ε1
(

min(1,
u√
ρ2

)
)1/n ≤ (fn + ugn)

1/n ≤ ε1
(

max(1,
u√
ρ2

)
)1/n

. (3.30)

Then,

lim
n→∞(fn + ugn)

1/n = ε1 (3.31)

and

λ∗
c = 1

ε1
= 1

ρ1 + √
ρ2

. (3.32)

Since, λ > 0, we obtain

1. If λ < λ∗
c (cf. (1.2)) then the series (3.25) converges absolutely and

consequently bn is sub-critical.

2. If λ > λ∗
c the series (3.25) is divergent and the process bn can be super-

critical.

In the general case, we can have an uncountable number of types. Let V be
the set of all possible types and observe that the mean number of offsprings in
all generations of a parent type u is given by

∑
n≥1

∫
V

m(n)(u, dv) (3.33)

where

m(n)(u, dv) =
∫

V

m(n−1)(u, dw)m(w, dv) (3.34)

can be obtained inductively. In fact,
∫

V

m(n)(u, dv) =
∫

V

∫
V

. . .

∫
V

m(u, dv1)m(v1, dv2) . . . m(vn−1, dv). (3.35)

Suppose that the distribution of the length of the calls is absolutely continuous
with respect to the Lebesgue measure and call π its density. We can write

m(u, dv) = λ(u + x)π(x)dx. (3.36)
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Then,
∫

V

m(vn−1, dv) =
∫ ∞

0
λ(vn−1 + x)π(x)dx = λ(vn−1 + ρ1)

= λ(f1 + vn−1g1)

(3.37)

and ∫
V

m(vn−2, dvn−1) · λ(f1 + vn−1g1)

=
∫ ∞

0
λ(vn−2 + x)π(x) · λ(x + ρ1)dx

= λ2
∫ ∞

0
x2π(x) + x(vn−2 + ρ1)π(x) + vn−2ρ1π(x)dx

= λ2(ρ2 + ρ1(vn−2 + ρ1) + vn−2ρ1)

= λ2(ρ2 + ρ2
1 + vn−22ρ1) = λ2(f2 + vn−2g2)

(3.38)

where f1, g1, f2, g2, ... are given by (3.17). Therefore, the computation is com-
pletely analogous to the discrete case and

∫
V

m(n)(u, dv) = λn(fn + ugn) (3.39)

and the process is sub-critical if the series (3.25) is convergent.

Remark. If π(x) = 1[0,1](x) (the U(0, 1) distribution) then λ∗
c ≈ 0.9282.

Fernández et al. (2002) obtained a sufficient condition for sub-criticality of
the branching process which can be written in our case as

α = sup
(x,u)∈G

1

q((x, u))

∫
R

λdy

∫
Gy

π(dw)q((y, w))I ((y, w), (x, u)) < 1 (3.40)

where Gy is the possible set of calls beginning at y and I is defined by (2.5)
and q is an arbitrary function such that q((x, u)) ≥ 1, for all calls (x, u). Due
to the translation invariance property of the process, we can consider, without
loss of generality, a call beginning at the origin (x = 0). Its ancestors would be
rectangles, with sufficient long lives, with basis that intersects it. This includes
any call beginning at any point inside the call and also all calls beginning before
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the origin but with sufficient large length to intersect the call. If we choose,
q((x, u)) = c, where c ≥ 1 is an arbitrary constant we obtain

α = λ sup
L

( ∫ 0

−∞
P(|H | > −x)dx +

∫ L

0
dx

)
= λ(ρ1 + L̄) (3.41)

where L̄ is defined as inf{L; π([0, L]) = 1}. This bound coincides with (1.2)
only in the case of fixed length call, for all other cases it is weaker than(1.2)
since

√
ρ2 ≤ L̄. For the particular case, U(0, 1), this condition guarantees the

sub-criticality of the process for λ < 2
3 ≈ 0.6667 while our condition gives

λ < 0.9282.
If π does not have bounded support, considering q((x, u)) = min(1, u) yields

the condition

α ≤ λ(ρ1 + ρ2 + 1). (3.42)

Since our condition is based on the Peron-Frobenius root of m(u, v) then the
bound for sub-criticality (λ∗

c) of the branching process is optimal.
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