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A stabilization law for two semi-infinite
interacting strings of characters

A.A. Yambartsev1 and A.A. Zamyatin2

Abstract. We consider a Markov chain that describes the evolution of two interacting
strings of symbols. The transitions probalitities of this Markov chain depend only on
the rightmost symbols of both strings. The main goal of the present paper is to prove a
limit theorem (stabilization law): the distribution of the rightmost symbols converges to
some limit correlation function.
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1 Introduction

A finite string is just a sequence of symbols from a finite alphabetS ={1, 2, ..., r}.
We consider Markov chains with the state space equal to the set of pairs of strings

(x̄, ȳ), x̄ = (x1, . . . , xn), ȳ = (y1, . . . , ym)

where xi, yi take values from the alphabet S. One-step transition consists in
substituting xn with some word γ and ym with some word δ. Each of γ and δ can
have 0, 1 or 2 symbols. One-step transition probabilities depend only on xn, γ,

ym, δ.

Some transience and ergodicity conditions for this Markov chain were given
in [6].

Note that if r = 1 then this reduces to well-known theory of random walks in
Z2

+. The case r > 1 is much more complicated.
We consider also semi-infinite strings which are infinite sequences

α = . . . xn−1, xn with values in the same alphabet. Evolution of two interacting
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semi-infinite strings is defined similarly by the same transition probabilities as
for finite strings. This Markov process will be called induced chain. The in-
duced chain is an uncountable Markov chain, and it describes the behavior of
our process far from the origin.

It is natural to introduce invariant measures for the induced chains, and with
invariant measures we associate drift vectors that give longtime behavior of the
process under consideration. The main problem is that the induced chain may
have continuum of invariant measures, so there may exist continuum of drift
vectors. We will say that an invariant measure, say with 2-dimensional drift
vector v = (v1, v2), has the type (σ1, σ2), if σ1 = sign(v1), σ2 = sign(v2). It
was shown [6] that some induced chains may have invariant measures of various
types.

The main goal of the present paper is to prove some limit theorems (stabiliza-
tion laws) for induced chains. Namely, let ni(t) be the length (or coordinate of
the rightmost symbol) of i-th string at time t. Then, under an appropriate choice
of the initial distribution, one can show the following:

• as t → ∞, the distribution of symbols inside strings tends to some invari-
ant measure µ.

• as t → ∞
ni(t)

t
→ vi(µ),

where vi(µ) are components of the drift vector corresponding to the in-
variant measure µ.

To obtain the stabilization law we will suppose that for the induced chain all
invariant measures have the same type (−, +). In this case it is possible to
construct a local Lyapunov function for the induced chain.

Some stabilization laws for one string were given in [2, 3, 5], A stabilization
law for two strings, when there is the unique invariant measure of type (+, +),
was proved in [5].

The paper is organized as follows. In Section 2 we give definitions and for-
mulate the main result. There we prove also some auxiliary results. In Section 3
we prove the main result.

2 Definitions and Results

Finite strings. Fix a finite set (an alphabet) S = {1, 2, . . . r}. A finite string is
a finite sequence of symbols from S:

α = x1x2 . . . xn, xi ∈ S.
Bull Braz Math Soc, Vol. 34, N. 3, 2003
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We denote by |α| the length of the sequence α, and by ∅ the empty string of
length 0. Let A be the set of all finite strings, including the empty one. The
concatenation of two strings α = x1x2 . . . xn and β = y1y2 . . . yn is defined by
αβ = x1x2 . . . xn+m, where xn+1 = y1, . . . , xn+m = yn.

Let A2 = A×A. An element α ∈ A2 is a pair of finite strings

α = (α1, α2), αi ∈ A.

The concatenation of two pairs of finite strings α = (α1, α2) and β = (β1, β2)

is defined by αβ = (α1β1, α2β2). For any pair α ∈ A2 denote by

|α| = (|α1|, |α2|)
the vector of lengths of strings α1, α2. We will write |α| ≤ c = (c1, c2), if
|αi | ≤ ci, i = 1, 2, where c1, c2 ∈ Z1+.

Semi-infinite strings. A semi-infinite string is an infinite sequence
α = . . . yn−1yn of symbols from the alphabet with a specified enumeration. The
set of all semi-infinite strings is denoted byA∞. The concatenation ργ of a semi-
infinite string ρ = . . . yn−1yn ∈ A∞ and a finite string γ = x1x2 . . . xm ∈ A is
defined by ργ = . . . yn−1ynyn+1 . . . yn+m, where yn+k = xk, k = 1, . . . , m.

Let A2∞ = A∞ × A∞. The concatenation ργ of the pair of semi-infinite
strings ρ = (ρ1, ρ2) ∈ A2∞ and the pair of finite strings γ = (γ1, γ2) ∈ A2 is
given by ργ = (ρ1γ1, ρ2γ2).

Define now a discrete time homogeneous Markov chain L∞ on the set A2∞.
Let ξ(t) = (ξ1(t), ξ2(t)) denote the state of the chain at time t . Fix some d ∈ N,

and let d = (d, d). Assume that the transition probabilities P{ξ(t + 1) =
β|ξ(t) = α} �= 0 only if β = ρθ, α = ργ, where ρ ∈ A2∞, and γ, θ ∈ A2

such that |γ | = d, |θ | ≤ 2d. Assume also that the transition probabilities
P{ξ(t +1) = ρθ |ξ(t) = ργ } do not depend on ρ but only on γ, θ . By definition,
we put

q(γ, θ) = P{ξ(t + 1) = ρθ |ξ(t) = ργ }. (1)

Invariant measures. Let Z− = {. . . − 2, −1, 0}. By B∞ = SZ− we denote
the infinite product space

∏0
i=−∞ Si , where Si = S for all i, endowed with the

product topology. An element η ∈ B∞ is a (left) semi-infinite sequence η =
. . . x−1x0, xi ∈ S. One can consider a semi-infinite string α = . . . yn−1yn ∈ A∞
as a pair (n(α), η(α)), where n(α) ∈ Z is the position of the right most symbol

Bull Braz Math Soc, Vol. 34, N. 3, 2003



364 A. A. YAMBARTSEV and A. A. ZAMYATIN

of the string (or the position of the particle) and η(α) is an infinite sequence (the
environment on the left of the particle), i.e. a function η(α) : Z− → S such that

η(α) = . . . x−1x0 ∈ B∞ where xi = yi+n, n = n(α).

Let B2∞ = B∞ × B∞. The process ξ(t) = (ξ1(t), ξ2(t)) can be represented as
ξ(t) = (n(t), η(t)), where

n(t) = (n1(t), n2(t)) = (n(ξ1(t)), n(ξ2(t)) ∈ Z2

is the vector of the coordinates of the right most symbols at time t , and

η(t) = (η1(t), η2(t)) = (η(ξ1(t)), η(ξ2(t))) ∈ B2
∞

is the state of the environment on the left of the particle. Note that the component
η(t) is Markov chain also.

Let d0 be any metric on S. Denote by P the set of all probability measures on
B2∞, with the weak topology. B∞ is a compact metric space, equipped with the
metric d(ξ, η) on B∞:

d(ξ, η) =
0∑

i=−∞
2−|i|d0(xi, yi),

So, P is a compact space in the weak topology.
For α ∈ A∞(B∞) we denote by [α]n the rightmost substring of length n, i.e.

[α]n = γ, where |γ | = n, means that α = ργ for some ρ ∈ A∞. With the
Markov chain L∞ we associate the following correlation functions:

pt(γ |ρ) = pt(γ1, γ2|ρ) = P{[ξ1(t)]|γ1| = γ1, [ξ2(t)]|γ2| = γ2|ξ(0) = ρ},
where γ ∈ A2, and ρ ∈ A2∞ is the initial state of the chain. Note that

pt(γ |ρ) = P{[η1(t)]|γ1| = γ1, [η2(t)]|γ2| = γ2 | η(0) = η(ρ)}.
The definition of the correlation functions does not depend on n(0) and we will
assume that n(0) = (0, 0) unless otherwise stated, i.e. this definition depends
only on the component η(t), which is a Markov process on B2∞; and when we
say about distribution of ξ(t) we mean the distribution of η(t). If the initial state
of the chain has some distribution ν ∈ P we will write pt(γ |ν).

For each t correlation functions pt(γ |ν) uniquely define the measure µ(t) ∈ P,

where µ(0) = ν. We will say that µ(t) is the distribution of the chain L∞ at
time t .
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Definition 1. Measure µ ∈ P is called invariant for the chain L∞ if µ(0) = µ

implies µ(t) = µ for all t .

Denote by M the set of all invariant measures for chain L∞. Obviously M
is a convex subset of P, closed in the weak topology. So M is compact, since
P is compact. By Krein-Milman’s theorem M is the closed convex hull of Me,
where Me is the set of all extreme points for M.

The following proposition from [6] is a simple consequence of compactness
of P.

Proposition 1. M is nonempty.

Let pµ(γ ), γ ∈ A2, denote the correlation functions corresponding to measure
µ ∈ M. To each invariant measure µ we associate the drift vector v(µ)

v(µ) = (v1(µ), v2(µ)) =
∑
γ,θ

(|θ | − d)q(γ, θ)pµ(γ ), (2)

where the summation is over all γ , θ such that |γ | = d and |θ | ≤ 2d. With each
invariant measure µ we associate also the vector of signs

sign(µ) = (sign(v1(µ)), sign(v2(µ))),

where sign(vi(µ)) = {−, 0, +}. There are 9 of such vectors, and we will speak
about invariant measures of the corresponding type. An invariant measure µ

is called (σ1, σ2)-measure, or measure of type (σ1, σ2), if sign(µ) = (σ1, σ2),
where σi = {−, 0, +}.

The idea to implement invariant measures to characterise the large time be-
haviour of strings is based on the following lemma.

Lemma 1. Suppose that we start with some invariant measure µ ∈ Me. Then

n(t)

t
→ v(µ),

Pµ almost surely.

Proof. The proof is straightforward and follows from Birkhoff’s ergodic theo-
rem. �
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Invariant (−, +)- measure. In this paper we assume that all invariant mea-
sures have the same type (−, +). Introduce the following Lyapunov conditions:
there exist ε > 0 and a bounded function k = k(ρ), 0 < k(ρ) ≤ C such that for
all initial configurations ρ ρ = (ρ1, ρ2) ∈ B2∞, n = (n1, n2) ∈ Z2,

E(n1(k(ρ)) − n1(0) | ξ(0) = (n, ρ)) < −ε, (3)

E(n2(k(ρ)) − n2(0) | ξ(0) = (n, ρ)) > ε. (4)

The following result was proved in [6].

Theorem 1. The following statements are equivalent:

(i) the set M consists only of invariant measures of type (−, +);
(ii) Lyapunov conditions (3) and (4) hold.

Stabilization law. Below we will assume that d = 1, i.e. the transition proba-
bilities q(γ1, γ2; θ1, θ2) depend only on the rightmost symbols, i.e. |γ1| = |γ2| =
1 and |θi | ≤ 2. Assume also that the initial distribution of the Markov chain ξ(t)

has the form:

µ0 = ν × δρ2, (5)

where ν = ⊗−∞
i=0 νi is the Bernoulli measure, i.e. νi are i.i. distributions on S and

δρ2 is the Dirac measure, which assigns the mass 1 to ρ2 ∈ B∞.

Theorem 2. Suppose that Lyapunov conditions (3) and (4) hold, and the initial
distribution µ0 is given by (5). Then

(i) for all γ = (γ1, γ2) ∈ A2

lim
t→∞ pt(γ |µ0) = pµ(γ ), (6)

where pµ(γ ) are the correlation functions of some invariant measure µ ∈
M. Moreover, the convergence in (6) is exponentially fast, i.e. there is
some χ > 0, such that∣∣∣pt(γ |µ0) − pµ(γ )

∣∣∣ < C(γ )e−χt , (7)

for some C(γ ) depending on γ .

(ii) Let vi(µ) be given by (2). Then

ni(t)

t
−→ vi(µ) a.s. when t → ∞, (8)

where v1(µ) < 0, v2(µ) > 0.
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Formula for correlation functions of the invariant measure µ. We give a
formula for the correlation functions of the measure µ. Let us introduce the
following notation.

Define a strictly increasing sequence of random moments τ (n), by

τ (n) = min{t : n1(t) = n1(0) − n}, τ (0) = 0 (9)

It follows from Lyapunov condition (3) that P{τ (n) < ∞} = 1 for all n. We will
say that τ (n) is the n-th renewal moment. It is evident that for all n the marginal
distribution of the first string at the moment τ (n) coincides with Bernoulli measure
ν, and that µ(1)(τ (n)) = µ(1)(0).

Let β, β1, β2 ∈ A \ {∅} and

Bβ = {ρ ∈ B∞ : [ρ]|β| = β},
B(β1,β2) = Bβ1 × Bβ2

= {ρ = (ρ1, ρ2) ∈ B2
∞ : [ρ1]|β1| = β1, [ρ2]|β2| = β2}.

Consider the following events:

G[t; β] = {η2(t) ∈ Bβ, n2(t) = n2(0) + |β| − 1

and for all k ∈ (0, t] n2(k) ≥ n2(0)},
F [t; n] = {τ (n) < t, τ (n+1) ≥ t and for any k ≤ n

there exists sk ∈ (τ (k), t] such that n2(sk) < n2(τ
(k))}.

For all finite strings β, β1, β2 ∈ A \ {∅} and for all symbols b ∈ S define the
quantities:

v(β, t) =
t∑

n=1

P{τ (n) = t, η2(t) ∈ Bβ | µ0}, (10)

w(b; β1, β2, t) =
t∑

n=1

P{η1(t) ∈ Bβ1, G[t; β2], F [t; n] | ν × δρb} (11)

By definition v(β, t) depends on the initial distribution µ0 = ν × δρ2 , but
w(b; β1, β2, t) depends only on ν and b. For sake of simplicity we will not
indicate this dependence.

We will show in Section 3.1 (Lemma 4 and Corollary 1) that for all nonempty
words β ∈ A there exists a positive limit

lim
t→∞ v(β, t) = v(β),
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and

w(b, γ1, γ2)=
∞∑
t=1

∑
α∈A

w(b; γ1, αγ2, t) < ∞,

w̃(b, γ1, γ2)=
∞∑
t=1

w(b; γ1, γ2, t) < ∞

Then the following representation for the correlation functions holds.

Theorem 3. The correlation functions of the invariant measure µ are given by

pµ(γ ) =
∑
b∈S

v(b)w(b; γ1, γ2) +
∑
b∈S

∑
γ ′,γ ′′∈A\{∅}:

γ2=γ ′γ ′′

v(γ ′b)w̃(b; γ1, γ
′′). (12)

3 Proofs

3.1 Proofs of Theorem 2 and Theorem 3

The proof of main results is based on the following lemmas.

Lemma 2. Let µ0 be the initial distribution given by (5) and let us fix γ =
(γ1, γ2) ∈ A2. Then

pt(γ |µ0) =
∑
b∈S

∑
t1+t2=t

v(b, t1)
∑
β∈A

w(b; γ1, βγ2, t2) (13)

+
∑
b∈S

∑
t1+t2=t

∑
γ ′,γ ′′∈A\{∅}:

γ2=γ ′γ ′′

v(γ ′b, t1)w(b; γ1, γ
′′, t2) + r(γ, t),

where

r(γ, t) =
t∑

n=0

P{η(t) ∈ Bγ and F [t; n] | µ0}

We will prove this lemma in Section 3.2.
Fix some nonempty finite word β. Let

Tβ = min{τ (n) such that η2(τ
(n)) ∈ Bβ (14)

and for all t > τ (n) n2(t) > n2(τ
(n))},

We will say that Tβ is a β - renewal moment.
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Lemma 3. There exist constants C, δ, such that

P{Tβ ≥ t | δρ} < Ce−δt , (15)

for every initial state ρ = (ρ1, ρ2).

We will prove it in Section 3.3.

Corollary 1. There exist constants C1, δ1 such that

r(γ, t) < C1e
−δ1t ,

w(b; β1, β2, t) < C1e
−δ1t ,

for all γ = (γ1, γ2), γi, βi ∈ A \ {∅}, b ∈ S.

The corollary immediately follows from the evident inequalities

r(γ, t) < P{min
b∈S Tb ≥ t},

w(b; β1, β2, t) < P{min
b∈S Tb ≥ t}.

Note that the constants in the corollary do not depend on γi, βi and b.

Lemma 4. Suppose that µ0 = ν × δρ2 be the initial distribution (see (5)) and
v(β, t) is given by (10). Then for all nonempty finite β ∈ A there exists

lim
t→∞ v(β, t) = v(β) > 0,

where v(β) does not depend on ρ2. Moreover, the convergence is exponentially
fast:

|v(β, t) − v(β)| ≤ Cβe−δt ,

for some δ, Cβ > 0.

We will prove Lemma 4 in Section 3.4.
For all γ1, γ2 ∈ A \ {∅} and b ∈ S introduce

w(b, γ1, γ2) =
∞∑
t=1

∑
α∈A

w(b; γ1, αγ2, t),

w̃(b, γ1, γ2) =
∞∑
t=1

w(b; γ1, γ2, t).
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Thanks to Corollary 1 the above series are convergent. Hence, Lemma 4 gives
that

lim
t→∞ pt(γ |µ0) =

∑
b∈S

v(b)w(b, γ1, γ2) +
∑
b∈S

∑
γ ′,γ ′′∈A\{∅}:

γ2=γ ′γ ′′

v(γ ′b)w̃(b, γ1, γ
′′).

and the convergence of correlation functions is exponentially fast. This proves
Theorem 2 and Theorem 3. �

3.2 Proof of Lemma 2

Let us fix some ρ = (ρ1, ρ2) ∈ B2∞ and consider the following set of trajectories
of the process L∞:

�ρ(t) = {� = g0g1 . . . gt : g0 = [(0, 0), ρ]},
where gk = [n(k), η(k)] = [(n1(k), n2(k)), (η1(k), η2(k))] is the state of the
process at the moment k, and |�| is the length of trajectory �, |�| = t + 1. Let
us fix some pair of finite words γ = (γ1, γ2) ∈ A2. Define subset �ρ(γ, t) ⊂
�ρ(t) :

�ρ(γ, t) = {� ∈ �ρ(t) : η(t) ∈ B2
γ }.

The correlation functions pt(γ |δρ) can be given by the formula

pt(γ |δρ) =
∑

�∈�ρ(γ,t)

I(�), (16)

where I(�) is the weight of the trajectory �:

I(�) =
t∏

i=1

P{gi−1 → gi}.

Fix a symbol b ∈ S. With each trajectory � ∈ �ρ(γ, t) one can associate a
sequence of moments Ti(�, b), i = 1, . . . , n(�, b) such that

(i) for all k < Ti n1(k) > n1(Ti), i.e. Ti is a renewal moment; if n1(0) −
n1(Ti) = n, then we will write Ti = τ (n);

(ii) η2(Ti) ∈ Bb;
(iii) for all k ∈ (Ti, t] n2(k) > n2(Ti).
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If for a fixed � it is not possible to define T1 satisfied (i) − (iii) then we put
n(�, b) = 1 and T1(�, b) = 0. In any case 0 < Ti(�, b) < t . Let

σ(�) := max
b∈S max

1≤i≤n(�,b)
{Ti(�, b)}.

Divide the set �ρ(γ, t) into two nonintersecting subsets

�ρ(γ, t) = �1
ρ(γ, t)

⋃
�2

ρ(γ, t).

where

�1
ρ(γ, t) = {� : σ(�) �= 0},

�2
ρ(γ, t) = {� : σ(�) = 0},

and split sum (16) in the following way
∑

�∈�ρ(γ,t)

I(�) =
∑

�∈�1
ρ(γ,t)

I(�) +
∑

�∈�2
ρ(γ,t)

I(�). (17)

Then we have

pt(γ |µ0) =
∫
B2∞

pt(γ |δρ)dµ0(ρ) (18)

=
∫
B2∞

∑
�∈�1

ρ(γ,t)

I(�)dµ0(ρ) +
∫
B2∞

∑
�∈�2

ρ(γ,t)

I(�)dµ0(ρ).

The set �2
ρ(γ, t) consists of trajectories for which event F [t, n] occurs for some

n ≥ 0. It follows from the fact that

∑
�∈�2

ρ(γ,t)

I(�) =
t∑

n=0

P{η(t) ∈ B2
γ , F [t; n] | δρ},

that ∫
B2∞

∑
�∈�2

ρ(γ,t)

I(�)dµ0(ρ) = r(γ, t).

Consider the first sum in the right-hand side of (17). We divide the set of tra-
jectories �1

ρ(γ, t) into two nonintersecting subsets �1,1
ρ (γ, t) and �1,2

ρ (γ, t),

where

�1,1
ρ (γ, t) = {� ∈ �1

ρ(γ, t) : n2(σ (�)) ≤ n2(t) − |γ2|},
�1,2

ρ (γ, t) = {� ∈ �1
ρ(γ, t) : n2(σ (�)) > n2(t) − |γ2|}.
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The sum of weights of all trajectories from �1,1
ρ (γ, t) can be rewritten as follows

∑
�∈�

1,1
ρ (γ,t)

I(�) =
∑
b∈S

∑
t1+t2=t

t∑
n=1

∑
�:σ(�)=Tn(�,b)

=τ(n)=t1

I(�), (19)

and ∑
�:σ(�)=Tn(�,b)=τ (n)=t1

I(�) (20)

=
∑

�1∈�1([ρ1]n,b,t1)

t2∑
m=1

∑
β∈A

∑
�2∈�2(b,[θnρ1]m;γ1,βγ2,t2)

I(�1)I(�2).

Here �1([ρ1]n, β, t) is the set of trajectories � with length |�| = t + 1 such that

(i) η(0) = (ρ1, ρ2), n(0) = (0, 0);
(ii) for all k < t n1(k) > n1(t) = −n, i.e. τ (n) = t;

(iii) η2(t) ∈ Bβ ;

the set �2(b, [ρ1]m; α1, α2, t) consists of trajectories � with length |�| = t + 1
such that

(i) η1(0) = ρ1, η2(0) ∈ Bb and n(0) = (0, 0);
(ii) for all k ∈ (0, t] n2(k) > 0, η(t) ∈ B2

(α1,α2)
and n2(t) = |α2| − 1, i.e. the

event G[t; α2] ∩ (η1(t) ∈ Bα1) occurs;

(iii) m = − min0≤k≤t n1(k);

(iv) the event F [t; n] occurs for some n ≤ m.

Note that the sum of weights over all trajectories from �1([ρ1]n, β, t) does not
depend on θnρ1. Let

I1([ρ1]n, β, t) =
∑

�∈�1([ρ1]n,β,t)

I(�). (21)

Note also, that for any ρ2 such that η2(0) = ρ2b the sum of all weights over
trajectories from �2(b, [ρ1]n; α1, α2, t) does not depend on ρ2 and θnρ1. Let

I2(b, [ρ1]n; α1, α2, t) =
∑

�∈�2(b,[ρ1]n;α1,α2,t)

I(�). (22)
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Together with v(β, t) and w(b; α1, α2, t) for all ρ = (ρ1, ρ2) ∈ B2∞ we define
vρ(β, t), wρ1(b; α1, α2, t) :

vρ(β, t) =
t∑

n=1

P{τ (n) = t, η2(t) ∈ Bβ | δρ},

wρ1(b; β1, β2, t) =
t∑

n=1

P{η1(t) ∈ Bβ1, G[t; β2], F [t; n] | δ(ρ1,ρ2b)}.

Using formulas (21) and (22) we can represent vρ(β, t) and wρ1(b; α1, α2, t) in
the following way:

vρ(β, t) =
t∑

n=1

I1([ρ1]n, β, t), (23)

wρ1(b; α1, α2, t) =
t∑

n=1

I2(b, [ρ1]n; α1, α2, t). (24)

So, we have

v(β, t) =
∫
B∞

vρ(β, t)dν(ρ1)

=
t∑

n=1

∑
α∈A:|α|=n

pν(α)I1(α, β, t) (25)

w(b; α1, α2, t) =
∫
B∞

wρ1(b; α1, α2, t)dν(ρ1)

=
t∑

n=1

∑
α∈A:|α|=n

pν(α)I2(b, α; α1, α2, t) (26)

Integrating the first term in the right-hand side of (17) over initial measure µ0

we get
∫
B2∞

∑
�∈�1

ρ(γ,t)

I(�)dµ0(ρ) (27)

=
∫
B2∞

∑
�∈�

1,1
ρ (γ,t)

I(�)dµ0(ρ) +
∫
B2∞

∑
�∈�

1,2
ρ (γ,t)

I(�)dµ0(ρ).
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Consider the first term in the right-hand side of the above formula. By formulas
(20), (23), (24) we find

∫
B2∞

∑
�∈�

1,1
ρ (γ,t)

I(�)dµ0(ρ) =
∫
B∞

∑
�∈�

1,1
ρ (γ,t)

I(�)dν(ρ1)

=
∫
B∞

∑
b∈S

∑
t1+t2=t

t1∑
n=1

I1([ρ1]n, b, t1) ×

×
t2∑

m=1

∑
β∈A

I2(b, [θnρ1]m; γ1, βγ2, t2)dν(ρ1)

Using formulas (25), (26) we get
∫
B2∞

∑
�∈�

1,1
ρ (γ,t)

I(�)dµ0(ρ) =
∑
b∈S

∑
t1+t2=t

v(b, t1)
∑
β∈A

w(b; γ1, βγ2, t2).

The right-hand side of the above display is equal to the first term in formula (13).
Rewritting in the same way (see (19) and (20)) the sum of weigth of all trajec-

tories from �1,2
ρ (γ, t) we have

∑
�:σ(�)=Tn(�,b)=τ (n)=t1

I(�) (28)

=
∑

γ ′,γ ′′∈A\{∅}:
γ2=γ ′γ ′′

∑
�1∈�1([ρ1]n,γ b,t1)

t2∑
m=1

∑
�2∈�2(b,[θnρ1]m;γ1,γ ′′,t2)

I(�1)I(�2)

Using formulas (28), (23), (24) (25), (26), we find
∫
B2∞

∑
�∈�

1,2
ρ (γ,t)

I(�)dµ0(ρ)

=
∑
b∈S

∑
t1+t2=t

∑
γ ′,γ ′′∈A\{∅}:

γ2=γ ′γ ′′

v(b, t1)w(b; γ1, βγ2, t2).

The right-hand side of the above display is equal to the second term in formula
(13). The lemma is proved. �
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3.3 Proof of Lemma 3

Let Pn,ρ{·} := P{· | η(0) = ρ, n(0) = n}. If n(0) = (0, 0), we will write Pρ{·}.
Proposition 2. There exists ε ∈ (0, 1) such that

Pn,ρ{for all t > 0, n2(t) > n2(0)} ≥ ε > 0, (29)

for all ρ ∈ B2∞, n ∈ Z2.

Proof. In order to prove the proposition it is enough to show that there exist
N, ε > 0 such that for any ρ ∈ B2∞, n ∈ Z2

Pn,ρ{for all t > 0, n2(t) > n2(0) − N} ≥ ε > 0. (30)

This probability does not depend on n and without loss of generality we can
assume that n1(0) = n2(0) = 0.

It follows from Lyapunov conditions (3), (4) that there exist posititive δ, C

such that for any ρ

Pρ{n1(t) ≥ 0} < Ce−δt , (31)

Pρ{n2(t) ≤ 0} < Ce−δt . (32)

Let

Bm =
∞⋂

t=m

{n2(t) > 0}.

Then

Pρ{Bm} = 1 − Pρ{
∞⋃

t=m

{n2(t) ≤ 0}} > 1 −
∞∑

t=m

Pρ{n2(t) ≤ 0}

and by (32)
∞∑

t=m

Pρ{n2(t) ≤ 0} < C1e
−δm.

for some constant C1 > 0. Hence, there exist γ, m0, such that for any m > m0

Pρ{Bm} > γ > 0. (33)

Thus, we obtain (30). Proposition 2 is proved. �
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Now we construct an infinite sequence of nonintersecting Ai ⊂ �ρ where �ρ

is the set of all trajectories of L∞ provided that it starts at point ρ. We do it by
induction. Let

t
(1)
β := min{t ≥ 0 : (there exists n : τ (n) = t) ∩ (η2(t) ∈ Bβ)}.

Put
A1 := {ω ∈ �ρ : for all t > t

(1)
β n2(t) > n2(t

(1)
β )}.

With each trajectory ω ∈ �ρ \ A1 we associate the moments

t1(ω) := min{t > 0 : n2(t + t
(1)
β ) < n2(t

(1)
β )},

t
(2)
β (ω) := min{t > 0 : (for all k < τ

(1)
β + t1 + t

n1(k) > n1(t
(1)
β + t1 + t)) ∩ (η2(t

(1)
β + t1 + t) ∈ Bβ)}.

Using these moments we define

A2 := {ω ∈ �ρ \ A1: for all t > t
(1)
β + t1 + t

(2)
β

n2(t) > n2(t
(1)
β + t1 + t

(2)
β )},

and so on. Suppose now that we have constructed the subsets

A1, A2, . . . , An.

For all ω ∈ �ρ \ (∪n
i=1Ai) put by definition

tn(ω) := min{t > 0 :
n2(t + t

(1)
β + · · · + t

(n)
β ) < n2(t

(1)
β + · · · + t

(n)
β )},

t
(n+1)
β (ω) := min{t > 0 : for all k < t

(1)
β + t1 + · · · + t

(n)
β + t

n1(k) > n1(t
(1)
β + t1 + · · · + t

(n)
β + tn + t),

and η2(t
(1)
β + t1 + · · · + t

(n)
β + tn + t) ∈ Bβ},

and introduce An+1 ⊂ �ρ \ (∪n
i=1Ai) as follows

An+1 := {ω ∈ �ρ \ (∪n
i=1Ai) such that

for all t > t
(1)
β + t1 + · · · + t

(n)
β + tn + t

(n+1)
β

n2(t) > n2(t
(1)
β + t1 + · · · + t

(n)
β + tn + t

(n+1)
β )}

It follows from the above construction that for all ω ∈ An

Tβ(ω) = t
(1)
β + t1 + t

(2)
β + · · · + t

(n)
β + tn + t

(n+1)
β
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where Tβ is β-renewal moment. By (29) we have

P{An} < (1 − ε)n−1.

In order to prove the exponential estimation for β - renewal moment we need the
following proposition.

Proposition 3. There exist positive C, δ such that

Pn,ρ{t1 > t} < Ce−δt , (34)

Pn,ρ{t (1)
β > t} < Ce−δt , (35)

where constants C, δ do not depend on ρ and n.

Proof. Inequality (34) follows from (32). To prove (35) it is sufficient to show
that for λ small enough

Eρ(e
λt

(1)
β ) < c(λ), (36)

where c(λ) → 1 as λ → 0. Let

Mn = {for all i < n η2(τ
(i)) /∈ Bβ, η2(τ

(n)) ∈ Bβ}.

For ω ∈ Mn, t
(1)
β (ω) = τ (n)(ω) and we have

Eρ e
λt

(1)
β =

∞∑
n=1

Eρ(e
λt

(1)
β IMn

) =
∞∑

n=1

Eρ(e
λτ (n)

IMn
). (37)

We need to prove the convergence of the above series. Note that there is ε > 0
such that for any n,

Pρ{η2(τ
(n)) ∈ Bβ} > ε,

uniformly in ρ ∈ B2∞. Hence,

Pρ{Mn} < (1 − ε)n−1. (38)

It follows from (31) that

Pρ{τ (1) > t} < Ce−δt ,

so, for λ small enough
Eρ eλτ (1) ≤ c1(λ),
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where c1(λ) → 1, as λ → 0. By (38) we have that for some q ∈ (0, 1), λ > 0

Eρ eλτ (1)

IM1 < q, Eρ eλτ (1)

IM1
< q.

Let ρn = η(τn). Then one can write

Eρ(e
λτ (n)

IMn
) = Eρ(e

λ
∑n

i=1(τ
(i)−τ (i−1))IMn

)

= Eρ(Eρ(e
λ(τ (n)−τ (n−1))eλ

∑n−1
i=1 (τ (i)−τ (i−1))IMn

| ρn−1))

< q Eρ(e
λ

∑n−1
i=1 (τ (i)−τ (i−1))IMn

),

which yields immediately

Eρ(e
λτ (n)

IMn
) < qn.

So, series (37) is convergent for sufficiently small λ . Proposition 3 is proved. �

Corollary 2. For any i

Pρ{ti > t} < Ce−δt and P{t (i)β > t} < Ce−δt .

To complete the proof of the lemma we need the following fact.

Proposition 4. There exists λ > 0 such that

Eρ eλTβ < c2(λ), (39)

where the function c2(λ) does not depend on ρ.

Proof. Define

τ(t) = max{τ (n) : τ (n) ≤ t},
b(t) = n1(t) − n1(τ (t))

and let φ(ρ, λ) = Eρ eλTβ . This exponential moment can be represented as

Eρ eλTβ =
∞∑

n=1

(Eρ eλTβ IAn
).

Consider functions φn(ρ, λ) = Eρ(e
λTβ IAn

). Note that

φn(ρ, 0) = Pρ{An} < (1 − ε)n−1,
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where ε is from Proposition 2. It is sufficient to prove that there exist q ∈
(0, 1), λ0 > 0 such that for any positive λ < λ0

φn(ρ, λ) < qn−1c(λ), (40)

uniformly in ρ ∈ B2∞. Suppose that the initial state is ρ ′ = (ρ1, ρ2β). In this
case t

(1)
β = 0. Let us estimate φ2(ρ

′, λ). Note that

φ2(ρ
′, λ) < Eρ′(eλt1+λt

(2)
β I�\A1).

We have

Eρ′(eλt1+λt
(2)
β I�\A1)

=
∑
s1,s2

∑
ρ

∑
n

eλs1+λs2 Pρ′ {t1 = s1, η(s1) = ρ, b(s1) = n, t
(2)
β = s2}

=
∑
s1,s2

∑
ρ

∑
n

eλs1 Pρ′ {t1 = s1, η(s1) = ρ, b(s1) = n}

× eλs2 Pρ′ {t (2)
β = s2 | t1 = s1, η(s1) = ρ, b(s1) = n}

=
∑
s1

∑
ρ

∑
n

eλs1 Pρ′ {t1 = s1, η(s1) = ρ, b(s1) = n}

×
∑
s2

eλs2 Pρ′ {t (2)
β = s2 | η(s1) = ρ, b(s1) = n},

where
∑
s2

eλs2 Pρ′ {t (2)
β = s2 | η(s1) = ρ, b(s1) = n} ≤ cn

1(λ)c(λ).

Here c1(λ), c(λ) are from the proof of Proposition 3. Thus,

Eρ′(eλt1+λt
(2)
β I�\A1) (41)

≤
∑

s

∑
n

eλs Pρ′ {t1 = s, b(s) = n}cn
1(λ)c(λ).

By Cauchy-Schwartz inequality

Pρ′ {t1 = s, b(s) = n} ≤
√

Pρ′ {t1 = s} Pρ′ {b(s) = n}. (42)
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By Proposition 3 we have

Pρ′ {b(t1) ≥ n} < Pρ′ {t1 ≥ n} < C−δn. (43)

Combining (42) and (43) with Proposition 3, we get that there exists λ > 0 such
that series (41) converges. Since

sup
ρ′

|φ2(ρ
′, λ) − φ2(ρ

′, 0)| → 0, when λ → 0,

there exist λ0 and q ∈ (0, 1) such that

Eρ′(eλ0Tβ I�\A1) < q. (44)

Now we can estimate φn(ρ, λ). Indeed,

φn(ρ, λ) < Eρ(e
λTβ I�\∪n−1

i=1 Ai
).

Let ρn = η(t
(1)
β + t1 + · · · + λt

(n)
β ). For any λ ≤ λ0 we have

Eρ(e
λTβ I�\∪n−1

i=1 Ai
) = Eρ(e

λ(t
(1)
β +t1+···+t

(n)
β )

I�\∪n−1
i=1 Ai

)

= Eρ(Eρ(e
λ(t

(1)
β +t1+···+t

(n)
β )

I�\∪n−1
i=1 Ai

| ρn−1))

= Eρ(e
λ(t

(1)
β +t1+···+t

(n−1)
β )

I�\∪n−1
i=1 Ai

Eρ(e
λtn−1+λt

(n)
β | ρn−1))

< q Eρ(e
λ(t

(1)
β +t1+···+t

(n−1)
β )

I�\∪n−1
i=1 Ai

)

< q Eρ(e
λ(t

(1)
β +t1+···+t

(n−1)
β )

I�\∪n−2
i=1 Ai

)

which yields immediately

Eρ(e
λTβ I�\∪n−1

i=1 Ai
) < qn−1 Eρ e

λt
(1)
β

(36)≤ qn−1c(λ).

So, the formula (40) holds. The Proposition 4 is proved. �

3.4 Proof of Lemma 4

Define an increasing sequence of random moments:

τ
(1)
β = min{τ (k) : η2(τ

(k)) ∈ Bβ},
τ

(n)
β = min{τ (k) > τ

(n−1)
β : η2(τ

(k)) ∈ Bβ}.
Bull Braz Math Soc, Vol. 34, N. 3, 2003



A STABILIZATION LAW FOR TWO SEMI-INFINITE INTERACTING STRINGS 381

Let n(0) = (0, 0) and

Fβ[t; n] = {τ (n)
β < t, τ

(n+1)
β = t and for any k ≤ n

there exists sk ∈ (τ (k), t] such that n2(sk) < n2(τ
(k))}.

Consider the following probability:

fβ(t) =
t∑

n=0

P{Fβ[t; n] and for all k ∈ (0, t] n2(k) > n2(0) | ν × δρβ}.

Proposition 5. For all β ∈ A \ {∅}

v(β, t) =
∑

t1+t2=t

v(β, t1)fβ(t2) + r(β, t), (45)

where

r(β, t) =
t∑

n=0

P{Fβ[t; n] | µ0}. (46)

Proof. Let ρ ∈ B2∞ and let ϒρ(β, t) be the following set of trajectories.

ϒρ(β, t) = {� = g0g1 . . . gt such that η(0) = ρ, η2(t) ∈ Bβ

and n1(t) < n1(k) for all k < t}.
So

vρ(β, t) =
∑

�∈ϒρ(β,t)

I(�). (47)

For any � ∈ ϒρ(β, t) define the moment σ(�) as the maximal time T such that:

(i) for all k < T n1(k) > n1(T );

(ii) for all k ∈ (T , t] n2(k) ≥ n2(T );
(iii) η2(T ) ∈ Bβ .
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If there is no T with the above properties put σ(�) = 0. Split the sum (47)

∑
�∈ϒ1

ρ(β,t)

I(�) +
∑

�∈ϒ2
ρ (β,t)

I(�), (48)

where

ϒ1
ρ(β, t) = {� : σ(�) �= 0} and ϒ2

ρ(β, t) = {� : σ(�) = 0}.

Consider the second sum in (48). The set ϒ2
ρ(β, t) consists of all trajectories for

which event Fβ[t; n], n ≥ 0 occurs. So we have

∑
�∈ϒ2

ρ (β,t)

I(�) =
t∑

n=0

P{Fβ[t; n] | δρ}.

and, by integrating over initial distribution µ0, we come to

r(β, t) =
∫ ∑

�∈ϒ2
ρ (β,t)

I(�)dµ0(ρ). (49)

Remark 1. It follows from the definition of Tβ (see (14)) that

r(β, t) < P{Tβ ≥ t | µ0}.
By Lemma 3 r(β, t) converges to zero for all nonempty finite words β as t → ∞.

Denote by �ρ([ρ1]n, β, t), ρ = (ρ1, ρ2) ∈ B2∞, β ∈ A, n ∈ N the set of all
trajectories satisfying the following properties:

(i) η(0) = (ρ1, ρ2β);
(ii) η1(t) = θnρ1, η2(t) ∈ Bβ;

(iii) n1(k) > n1(t) for all k < t ;

(iv) n2(k) > n2(0) for all k ∈ (0, t];
(v) for all t ′ < t , for which (ii), (iii) hold, there exists k′ such that t ′ + k′ < t

and n2(t
′ + k′) < n2(t

′); in another words, at the moment t ′ + k′ the word
β is destroyed.
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Note that the sum of weights over trajectories from the set �ρ([ρ1]n, β, t), does
not depend on ρ2. Let

f[ρ1]n,β,t =
∑

�∈�ρ([ρ1]n,β,t)

I(�) (50)

and

fρ1,β(t) =
t∑

n=1

f[ρ1]n,β(t). (51)

Then one can write

fβ(t) =
∫
B∞

fρ1,β(t)dν(ρ1). (52)

For the first sum in (48) we have

∑
�∈ϒ1

ρ(β,t)

I(�) =
t∑

t1=1

t1∑
n=1

∑
�:σ(�)=τ (n)=t1

I(�)

=
∑

t1+t2=t

t1∑
n=1

∑
�∈ϒρ(β,t1):

n1(0)−n1(t1)=n

I(�)fθnρ1,β(t2)

=
∑

t1+t2=t

t1∑
n=1

Iϒ([ρ1]n, t1)fθnρ1,β(t2),

(53)

where
Iϒ([ρ1]n, t) =

∑
�∈ϒρ(β,t1):

n1(0)−n1(t1)=n

I(�).

Using formulas (48), (49), (53) and integrating over initial distribution µ0, we
get

v(β, t) =
∫
B2∞

∑
�∈ϒρ(β,t)

I(�)dµ0(ρ) =
∫
B∞

∑
�∈ϒρ(β,t)

I(�)dν(ρ1)

=
∫
B∞

∑
t1+t2=t

t1∑
n=1

Iϒ([ρ1]n, t1)fθnρ1,β(t2)dν(ρ1) + r(β, t)

=
∑

t1+t2=t

t1∑
n=1

∑
α:|α|=n

pν(α)Iϒ(α, t1)

∫
B∞

fθnρ1,β(t2)dν(θnρ1)

+ r(β, t) =
∑

t1+t2=t

v(β, t1)fβ(t2) + r(β, t).
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This completes the proof of (45). �

Proposition 6. For any β ∈ A \ {∅}
∞∑
t=1

fβ(t) = 1.

Proof. Consider measures µ such that

µ{ρ = (ρ1, ρ2) : ρ2 ∈ Bβ} = 1. (54)

Denote

p(µ(1), β) = P{for all t, n2(t) > n2(0) | µ}. (55)

It is obvious that this probability depends only on the marginal measure µ(1) of
the first string and on the fixed rightmost finite word β which belongs to the
second string. For µ(1) = δρ1, ρ1 ∈ B∞, we will write p(ρ1, β) instead of
p(µ(1), β). Under condition (54) we have

p(µ(1), β) =
∫
B2∞

p(ρ1, β)dµ(ρ).

Let η(0) = (ρ1, ρ2β), ρ = (ρ1, ρ2) ∈ B2∞ and

A(ρ1, ρ2β) = {for all t n2(t) > n2(0)}.
Now we define function σ(�) on the set A(ρ1, ρ2β). For any trajectory � =
g0g1 . . . gt · · · ∈ A(ρ1, ρ2β) put σ(�) be equal to the minimal moment T satis-
fying the conditions:

(i) for all t > T n2(t) > n2(T );
(ii) for all t < T n1(t) > n1(T );

(iii) η2(T ) ∈ Bβ .

If for a fixed trajectory � it is not possible to define the moment T satisfied (i)−
(ii) then we put σ(�) = 0. Divide the set A(ρ1, ρ2β) into two nonintersecting
sets:

A(ρ1, ρ2β) = A1(ρ1, ρ2β) ∪ A2(ρ1, ρ2β),

where
A1(ρ1, ρ2β) = {� : σ(�) �= 0},

Bull Braz Math Soc, Vol. 34, N. 3, 2003



A STABILIZATION LAW FOR TWO SEMI-INFINITE INTERACTING STRINGS 385

A2(ρ1, ρ2β) = {� : σ(�) = 0}.
Now we will prove that for any β ∈ A \ {∅}

P{� : � ∈ A2(ρ1, ρ2β)} = 0. (56)

Indeed, we have

P{� : � ∈ A2(ρ1, ρ2β)}

≤ lim
t→∞

t∑
n=0

P{τ (n)
β < t, τ

(n+1)
β ≥ t and for any k ≤ n

there exists sk ∈ (τ (k), t] such that n2(sk) < n2(τ
(k))}

= lim
t→∞ P{Tβ ≥ t | δ(ρ1,ρ2β)}.

Thus, (56) follows from Lemma 3.
Consider now the set A1(ρ1, ρ2β). By definition of σ(·) we get

P{A(ρ1, ρ2β)} = P{A1(ρ1, ρ2β)}

=
∞∑
t=1

∫
�: σ(�)=t

P(d�) =
∞∑
t=1

t∑
n=1

∫
�: σ(�)=τ (n)=t

P(d�). (57)

Let the initial measure be µ = ν × δρ2β. Consider the probability of the event
{for all t, n2(t) > n2(0)} provided that the initial measure is µ. Using (57) we
come to

p(ν, β) =
∫
B∞

P{A1(ρ1, ρ2β)}dν(ρ1)

=
∞∑
t=1

t∑
n=1

∫
B∞

f[ρ1]n,β(t)p(θnρ1, β)dν(ρ1)

=
∞∑
t=1

t∑
n=1

∑
α:|α|=n

pν(α)fα,β(t)

∫
B∞

p(θnρ1, β)dν(θnρ1)

= p(ν, β)

∞∑
t=1

t∑
n=1

∑
α:|α|=n

pν(α)fα,β(t) =
∞∑
t=1

fβ(t)p(ν, β).

Here the last equality holds because

fβ(t) =
∫
B∞

fρ1,β(t)dν(ρ1) =
∫
B∞

t∑
n=1

f[ρ1]n,β(t)dν(ρ1)

=
t∑

n=1

∫
B∞

f[ρ1]n,β(t)dν(ρ1) =
t∑

n=1

∑
α:|α|=n

pν(α)fα,β(t).
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Hence,

p(ν, β) =
∞∑
t=1

fβ(t)p(ν, β).

Proposition 6 is proved. �

Proposition 7. Let condition (54) hold for the initial measure µ. Then

fβ(t) < P{Tβ ≥ t | µ}.

Proof. Let

Ct = {there exists t0 ≤ t such that n2(t0) < n2(0)}.
Then

fβ(t) ≤ P{Tβ > t, Ct | µ}
< P{Tβ > t, Ct | µ} + P{Tβ > t, Ct | µ} = P{Tβ > t | µ}.

The proposition is proved. �
By Propositions 6, 7 and Lemma 3

∞∑
t=1

tfβ(t) < ∞.

Note that equation (45) is a renewal equation. By the renewal theorem we obtain
that there exists the limit

lim
t→∞ v(β, t) = v(β) (58)

and, moreover,

v(β) =
∑∞

t=1 r(β, t)∑∞
t=1 tfβ(t)

.

Since we have exponential estimates for fβ(t) and r(β, t), standard arguments
(see, for example, Chapter 7 of [1]) show that the convergence in (58) is expo-
nentially fast.

Proposition 8. Let µ0 = ν × δρ2, where ρ2 ∈ B∞. Then

p(ν, β)

∞∑
t=1

r(β, t) = 1, (59)

for any ρ2, where p(ν, β) is defined by (55).
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Proof. Let the initial distribution be δρ, ρ = (ρ1, ρ2). The distribution of the
β-renewal moment Tβ can be represented as follows

Pρ{Tβ = t} =
t∑

n=1

∑
�∈ϒ2

ρ (β,t):
n1(0)−n1(t)=n

I(�)p(θnρ1, β).

Let
I2([ρ1]n, β, t) =

∑
�∈ϒ2

ρ (β,t):
n1(0)−n1(t)=n

I(�).

Integrating over ν, we get

P {Tβ = t | µ0} =
∫
B∞

Pρ{T (1)
β = t}dν(ρ(1))

=
t∑

n=1

∫
B∞

I2([ρ(1)]n, β, t)p(θnρ
(1), β)dν(ρ(1))

=
t∑

n=1

∑
α:|α|=n

pν(α)I2(α, β, t)

∫
B∞

p(θnρ
(1), β)dν(θnρ

(1))

=
t∑

n=1

∑
α:|α|=n

pν(α)I2(α, β, t)p(ν, β).

(60)

Since

r(β, t) =
∫
B∞

t∑
n=1

∑
�∈ϒ2

ρ (β,t):
n1(0)−n1(t)=n

I(�)dν(ρ1)

=
t∑

n=1

∑
α:|α|=n

I2(α, β, t),

the sum (60) can be rewritten as

t∑
n=1

∑
α:|α|=n

pν(α)I2(α, β, t)p(ν, β) = r(β, t)p(ν, β).

So

P{Tβ = t | µ0} = p(ν, β)r(β, t). (61)

Bull Braz Math Soc, Vol. 34, N. 3, 2003



388 A. A. YAMBARTSEV and A. A. ZAMYATIN

Since ∞∑
t=1

P{Tβ = t | µ0} = 1,

using formula (61), we come to (59).

Corollary 3. v(β) does not depend on the state of the second string at the initial
moment.

The Lemma 4 is proved. �
As we noted before Theorems 2, 3 follows from Lemmas 2 – 4.
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