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On a multiscale continuous percolation model
with unbounded defects

M.V. Menshikov, S.Yu. Popov1 and M. Vachkovskaia2

Abstract. We study the multiscale (fractal) percolation in dimension greater than or
equal to 2, where the model at each level is the Poisson Boolean model [[λ, ρ]]. Also,
the random radius ρ is supposed to be unbounded. We prove that if the rate λ of Poisson
field is less than some critical value, then by choosing the scaling parameter large enough
one can assure that there is no multiscale percolation. Another result of this paper is that
if the expectation of ρ2αd is finite, then the expectation of the size of the cluster raised
to the power α is also finite for small λ, which is a generalization of one of the results
of [8].
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1 Introduction and results

In this paper we study the multiscale percolation of unbounded Poisson Boolean
models in the dimension d ≥ 2.

The Poisson Boolean model is probably the most famous example of contin-
uum percolation models. It may be described in the following way: First, take
a realization of the Poisson field with rate λ > 0 in R

d . Then, into each point of
the field put a ball of random radius ρ independently of everything. The object of
interest is the union of all those balls. Models with balls substituted by defects of
arbitrary shapes also were studied (cf. [8, 16, 21, 22]). A complete review of the
subject can be found in [11]; cf. also in [1, 6, 19, 20] some recent developments.

The main goal that we pursue in this paper is to obtain an extension of the known
results for bounded models to the case of unbounded models (which is usually
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rather non-trivial task in the percolation theory). Let us explain this in more detail.
For the Poisson Boolean model, the case which is best studied is when ρ < const

a.s. When ρ is unbounded, some “strange” situations, which contradict to the
discrete percolation intuition, are possible. For example (cf. [8]), if Eρ2d−1 < ∞
and Eρ2d = ∞, then for λ small enough there are no infinite clusters almost
surely, while the expected size of the cluster is infinite, i.e. the critical points do
not coincide. Even ifρ, for instance, has exponential tail, the classical percolation
results, such as coincidence of critical points, exponential decay of the size of the
cluster in the subcritical phase etc. are unknown. In particular, the quantity λρ
(defined below) may be different from the “classical” critical points, such as, for
example, the critical rate λcr which separates percolation from the absence of
percolation. Therefore, Theorem 1.2 below (which is a generalization of one of
the results of [8]) is of independent interest.

In percolation theory some interest was attracted by the problems which arise
when the percolation model is formed by the following procedure. Some ran-
dom set is rescaled (probably, more than once), and the result is in some sense
superpositioned with the independent copy of the original random set. First such
model was introduced by Mandelbrot [10], and extensively studied later on, cf.,
for example, [2, 3, 4, 13, 14, 15, 17]. Continuum models of such kind also
attracted some attention, cf. [5, 11, 12, 14, 18, 20]. All the papers cited above
study models with bounded defects; here we consider the situation when the
model of each level contains the defects of arbitrarily large size. The main goal
of this paper is to obtain a generalization of Theorem 1.1 of [14] to the case os
unbounded defects. As noted above, in this case the study of percolation models
is indeed much more difficult, and in fact the attempt to use the method of [14]
straightforwardly fails.

Now, let us describe the model of interest. Consider Poisson Boolean model
M0 = [[λ, ρ]] (see in [11] the definitions and some general theory), where λ > 0
is the rate of Poisson field and ρ > 0 is the random radius. Here and in the
sequel double square brackets [[·, ·]] stand for a Poisson Boolean model. Also,
U[[·, ·]] ⊂ R

d denotes the union of all balls with positive radius in the model, and
X[[·, ·]] denotes the field of the centers of those balls. We construct the multiscale
Poisson Boolean model in R

d in the following way. Fix R > 1. Level-i model
is Mi = [[λRid, ρR−i]], where the Poisson point process and the radii of the
balls are independent of what happens on all other levels. The balls fromMi are
called level-i balls. Denote U(i) = U(Mi). The object of interest is the random
set U = ∪∞

i=0U
(i). Say that in this model percolation occurs if almost surely

there exists a continuous path γ : R �→ U , such that γ is not contained in any
finite box.
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Denote

ϕ(n) = P{‖U(0)(0)‖ > n}, and

�(ρ) = {λ > 0 : ϕ(n) = o(n−d), n → ∞} ⊂ R+,

whereU(0)(0) denotes the connected component fromU(0) which contains 0 and
‖U(0)(0)‖ denotes its diameter.

We suppose that the following conditions are satisfied:

Condition A. The set �(ρ) is not empty.

Let

λρ = {sup λ : λ ∈ �(ρ)}.
Clearly, Condition A assures that λρ > 0.

Condition B. The random radius ρ satisfies

lim
R→∞ sup

x≥1/2

RdF̂ρ(xR)

F̂ρ(x)
= 0, (1)

with the convention 0/0 = 0, where F̂ρ(x) = P{ρ ≥ x}.
Besides supposing that ρ has the tail which decreases rapidly enough, Condi-

tion B also requires some regularity of the distribution of ρ. But this requirement
is not very stringent, for example, if

• there exist γ1, γ2 > 0 such that

exp(−γ1x) ≤ F̂ρ(x) ≤ exp(−γ2x), or

• there exist C1, C2 > 0, γ > d such that

C1x
−γ ≤ F̂ρ(x) ≤ C2x

−γ , or

• ρ has Poisson distribution,

then Condition B is satisfied. Note that any bounded random variable ρ also
satisfies Condition B.

Our main result is the following

Theorem 1.1. If Conditions A, B are satisfied, then for any λ < λρ there
exists R0 = R0(λ) such that for all R ≥ R0 there is no percolation in the set U .

Note that the set R
d \U has the Lebesgue measure 0, but Theorem 1.1 shows

that it may be the case that there is no percolation in the set U .
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Remark. Suppose that ρ = 1 a.s. Then, we have the results about the coinci-
dence of the critical points and the exponential decay of the size of the cluster
(cf. [16]), so Condition A holds and λρ = λcr . As noted above, Condition B also
holds in this case. Thus, Theorem 1.1 indeed generalizes Theorem 1.1 of [14].

It is important to mention that the verification of Condition A may be very
difficult, because it involves the properties of the whole cluster, not just the
single radius distribution ρ. For example, one of the results of [8] implies that
if Eρ = ∞, then ‖U(0)(0)‖ = ∞ a.s. for any λ > 0. Nevertheless, note that if
E‖U(0)(0)‖d+1 < ∞, then Chebyshev inequality implies that

P{‖U(0)(0)‖ > n} = O(n−(d+1)),

and so Condition A is satisfied. Then, we prove the following result, which may
be of independent interest. It is a generalization of one of the results of [8] where
the case α = 1 was considered.

Theorem 1.2. If Eρ2αd < ∞ for some α ∈ N, then there exists λ0 > 0 such that
E‖U(0)(0)‖α < ∞ for all λ < λ0.

Thus, for Condition A to hold, Theorem 1.2 implies that it is sufficient that
Eρ2d(d+1) < ∞.

2 Proof of Theorem 1.1

Denote Un = ∪ni=0U
(i). Let Sm ⊂ R

d be the sphere of radius m centered at 0.
Following [14], to prove the absence of percolation in U it is sufficient to prove
that the sets Un are in the subcritical phase uniformly in n, i.e.

P{there exists a path connecting 0 to Sm in Un} < εm,n, (2)

where εm,n → 0 uniformly in n as m → ∞. Fix some n and consider the
percolation problem in Un.

Definition 2.1. We say that one Poisson Boolean model [[λ1, ρ1]] is dominated
by another Poisson Boolean model [[λ2, ρ2]] when it is possible to couple them
in such a way that U[[λ1, ρ1]] ⊂ U[[λ2, ρ2]].

We need the following

Lemma 2.1. Let [[λ1, ρ1]] and [[λ2, ρ2]] be two Poisson Boolean models. If ρ1,
ρ2 are such that

λ1F̂ρ1(x) ≤ λ2F̂ρ2(x) (3)

for all x > 0, than [[λ1, ρ1]] is dominated by [[λ2, ρ2]].
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Proof. Note that we can make λ1 = λ2 by enlarging the smaller of the lambdas
and adding the positive mass in 0 to the respective ρ. It can be easily seen that
this does not affect the validity of (3) (if λ is enlarged up to λ∗, then for x > 0
F̂ (x) is substituted by F̂ ∗(x) = λ

λ∗ F̂ (x), so that λF̂ (x) = λ∗F̂ ∗(x)). So, without
loss of generality, suppose that λ1 = λ2 =: λ∗, and thus

F̂ρ1(x) ≤ F̂ρ2(x) (4)

for all x > 0. The rest of the proof is quite standard. Having the configuration
x1, x2, . . . of Poisson point process with rate λ∗ consider the sequence of inde-
pendent random variables ζi , i = 1, 2, . . . , uniformly distributed in [0, 1]. Let
Fρj = 1 − F̂ρj denote the distribution function of ρj , j = 1, 2. We define the
coupling of the two models by ρj (i) = F−1

ρj
(ζi), where ρj (i) is the realization of

the random variable ρj at the point xi , j = 1, 2. Now, if ρ1(i) > ρ2(i), then there
exists y > 0 such that F−1

ρ1
(ζi) > y > F−1

ρ2
(ζi), that is, Fρ1(y) < ζi < Fρ2(y)

which contradicts (4). Thus, the proof of Lemma 2.1 is completed. �

For L ≥ 0 denote ρ≥L = ρ1{ρ ≥ L} and ρ<L = ρ − ρ≥L. Note that
without loss of generality one can suppose that there exists a > 0 such that
ρ ∈ {0} ∪ [a,+∞) a.s. To show that, first, let us prove that [[λ, ρ]] is dominated
by

[[
λ
(

1 + P{ρ < a}
P{ρ ≥ a}

)
, ρ≥a

]]
.

Indeed, by Lemma 2.1 it is sufficient to prove that

λF̂ρ(x) ≤ λ
(

1 + P{ρ < a}
P{ρ ≥ a}

)
F̂ρ≥a (x) (5)

for all x > 0. As

F̂ρ≥a (x) =
{
F̂ρ(x), if x ≥ a,

F̂ρ(a), if 0 < x < a,
(6)

the inequality (5) trivially holds for x ≥ a. For 0 < x < a we have P{ρ ≥
a}F̂ρ(x) ≤ F̂ρ(a), which is equivalent to

λF̂ρ(x) ≤ λ
(

1 + P{ρ < a}
P{ρ ≥ a}

)
F̂ρ(a),

which proves (5). Now, as λ < λρ , choosing a small, one can make P{ρ < a}
small enough to assure that

λ
(

1 + P{ρ < a}
P{ρ ≥ a}

)
∈ �(ρ) ⊂ �(ρ≥a).
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So one can consider ρ≥a instead of ρ; it means that the radii of all the nontrivial
balls in [[λ, ρ]] are greater or equal to a.

Choose ε > 0, 0 < α < 1 such that λ + ε ∈ �((1 + α)ρ) (by the rescaling
argument, it is equivalent to (λ + ε)(1 + α)d ∈ �(ρ)) and fix some α0 < α,
ε0 < ε.

Lemma 2.2. If Condition B is satisfied, then there exists Rε0,α0 such that for any
R > Rε0,α0 the union of two independent Boolean models Mi = [[λRid, ρR−i]]
and [[(λ+ε0)R

(i+1)d , ((1+α0)ρ)
≥RR−(i+1)]] is dominated by [[(λ+ε0)R

id, (1+
α0)ρR

−i]], i = 0, . . . , n− 1.

Proof. Note that Condition B implies that

lim
R→∞ sup

x>0

RdF̂ρ≥R/2(xR)

F̂ρ(x)
= 0. (7)

Indeed, as

F̂ρ≥R/2(xR) =
{
F̂ρ(xR), if x ≥ 1/2,
F̂ρ(R/2), if 0 < x < 1/2

(8)

we have

sup
x>0

RdF̂ρ≥R/2(xR)

F̂ρ(x)
= sup

x≥1/2

RdF̂ρ(xR)

F̂ρ(x)
.

Fix i ∈ {0, 1, . . . , n− 1}. Denote η0 := ((1 + α0)ρ)
≥R and η1 := (1 + α0)ρ.

Note that the model [[(λ + ε0)R
id, (1 + α0)ρR

−i]] can be represented as the
union of two Poisson Boolean models: [[λRid, (1 + α0)ρR

−i]] and [[ε0R
id, (1 +

α0)ρR
−i]]. Clearly,Mi is dominated by the first one, so it remains to prove that

[[(λ+ε0)R
(i+1)d , ((1+α0)ρ)

≥RR−(i+1)]] is dominated by [[ε0R
id, (1+α0)ρR

−i]].
By Lemma 2.1 we need to prove that for all R large enough

(λ+ ε0)R
(i+1)d F̂η0R−(i+1) (x) ≤ ε0R

idF̂η1R−i (x),

for all x > 0. For this, it is sufficient to prove that

RdF̂η0R−(i+1) (x)

F̂η1R−i (x)
→ 0

uniformly in x, as R → ∞.
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Due to (7) and the fact that F̂ρ≥R/2 ≥ F̂ρ≥R/(1+α0) = F̂((1+α0)ρ)≥R if α0 < 1, one
has

RdF̂η0R−(i+1) (x)

F̂η1R−i (x)
= RdF̂η0(R

i+1x)

F̂η1(R
ix)

→ 0

uniformly in x, as R → ∞. Lemma 2.2 is proved. �

Take R > Rε0,α0 . First, split [[λRnd, ρR−n]] into two independent models
[[λRnd, ρ<RR−n]] and [[λRnd, ρ≥RR−n]]. We apply the Lemma 2.2 to

[[λR(n−1)d , ρR−(n−1)]] ∪ [[λRnd, ρ≥RR−n]]

and obtain that it is dominated by

[[(λ+ ε0)R
(n−1)d , (1 + α0)ρR

−(n−1)]].

So, the model

[[λR(n−1)d , ρR−(n−1)]] ∪ [[λRnd, ρR−n]]

is dominated by

[[(λ+ ε0)R
(n−1)d , (1 + α0)ρR

−(n−1)]] ∪ [[λRnd, ρ<RR−n]].

Obviously, [[λRnd, ρ<RR−n]] is dominated by [[(λ+ε0)R
nd, ((1+α0)ρ)

<RR−n]].
In the same way we obtain that

[[λR(n−2)d , ρR−(n−2)]] ∪ [[(λ+ ε0)R
(n−1)d , (1 + α0)ρR

−(n−1)]]

is dominated by

[[(λ+ ε0)R
(n−2)d , (1 + α0)ρR

−(n−2)]] ∪ [[(λ+ ε0)R
(n−1)d , ((1 + α0)ρ)

<RR−(n−1)]],

and so on. Thus we get that the union of independent Poisson Boolean models

n⋃
i=0

Mi =
n⋃
i=0

[[λRid, ρR−i]]

is dominated by

[[(λ+ ε0), (1 + α0)ρ]] ∪
( n⋃
i=1

[[(λ+ ε0)R
id, ((1 + α0)ρ)

<RR−i]]
)
,
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where all the n+1 Poisson Boolean models are independent as well. Abbreviate
D(i) := U[[(λ + ε0)R

id, ((1 + α0)ρ)
<RR−i]], Xi := X[[(λ + ε0)R

id, ((1 +
α0)ρ)

<RR−i]], i = 1, . . . , n, and D(0) := U[[(λ + ε0), (1 + α0)ρ]], X0 :=
X[[(λ + ε0), (1 + α0)ρ]]. Remember that X[[·, ·]] denotes the set of Poisson
points which carry a ball of positive radius in the respective model. Take β > 0
such that (1 + α0)(1 + β) < 1 + α, so

λ+ ε ∈ �((1 + α0)(1 + β)ρ). (9)

Denote W(i) := U[[(λ+ ε)Rid, (1 + β)((1 + α0)ρ))
<RR−i]], i = 1, . . . , n and

W(0) := U[[(λ+ ε), (1 + β)(1 + α0)ρ]]. Also, let V (i) = U[[(λ+ ε0)R
id, (1 +

β)((1+α0)ρ))
<RR−i]], i = 1, . . . , n andV (0) := U[[(λ+ε0), (1+β)(1+α0)ρ]],

where V (j) uses the same Poisson points process Xj as D(j), j = 0, 1, . . . , n.
Note that Vj is in fact Dj expanded by the factor (1 + β), j = 0, 1, . . . , n,
and Vj -s are independent.

For i = 0, . . . , n− 1 consider a partition of the space into the cubes with the
edge length aR−i/

√
d, which we call level-i cubes. Note that the size of the

cube is chosen in such a way that if there is a center of a ball from D(i) inside
the cube, then the latter is completely covered by the ball.

From this point on, we use some ideas of [14, 15].
We define now passable sets P0, . . . , Pn−1, and good sets G0, . . . ,Gn.

Definition 2.2. First, the good level-n set is defined by Gn := D(n). For the
level i < n, we say that level-i cube is passable if it has nonempty intersection
with some connected component of diameter greater than 2aβR−i of the good
level-(i + 1) set Gi+1. The passable level-i set Pi is defined as the union of all
the passable level-i cubes. The good level-i setGi is defined byGi := Pi∪V (i).

Lemma 2.3. Percolation in Un implies percolation in G0.

Proof. As we have seen, Un is dominated byD(n) ∪ · · · ∪D(0). Using this, one
gets that, to prove Lemma 2.3, it is enough to prove the following fact:

(
percolation in

n⋃
j=0

D(j)
)

⇒
(

percolation in Gk ∪
k−1⋃
j=0

V (j)
)

(10)

for k = n, n − 1, . . . , 0 (indeed, take k = 0 in (10) to obtain the statement of
Lemma 2.3).

We prove (10) by induction. First, for k = n, we have thatGn = D(n), so (10)
follows. Now, suppose that (10) holds for k + 1, let us prove it for k, i.e. let us
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prove that

(
percolation in Gk+1 ∪

k⋃
j=0

V (j)
)

⇒
(

percolation in Gk ∪
k−1⋃
j=0

V (j)
)
. (11)

Take any infinite continuous path γ in Gk+1 ∪ V (k) ∪ · · · ∪ V (0). Consider
(Gk+1 \ (D(0) ∪ · · · ∪D(k))) ∩ γ ; it can be decomposed into finite or countable
number of connected segments γ1, γ2, . . . Take any γ ′ from that collection,
suppose that the two extremal points of it belong toD(i1) andD(i2), where i1, i2 ≤
k. There are two possibilities:

• diameter of γ ′ is less than 2aβR−k; in this case γ ′ ⊂ V (i1) ∪ V (i2);

• diameter of γ ′ is greater or equal to 2aβR−k; in this case γ ′ is covered by
passable level-k cubes, so γ ′ ⊂ Pk.

In both cases we have

γ ′ ⊂ Pk ∪ V (k) ∪ · · · ∪ V (0) = Gk ∪ V (k−1) ∪ · · · ∪ V (0),

which gives the proof of (11), and, consequently, of (10) and Lemma 2.3. �

One of the main ingredients of the proof of Theorem 1.1 is the following

Proposition 2.1. If for fixed ε0, α0, β the scaling parameter R is large enough,
then Gi can be dominated by W(i), i = 0, . . . , n.

Proof. Let us prove the proposition by induction. Clearly, by Definition 2.2,
the setGn = D(n) can be dominated byW(n). Suppose that the proposition holds
for level k + 1; let us prove it for level k.

Fix some level-k cube K . Denote δ = aR−(k+1)/
√
d. Let

Kδ = {x ∈ Rd : dist(x,K) ≤ δ}
and choose some δ-net N(δ)(Kδ) in Kδ. Note that it is possible to choose this
δ-net in such a way that card(N(δ)(Kδ)) is proportional to Rd , where card(A)
stands for the cardinality of the set A. We have

P{K is passable}
≤ P{there exists x ∈ N(δ)(Kδ) which belongs to some connected

component of diameter greater than 2aβR−k of Gk+1} (12)

≤ card(N(δ)(Kδ))P{‖U(k+1)(0)‖ > 2aβR−k}
Bull Braz Math Soc, Vol. 34, N. 3, 2003
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= card(N(δ)(Kδ))P{‖U(0)(0)‖ > 2aβR}
≤ cRdϕ(R) =: ψ(R) = Rdo(R−d) = o(1), R → ∞.

Note that, as

• we are interested (in the definition of passable cubes) in the connected
components of Gk+1 with diameter greater than 2aβR−k, and

• the balls from V (k+1) have radius less than (1 + β)R−k,
denoting b := 2 max{�2β

√
d�, �2a−1(1 +β)√d�} (recall that the edge of level-

k cube is equal to aR−k/
√
d), where �x� denotes the smallest integer greater or

equal than x, we have that if some two level-k cubes have at least b cubes between
them, then those two cubes are passable or not independently. So, whenψ(R) is
small enough, by the result of [9] we get that the random field of passable level-k
cubes can be dominated by Bernoulli random field with parameter σ(R), and
this parameter can be made arbitrarily close to 0 by choosing R large enough.
Note that the choice of R depends only on d, λ, ε0, α0, but not on n.

Now, in its turn the Bernoulli random field with parameter σ(R) of level-k
cubes can be dominated by the field of balls of radius aR−k, centers of which
form Poisson field in R

d with rate ε′Rkd , and ε′ can be made arbitrary close to 0
by choosing R. To justify this, we consider the following coupling between the
above two fields. If, given a realization of the Poisson fields of centers of the
balls, a given cube contains at least one point of the Poisson field, then the cube
is selected. Clearly, the states of the cubes are independent and

σ(R) = P{the cube is selected} = 1 − exp
(
ε′

( a√
d

)d)
. (13)

Note that if the cube contains a center of the ball, then, as noted before, the cube
is completely covered by the ball, so the field of the cubes is indeed dominated
by the field of the balls. Since by choosingR large we can made σ(R) arbitrarily
close to 0, we have that ε′ determined by (13) will be arbitrarily close to 0 as
well. Take R such that ε′ < ε − ε0.

Thus, the good level-k set Gk is dominated by

V (k) ∪ [[ε′Rkd, aR−k]].

As ε′ < ε − ε0 we have that V (k) ∪ [[ε′Rkd, aR−k]] is dominated by W(k). The
proof of Proposition 2.1 is completed. �

The proof of Theorem 1.1 is now straightforward. By Lemma 2.3,(
no percolation in G0

)
⇒

(
no percolation in Un

)
.

By the choice of ε, α, α0 and Proposition 2.1, the setG0 (and therefore Un) is in
the subcritical phase uniformly in n. Thus, Theorem 1.1 is proved. �
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3 Proof of Theorem 1.2

First, note that it is sufficient to prove the theorem only in the case when ρ
takes only positive integer values. Indeed, if ρ takes values other than positive
integers, then consider the model where ρ is substituted by ρint := �ρ�, where
�x� denotes the smallest integer greater or equal than x. As ρint ≤ ρ + 1, it is
straightforward to get that if Eρ2αd < ∞, then Eρ2αd

int < ∞. As ρ ≤ ρint , a
simple coupling argument applies.

For j = 1, 2, . . . denote pj = P{ρ = j}. If there is a ball of radius i, the
number of balls of radius j which have nonempty intersection with it (we denote
this number by η(i,j)) has Poisson distribution with meanψ(i,j) := λπd(i+j)dpj
(cf. [8]), where πd is the volume of d-dimensional unit ball. Now, following [8],
we are going to construct a multitype branching process Z0,Z1,Z2, . . . , which
majorizes the percolation process. Here Zn = (Z1

n, Z
2
n, Z

3
n, . . . ), where Zjn is

the number of particles of type j (i.e., balls of radius j ) in the n-th generation,
and Z0 = ei , where ei = (0, . . . , 0, 1, 0 . . . ), with 1 on the i-th place. The
dynamics of the branching process is described as follows: each particle of
type i is substituted by η(i,j) particles of type j independently of all the other
particles, and the random variables η(i,j), j = 1, 2, 3, . . . are independent and
have Poisson distribution with mean ψ(i,j).

As in [8], we have

µi,j := Eη(i,j) = ψ(i,j) ≤ C̃λidjdpj (14)

for C̃ = 2dπd . We are going to use the following simple fact: if η has Poisson
distribution with mean ψ , then (see [7], Section 1.3)

Eηk =
k∑
j=1

Bj,kψ
j (15)

for some positive constants Bj,k, j = 1, . . . , k, k = 1, 2 . . . If λ ≤ 1, using (14)
and (15) we get

E(η(i,j))k ≤ Cλikdj kdpj (16)

for some positive constant C = C(α) for all k ≤ α.
Let us introduce some notation. In the course of the proof of this theorem, we

will often need to deal with collections of positive integers, where those positive
integers are not necessarily distinct. It is then natural to group the equal numbers
together, thus representing the collection as

(t,w, h) = (t1, w1; . . . ; th, wh;h) ∈ N
2h+1,
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where all ti-s are different, wi can be viewed as the number of repetitions of ti in
the collection, and h is the number of distinct elements in the collection. Now,
given the collection (t,w, h), denote

ϕ(t,w, h) = t
w1d
1 · · · twhdh ,

�(t,w, h) = t
w1d
1 · · · twhdh pt1 · · ·pth,

Zi(t,w, h) = (Z
t1
i )
w1 · · · (Zthi )wh,

µ
(n)

i, (t,w,h) = E(Zn(t,w, h) | Z0 = ei).

We will write (t,w, h;β) when it is necessary to keep track of the total num-
ber of elements β = ∑h

i=1wi . Also, let Fm be the σ -algebra generated by
Z0,Z1, . . . ,Zm.

Lemma 3.1. For λ small enough we have

µ
(n)

i, (l,k,γ ;α) ≤ Kn−1(Cλ)niαd�(l,k, γ ;α), (17)

where C > 0 and K > 0 depend only on α.

Proof. We prove the lemma by induction. For n = 1, using (16) and the
independence of η(i,j) for different j , it can be easily seen that

µ
(1)
i, (l,k,γ ;α) ≤ Cλiαd�(l,k, γ ;α) (18)

if Cλ ≤ 1.
Suppose that the lemma is proved for n− 1. We have

µ
(n)

i, (l,k,γ ;α) = E
(

E((Zl1n )
k1 | Fn−1) · · · (E((Zlγn )kγ | Fn−1)

)
(19)

= E(A1 · · ·Aγ ),
where Am = E((Zlmn )

km | Fn−1), m = 1, . . . , γ .
Let us estimate Am.

Am = E(Zlmn )
km | Fn−1)

= E(η(1,lm)1 + · · · + η
(1,lm)
Z1
n−1

+ η
(2,lm)
1 + · · · + η

(2,lm)
Z2
n−1

+ · · · )km (20)

=
km∑
sm=1

∑
(tm,um,sm;km)

∑
j1=(j1,β ;β=1,... ,um,1),... ,
jsm=(jsm,β ;β=1,... ,um,sm )

E
sm∏
i=1

um,i∏
β=1

η
(tm,i ,lm)

ji,β

=
km∑
sm=1

∑
(tm,um,sm;km)

∑
j1,... ,jsm

sm∏
i=1

E
um,i∏
β=1

η
(tm,i ,lm)

ji,β
(21)
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≤ Cλlkmdm plm

km∑
sm=1

∑
(tm,um,sm;km)

ϕ(t,u, sm; km)Zn−1(t,u, sm; km).

The last inequality holds because E(η(ti ,lm)ji ,1
· · · η(ti ,lm)ji ,um,i

) ≤ Cλt
um,id

i l
um,id
m plm (as the

η
(tm,i ,lm)·,· are Poisson random variables with mean λπd(tm,i + lm)d ≤ 2dπdλtdm,i l

d
m

and with possible repetitions), and the number of summands in the third sum
in (21) is Zn−1(t,u, sm; km).

So,

E(A1 · · ·Aγ ) ≤ (Cλ)γ�(l,k, γ )

×
∑

j∈{1,... ,γ }
1≤sj≤kj

∑
(tm,um,sm),

1≤m≤γ

ϕ(t1,u1, s1) · · ·ϕ(tγ ,uγ , sγ )

×E(Zn−1(t1,u1, s1) · · ·Zn−1(tγ ,uγ , sγ )) (22)

≤ Cλ�(l,k, γ )M(α)
∑

(t,w,h;α)
µ
(n−1)
i, (t,w,h;α)ϕ(t,w, h;α) (23)

≤ Cλ�(l,k, γ )M(α) (24)

×
∑

(t,w,h;α)
ϕ(t,w, h;α)Kn−2(Cλ)n−1iαd�(t,w, h;α)

= (Cλ)niαd�(l,k, γ )M(α)Kn−2
∑

(t,w,h;α)
�(t, 2w, h;α).

To pass from (22) to (23) the terms with the same t-s and Zn−1-s were grouped,
and on the passage from (23) to (24) the induction assumption was used. The
constantM(α) is defined in the following way. LetM(t,w, h;α) be the number
of ways to decompose

(t,w, h;α) = (t1, w1; . . . ; th, wh;h;α)
into (t1,u1, s1), . . . , (tγ ,uγ , sγ ), where

(tθ ,uθ , sθ ) = (tθ,1, uθ,1; . . . ; tθ,sθ , uθ,sθ ; sθ )
such that for any β = 1, . . . , h we have

∑
θ,χ : tβ=tθ,χ

uθ,χ = wβ.

Put

M(α) = max
(t,w,h;α)

M(t,w, h;α).
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AsM(t,w, h;α) in fact depends only on (w1, . . . , wh) and the number of distinct
collections (w1, . . . , wh;α) is finite, M(α) is finite as well.

Now, we have

∑
(t,w,h;α)

�(t, 2w, h;α) =
α∑
h=1

∑
w: ∑h

i=1 wi=α

∑
t

t
2w1d
1 · · · t2whdh pt1 · · ·pth

=
α∑
h=1

∑
w: ∑h

i=1 wi=α
Eρ2w1d · · · Eρ2whd =: L(α) < ∞,

(25)

as Eρ2αd < ∞ (to see this, take the term corresponding to h = 1 in (25)). Thus,
taking K = M(α)L(α), we complete the proof of Lemma 3.1. �

Now we want to find a way to estimate quantities of the form

E(Zj1
n1

· · ·Zjαnα ). (26)

Grouping equal values of n, let us rewrite the collection (ni; i = 1, . . . , α)
as (m1, γ1; . . . ;ms, γs; s), m1 < m2 < · · · < ms . Here γi is the number of
nj = mi in (n1, . . . , nα), so

∑s
i=1 γs = α. Let

(j1, . . . , jα) = ((j1,u1, v1; γ1), . . . , (js,us, vs; γs)),
where

(ji ,ui , vi; γi) = (ji,1, ui,1; . . . ; ji,vi , ui,vi ; vi; γi).

Here uθ,χ is the number of terms Z
jθ,χ
mθ in (26). So

E(Zj1
n1

· · ·Zjαnα ) =
s∏
θ=1

vs∏
χ=1

E((Z
jθ,χ
mθ )

uθ,χ

= E(Zm1(j1,u1, v1) · · ·Zms (js,us, vs)).

Lemma 3.2. For λ small enough

E(Zm1(j1,u1, v1) · · ·Zms (js,us, vs))

≤ (Cλ)msKms−1iαd�(j1,u1, v1) · · ·�(js,us, vs).
(27)
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Proof. We prove the lemma by induction in s. Note that the case s = 1 was
studied in Lemma 3.1. We have

E(Zm1(j1,u1, v1) · · ·Zms (js,us, vs))

= E[(Zm1(j1,u1, v1) · · ·Zms−1(js−1,us−1, vs−1) (28)

×E(Zms (js,us, vs) | Fms−1)]
≤ Cλ�(js,us, vs)M(α)E[Zm1(j1,u1, v1) · · ·Zms−1(js−1,us−1, vs−1) (29)

×
∑

(t1,w1,h1;γs)
ϕ(t1,w1, h1; γs)Zms−1(t1,w1, h1; γs)]

= CλM(α)�(js,us, vs)E[E(Zm1(j1,u1, v1) · · ·Zms−1(js−1,us−1, vs−1)(30)

×
∑

(t1,w1,h1;γs)
ϕ(t1,w1, h1; γs)Zms−1(t1,w1, h1; γs) | Fms−2)]

= CλM(α)�(js,us, vs)E[Zm1(j1,u1, v1) · · ·Zms−1(js−1,us−1, vs−1) (31)

×
∑

(t1,w1,h1;γs)
ϕ(t1,w1, h1; γs)E(Zms−1(t1,w1, h1; γs) | Fms−2)]

≤ CλM(α)�(js,us, vs)E[Zm1(j1,u1, v1) · · ·Zms−1(js−1,us−1, vs−1) (32)

×
∑

(t1,w1,h1;γs)
ϕ(t1,w1, h1; γs)�(t1,w1, h1; γs)

×CλM(α)
∑

(t2,w2,h2;γs)
ϕ(t2,w2, h2; γs)Zms−2(t2,w2, h2; γs)]

≤ (Cλ)2(M(α))2�(js,us, vs)E[Zm1(j1,u1, v1) · · ·Zms−1(js−1,us−1, vs−1)

×
∑

(t2,w2,h2;γs)
ϕ(t2,w2, h2; γs)Zms−2(t2,w2, h2; γs)]

×
∑

(t1,w1,h1;γs)
�(t1, 2w1, h1).

The passage from (28) to (29) is justified by (23) together with the remark that

E(Zn−1(t,w, h) | Fn−1) = Zn−1(t,w, h)

(recall that µ(n−1)
i, (t,w,h) = EZn−1(t,w, h)). As γs ≤ α, we have (cf. (25) in the

proof of Lemma 3.1) ∑
(t1,w1,h1;γs)

�(t1, 2w1, h1) ≤ L(α) < ∞.

Continuing in this way, we get that (to save the space, abbreviate Ns := ms −
ms−1)

E(Zm1(j1,u1, v1) · · ·Zms (js ,us , vs))
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≤ (Cλ)Ns (M(α))Ns (L(α))Ns−1�(js ,us , vs)E
[ s−1∏
β=1

Zmβ (jβ,uβ, vβ)

×
∑

(tNs ,wNs ,hNs ;γs)
ϕ(tNs ,wNs , hNs ; γs)Zms−1(tNs ,wNs , hNs ; γs)

]

≤
∑

(tNs ,wNs ,hNs ;γs)
(Cλ)Ns (M(α))Ns (L(α))Ns−1�(js ,us , vs)

×E
[( s−1∏

β=1

Zmβ (jβ,uβ, vβ)
)
Zms−1

(
(js−1,us−1, vs−1)+ (tNs ,wNs , hNs ; γs)

)]

×ϕ(tNs ,wNs , hNs ; γs)
≤

∑
(tNs ,wNs ,hNs ;γs)

(Cλ)Ns (M(α))Ns (L(α))Ns−1�(js ,us , vs)

×(Cλ)ms−1Kms−1−1iαd�(j1,u1, v1) · · ·�(js−2,us−2, vs−2)

×�
(
(js−1,us−1, vs−1)+ (tNs ,wNs , hNs ; γs)

)
ϕ(tNs ,wNs , hNs ; γs)

=
∑

(tNs ,wNs ,hNs ;γs)
(Cλ)Ns (M(α))Ns (L(α))Ns−1�(js ,us , vs)

×(Cλ)ms−1Kms−1−1iαd�(j1,u1, v1) · · ·�(js−2,us−2, vs−2)

×�(js−1,us−1, vs−1)�(tNs ,wNs , hNs ; γs)ϕ(tNs ,wNs , hNs ; γs)
≤ (Cλ)ms (M(α))Ns (L(α))Ns−1Kms−1−1iαd

×�(j1,u1, v1) · · ·�(js ,us , vs)

×
∑

(tNs ,wNs ,hNs ;γs)
ϕ(tNs ,wNs , hNs ; γs)�(tNs ,wNs , hNs ; γs)

≤ (Cλ)msKms−1iαd�(j1,u1, v1) · · ·�(js ,us , vs).

Here we use the induction assumption, the multiplicativity of Zk(·, ·, ·) and
�(·, ·, ·), and the fact that, as γs ≤ α,

∑
(tNs ,wNs ,hNs ;γs)

ϕ(tNs ,wNs , hNs ; γs)�(tNs ,wNs , hNs ; γs)

=
∑

(tNs ,wNs ,hNs ;γs)
�(tNs , 2wNs , hNs ) ≤ L(α).

As before, K := M(α)L(α). Thus, Lemma 3.2 is completely proved. �

Since ‖U(0)(0)‖ ≤ ∑∞
n=1

∑∞
j=1 2jZjn , now it only rests to estimate, with the
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help of Lemma 3.2,

E
( ∞∑
n=1

∞∑
j=1

jZjn

)α ≤ α!
∑

n1≤...≤nα
j1,... ,jα

j1 · · · jαE(Zj1
n1

· · ·Zjαnα ) (33)

≤ C ′ ∑
m1<...<ms

1≤s≤α

∑
(jl ,ul ,vl )
l=1,... ,s

j
ul,1
l,1 · · · jul,vll,vl

×E(Zm1(j1,u1, v1) · · ·Zms (js,us, vs))

≤ C ′iαd
∑

m1<...<ms
1≤s≤α

(Cλ)msKms−1

×
∑

(jl ,ul ,vl )
l=1,... ,s

j
ul,1
l,1 · · · jul,vll,vl

�(j1,u1, v1) · · ·�(js,us, vs)

≤ C ′′

K

∑
m1<...<ms

1≤s≤α

(CKλ)ms

≤ C ′′

K

∞∑
m=1

αmα(CKλ)m < ∞

for λ < (CK)−1, where C ′ and C ′′ are positive numbers which depend only on
α. Here we used the fact that∑

(jl ,ul ,vl )
l=1,... ,s

j
ul,1
l,1 · · · jul,vll,vl

�(j1,u1, v1) · · ·�(js,us, vs) < ∞,

which can be easily proved analogously to (25). Thus, the proof of Theorem 1.2
is completed. �

Remark. Let N(U(0)(0)) be the number of points in the cluster U(0)(0) and
|U(0)(0)| be the volume covered by the cluster. Then, in the same way it can be
proved that if Eρ2αd < ∞, then for λ small enough we have E(N(U(0)(0)))α <
∞ and E(|U(0)(0)|)α < ∞ (substitute jZjn in (33) byZjn in the former, and jdZjn
in the latter case.)
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