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Restoration of Gibbsianness for projected
and FKG renormalized measures
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Abstract. We restore part of the thermodynamic formalism for some renormalized
measures that are known to be non-Gibbsian. We determine a necessary and sufficient
condition for consistency with a specification that is quasilocal only in a fixed direc-
tion. This condition is then applied to models with FKG monotonicity and to models
with appropriate “directional continuity rates”, in particular to (noisy) decimations or
projections of the Ising model. In this way we establish: (i) the validity of the “second
part” of the variational principle for projected and FKG block-renormalized measures,
and (ii) the almost quasilocality of FKG block-renormalized “+” and “−” measures.
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1 Introduction

The problem of restoration of Gibbsianness refers to the extension of Gibbsian
theory to non-Gibbsian measures observed in statistical mechanics. The latter
include measures obtained through renormalization transformations (see [8] and
references therein), joint measures of disordered spin systems [19, 20], and mea-
sures obtained as a result of stochastic evolutions of Gibbs measures [7]. See
[5, 6, 9, 10] for reviews. The goal of the restoration program is the determina-
tion of appropriate, more general, classes of measures which would satisfy, in
particular, a Gibbsian-like thermodynamic formalism based on the variational
principle. Two classes of measures have been introduced so far

(1) Weak Gibbsian measures [4, 2, 28]. These are measures that admit an al-
most sure Boltzman-Gibbs description, that is, whose finite-volume con-
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ditional probabilities can be written in terms of an interaction potential
which is summable on a set of full measure.

(2) Almost quasilocal measures [12, 23]. These are measures whose finite-
volume conditional probability are continuous functions of the exterior
configuration, except possibly at a set of measure zero.

Almost quasilocality is a property strictly stronger than weak Gibbsianness [27,
20, 26]. Most of the measures obtained by block renormalization transformations
and by projections have been shown to be weak Gibbsian. The issue of their
almost quasilocality has been addressed only very recently [11]. In the context
of weak Gibbsianness, the thermodynamic approach has been discussed in [25,
27], where the following is established for projections and block-renormalized
measures: (i) existence of thermodynamic functionals, and (ii) validity of a
relation between “consistency with the same specification” and “zero relative
entropy”, for classes of measures with suitable support properties. The support
restriction is essential. Indeed, there are examples of weak Gibbsian measures
with no common version of conditional probabilities and zero relative entropy
[21].

In this paper we study the variational approach for almost quasilocal measures.
We first spell out how the work of Pfister [30] on asymptotically decoupled mea-
sures, settles down the issue of existence of conjugated thermodynamic poten-
tials for block-renormalized measures. This fact, called below the specification-
independent variational principle, holds quite generally, without any additional
hypothesis and independently of any Gibbs-restoration approach. We then estab-
lish conditions for the validity of the usual (specification-dependent) variational
principle in statistical mechanics. More specifically, we study the so-called
“second part” of this principle, namely when a zero relative entropy density
implies consistency with the same specification. Our main theorem (Theorem
3.3) relates this implication to concentration properties of finite-volume relative
densities. We discuss two types of applications. First we consider specifications
that are monotonicity preserving in FKG sense [13]. In Corollary 3.5 we show
implications of the previous theorem regarding the almost quasilocality of the
consistent measures. In particular, block-transformed “+” and “−” measures
are quasilocal in this FKG setting (Corollary 3.6). For noisy decimations, this
strengthens previous weak Gibbsianness results [2, 29]. In our second applica-
tion (Proposition 3.12) the monotonicity hypothesis is replaced by the existence
of appropriate “continuity rates”. From this proposition we obtain, in particular,
that for projections to a line “zero entropy density �⇒ consistency with the same
specification” without any support assumption. The present results have been
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already exploited in [11] in the particular case of decimations and projections
to a layer. We take the opportunity offered by the school to present the general
framework in which our results apply. In comparison with the laborious weak-
Gibbisianness estimations based on cluster expansions, our proofs are very short.
Yet, some of the results are stronger. This fact reinforces our belief that almost
quasilocality is a notion naturally related to the variational approach. As these re-
sults illustrate, important aspects of the variational principle can be more simply
related to properties of specifications, without having to rely on rather detailed
descriptions of weak Gibbsian potentials. The recent work in [21] brings further
support to this point of view.

2 Basic definitions and notation

We start by summarizing some basic notions for the sake of completeness. As
general reference we mention [14]. See also [8], Section 2, for a streamlined
exposition.

2.1 Quasilocality, specifications, consistent measures

We consider configuration spaces � = �L

0 with �0 finite and L countable (typi-
cally L = Z

d), equipped with the product discrete topology and the product Borel
σ -algebra F . More generally, for (finite or infinite) subsets � of L we consider
the corresponding measurable spaces (��,F�), where �� = {−1, 1}�. For
any ω ∈ �, ω� denotes its projection on ��. We denote by S the set of finite
subsets of L. A function f : � → R is local if there exists a finite set � such
that ω� = σ� implies f (ω) = f (σ). The set of local functions is denoted Floc.

Definition 2.1. Let f : � → R.

(i) f is quasilocal if it is the uniform limit of local functions, that is, if

lim
�↑L

sup
σ,ω:

σ�=ω�

∣∣∣f (σ) − f (ω)

∣∣∣ = 0 . (2.2)

[The notation � ↑ L means convergence along a net directed by inclu-
sion.]

(ii) f is quasilocal in the direction θ ∈ � if

lim
�↑L

∣∣∣f (ω�θ�c) − f (ω)

∣∣∣ = 0 (2.3)

for each ω ∈ �. [No uniformity required.]
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Remark 2.4. In the present setting (product of finite single-spin spaces) quasi-
locality is equivalent to continuity and uniform continuity. This follows from
Stone-Weierstrass plus the fact that local functions are continuous for discrete
spaces.

Remark 2.5. The pointwise analogues of (2.2) and (2.3) are the following:

(i) f is quasilocal at ω if lim�↑L supσ,η

∣∣∣f (ω�σ�c) − f (ω�η�c)

∣∣∣ = 0;

(ii) f is quasilocal at ω in the direction θ if (2.3) holds only for this ω.
We shall not resort to these notions, but let us point out that the previous remark
is no longer valid at the pointwise level: A function can be quasilocal in every
direction at a certain ω (that is, continuous at ω) and fail to be quasilocal at ω.

Here is an example illustrating the last remark. Let d = 1 and, for a fixed ω ∈
�, choose a countable family χ(m) of configurations such that χ

(m)
[−n,n]c �= χ

(m′)
[−n,n]c

for all n ∈ N, if m �= m′, and such that χ
(m)
0 �= ω0 for all m. Define

f (η) =



m/(n + m) if η = ω[−n,n] χ(m)
[−n,n]c for some m, n ∈ N

0 otherwise .

(2.6)

We see that, for all σ ∈ �,

lim
�↑L

f (ω�σ�c) → 0 = f (ω). (2.7)

Hence f is quasilocal at ω in every direction. However,

sup
σ,η

∣∣∣f (ω[−n,n]σ[−n,n]c ) − f (ω[−n,n]η[−n,n]c )
∣∣∣ = sup

m

m

n + m
= 1 . (2.8)

So f is not quasilocal at ω.

Definition 2.9. A specification on (�,F) is a family γ = {γ�, � ∈ S} of
probability kernels on (�,F) that are

(I) Proper: ∀B ∈ F�c , γ�(B|ω) = 1B(ω).

(II) Consistent: If � ⊂ �′ are finite sets, then γ�′γ� = γ�′ .

[We adopt the “conditional-probability” notation, that is, γ�(A| · ) is F�c -
measurable ∀A ∈ F , and γ�(·|ω) is a probability measure on (�,F) ∀ω ∈ �.]
The notation γ�′γ� refers to the natural composition of probability kernels:
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(γ�′γ�)(A|ω) = ∫
�

γ�(A|ω′)γ�′(dω′|ω). A specification is, in fact, a strength-
ening of the notion of system of proper regular conditional probabilities. Indeed,
in the former, the consistency condition (II) is required to hold for every config-
uration ω ∈ �, and not only for almost every ω ∈ �. This is because the notion
of specification is defined without any reference to a particular measure.

A probability measure µ on (�,F) is said to be consistent with a specification
γ if the latter is a realization of its finite-volume conditional probabilities, that
is, if µ[A|F�c ]( · ) = γ�(A| · ) µ-a.s. for all A ∈ F and � ∈ S. Equivalently, µ

is consistent with γ if it satisfies the DLR equation (for Dobrushin, Lanford and
Ruelle):

µ = µ γ� (2.10)

for each � ∈ S. The right-hand side is the composed measure: (µ γ�)(f ) =∫
γ�(f |ω) µ(dω) for f bounded measurable. We denote G(γ ) the set of mea-

sures consistent with γ (measures specified by γ ). The description of this set is,
precisely, the central issue in equilibrium statistical mechanics. A specification
γ is quasilocal if for each � ∈ S and each f local, γ�f is a quasilocal func-
tion. Analogously, the specification is quasilocal in the direction θ if so are the
functions γ�f for local f and finite �. A probability measure µ is quasilocal
if it is consistent with some quasilocal specification. Gibbsian specifications —
defined through interactions via Boltzmann’s prescription— are the archetype of
quasilocal specifications. Every Gibbs measure —i.e. every measure consistent
with a Gibbsian specification— is quasilocal, and the converse requires only the
additional property of non-nullness [22, 32]. Reciprocally, a sufficient condition
for non-Gibbsianness is the existence of an essential non-quasilocality (essen-
tial discontinuity), that is, of a configuration at which every realization of some
finite-volume conditional probability of µ is discontinuous. These discontinu-
ities are related to the existence of phase transitions in some constrained systems
[15, 17, 8].

For a specification γ let �γ be the set of configurations where γ�f is contin-
uous for all � ∈ S and all f local, and �θ

γ the set of configurations for which all
the functions γ�f are quasilocal in the direction θ .

Definition 2.11.

1. A probability measure is almost quasilocal in the direction θ if it is
consistent with a specification γ such that µ(�θ

γ ) = 1.

2. A probability measure µ is almost quasilocal if it is consistent with a
specification γ such that µ(�γ ) = 1.
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2.2 Thermodynamic functions and the variational principle

The variational principle links statistical mechanical and thermodynamical quan-
tities. Rigorously speaking, the functions defined below (pressure and entropy
density) do not quite correspond to standard thermodynamics. The correspond-
ing notions in the latter depend only of a few parameters, while the objects
below are functions on infinite dimensional spaces. These functions are, how-
ever, more informative from the probabilistic point of view, because, at least
in the Gibbsian case, they are related to large-deviation principles. Translation
invariance plays an essential role in the thermodynamic formalism. That is,
we assume that there is an action (“translations”) {τi : i ∈ Z

d} on L which
defines corresponding actions on configurations —(τiω)x = ωτ−i x—, on func-
tions — τif (ω) = f (τ−iω)—, on measures —τiµ(f ) = µ(τ−if )— and on
specifications —(τiγ )�(f |ω) = γτ−i�(τ−if |τ−iω). [To simplify the notation
we will write µ(f ) instead of Eµ(f ).] Translation invariance means invari-
ance under all actions τi . We consider, in this section, only translation-invariant
probability measures on �, whose space we denote by M+

1,inv(�). We denote
Ginv(γ ) = G(γ ) ∩M+

1,inv(�). Furthermore, the convergence along subsets of L

is restricted to sequences of cubes �n = {τ−i(0) : i ∈ ([−n, n] ∩ Z)d}.
Definition 2.12 ([30]). A measure ν ∈ M+

1,inv(�) is asymptotically decoupled
if there exist functions g : N −→ N and c : N −→ [0, ∞) such that

lim
n→∞

g(n)

n
= 0 and lim

n→∞
c(n)

|�n| = 0 , (2.13)

such that for all n ∈ N, A ∈ F�n
and B ∈ F(�n+g(n))

c ,

e−c(n) ν(A) ν(B) ≤ ν(A ∩ B) ≤ ec(n) ν(A) ν(B) . (2.14)

This class of measures strictly contains the set of all Gibbs measures. In particu-
lar, as we observe below, it includes measures obtained by block transformations
of Gibbs measures, many of which are known to be non-Gibbsian.

For µ, ν ∈ (�,F), the relative entropy at volume � ∈ S of µ relative to ν is
defined as

H�(µ|ν) =




∫
�

dµ�

dν�

log
dµ�

dν�

dν if µ�  ν�

+∞ otherwise.

(2.15)
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The notation µ� refers to the projection (restriction) of µ to (��,F�). The
relative entropy density of µ relative to ν is the limit

h(µ|ν) = lim
n→∞

H�n
(µ|ν)

|�n| (2.16)

provided it exists. The limit is known to exist if ν ∈ M+
1,inv(�) is a Gibbs measure

(and µ ∈ M+
1,inv(�) arbitrary) and, more generally [30], if ν is asymptotically

decoupled. In these cases h( · |ν) is an affine non-negative function onM+
1,inv(�).

For ν ∈ M+
1,inv(�) and f a bounded measurable function, the pressure (or minus

free-energy density) for f relative to ν is defined as the limit

p(f |ν) = lim
n→∞

1

|�n|d log
∫

exp
(∑

x∈�n

τxf
)

dν

whenever it exists. This limit exists, for every quasilocal function f , if ν is
Gibbsian or asymptotically decoupled [30], yielding a convex function p( · |ν).
For our purposes, it is important to distinguish between thermodynamical (spec-
ification-independent) and statistical mechanical (specification-dependent) vari-
ational principles.

Definition 2.17 (Specification-independent variational principle). A measure
ν ∈ M+

1,inv(�) satisfies a variational principle if the relative entropy h(µ|ν) and
the pressure p(f |ν) exist for all µ ∈ M+

1,inv(�) and all f ∈ Floc, and they are
conjugate convex functions in the sense that

p(f |ν) = sup
µ∈M+

1,inv(�)

[
µ(f ) − h(µ|ν)

]
(2.18)

for all f ∈ Floc, and

h(µ|ν) = sup
f ∈Floc

[
µ(f ) − p(f |ν)

]
(2.19)

for all µ ∈ M+
1,inv(�).

Gibbs measures satisfy this specification-independent principle. Pfister [30,
Section 3.1] has recently extended its validity to asymptotically decoupled mea-
sures. In these cases h( · |ν) is the rate function for a (level 3) large-deviation
principle for ν.

Definition 2.20 (Variational principle relative to a specification). Let γ be a
specification and ν ∈ Ginv(γ ). We say that a variational principle occurs for ν

and γ if for all µ ∈ M+
1,inv(�)

h(µ|ν) = 0 ⇐⇒ µ ∈ Ginv(γ ) . (2.21)
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The equivalence (2.21) holds for Gibbs measures ν, while the implication to
the right is valid, more generally, for measures ν consistent with γ quasilo-
cal (see [14], Chapter 10). In [25] the implication to the left was extended to
block-transformed measures satisfying appropriate support hypothesis. Below
we extend the implication to the right to some non-Gibbsian (non-quasilocal)
measures.

2.3 Transformations of measures

Definition 2.22. A renormalization transformation T from (�,F) to (�′,F ′)
is a probability kernel T ( · | · ) on (�,F ′). That is, for each ω ∈ � T ( · |ω)

is a probability measure on (�′,F ′) and for each A′ ∈ F ′, T (A′| · ) is F-
measurable. The transformation is a block-spin transformation if �′ is of the
form (�′

0)
L

′
and there exists α > 0 (compression factor) such that the following

two properties hold

(i) Strict locality: For every n, A′ ∈ F ′
�′

n
implies T −1(A′) ∈ F�′[αn] .

(ii) Factorization: There exists a distance dist in L
′ such that if A′ ∈ F ′

D′ and
B ′ ∈ F ′

E′ with dist(D′, E′) > α, then T (A′ ∩B ′| · ) = T (A′| · ) T (B ′| · ).
A renormalization transformation is deterministic if it is of the form T ( · |ω) =

δt(ω)( · ) for some t : � → �′. A renormalization transformation T induces a
transformation µ �→ µT on measures, with (µT )(f ′) = µ[T (f ′)] for each
f ′ ∈ F ′. In most applications, block-spin transformations have a product form:
T (dω′|ω) = ∏

x′ Tx′(dωx′ |ω), where Tx({ωx′ }| · ) ∈ FBx′ , for a family of sets
{Bx′ ⊂ L : x ′ ∈ L

′} —the blocks— with bounded diameter whose union covers
L. Transformations of this sort are called real-space renormalization transfor-
mations in physics. The transformations defining cellular automata (with local
rules) fit also into this framework. The corresponding blocks overlap and the
compression factor may be chosen arbitrarily close to one. We briefly remind
the reader of some of the transformations considered in the sequel:

• Projections and decimations: Given D ⊂ L, this is the (product) deter-
ministic transformation defined by t (ω) = (ωx)x∈D. The decimation of
spacing b ∈ N, for which L = Z

d , D = bZ
d , is a block transformation,

while Schonmann’s example [31], corresponding to D = hyperplane, is
not because it fails to be strictly local.
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• Kadanoff : This is a product block transformation defined by Tx(dωx |ω) =
exp(p ω′

x

∑
y∈Bx

ωy)/norm, for a given choice of parameter p and blocks
Bx . In the limit p → ∞ one obtains the majority transformation for the
given blocks. If Bx = bx this is a noisy decimation, that becomes the true
decimation in the limit p → ∞. More generally, one can define a noisy
projection onto D ⊂ L through the transformation∏

x∈D

exp(p ω′
xωx)/norm.

It is well known that renormalization transformations can destroy Gibbsianness
(for reviews see [5, 6, 9, 10]). Most of the non-Gibbsian measures resulting from
block transformations were shown to be weakly Gibbsian [2, 29]. In Corollaries
3.5 and 3.6 below, we show that in some instances they are, in fact, almost
quasilocal.

2.4 Monotonicity-preserving specifications

Finally we review notions related to stochastic monotonicity. Let us choose
an appropriate (total) order “≤” for �0 and, inspired by the case of the Ising
model, let us call “plus” and “minus” the maximal and minimal elements. The
choice induces a partial order on �: ω ≤ σ ⇐⇒ ωx ≤ σx ∀x ∈ L. Its
maximal and minimal elements are the configurations, denoted “+” and “−” in
the sequel, respectively equal to “plus” and to “minus” at each site. For brevity,
quasilocality in the “+”, resp. “−”, direction will be called right continuity,
resp. left continuity. The partial order determines a notion of monotonicity for
functions on �. A specification π is monotonicity preserving if for each finite
� ⊂ L, π�f is increasing whenever f is. These specifications have a number
of useful properties. In the following lemma, we summarize those needed in the
sequel. Proofs and more details can be found in [12].

Lemma 2.23. Let γ be a monotonicity-preserving specification

(a) The limits γ
(±)
� ( · |ω) = limS↑L γ�( · |ωS±Sc ) exist and define two monoto-

nicity-preserving specifications, γ (+) being right continuous and γ (−) left
continuous. The specifications are translation-invariant if so is γ . Fur-
thermore, γ (−)(f ) ≤ γ (f ) ≤ γ (+)(f ) for any local increasing f , and the
specifications γ (+), γ (−) and γ are continuous on the set

�± =
{
ω ∈ � : γ (+)(f |ω) = γ (−)(f |ω) ∀f ∈ Floc, � ∈ S

}
. (2.24)
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(b) The limits µ± = lim�↑L γ�( · |±) exist and define two extremal measures
µ± ∈ G(γ (±)) [thus µ+ is right continuous and µ− left continuous] which
are translation-invariant if so is γ . If f is local and increasing, µ−(f ) ≤
µ(f ) ≤ µ+(f ) for any µ ∈ G(γ ).

(c) For each (finite or infinite) D ⊂ L, the conditional expectations µ+(f |FD)

and µ−(f |FD) can be given everywhere-defined monotonicity-preserving
right, resp left, continuous versions. In fact, these expectations come,
respectively, from global specifications, that is, from families of stochastic
kernels satisfying Definition 2.9 also for infinite � ⊂ L. Furthermore,
µ−(f |FD) ≤ µ+(f |FD) for each f increasing.

(d) For each (infinite) D ⊂ L there exist monotonicity preserving specifica-
tions �(D,±) such that the projections µ±

D ∈ G(�(D,±)) and �
(D,−)
� (f ) ≤

�
(D,+)
� (f ) for each f increasing. [By (a) and (c) �(D,+) (�(D,−)) can be

chosen to be right (left) continuous and extended to a global specification
on �D with the same properties.]

Models satisfying the FKG property [13] are the standard source of monotoni-
city-preserving specifications. This class of models includes the ferromagnets
with two- and one-body interactions (eg. Ising). Item (d) of the lemma is poten-
tially relevant for renormalized measures because of the fact that a transformed
measure µT can be seen as the projection on the primed variables of the measure
µ × T on � × �′ defined by

(µ × T )(dω, dω′) = T (dω′|ω) µ(dω) . (2.25)

To apply (d) of the lemma, however, one has to find a suitable specification for
this measure µ × T . If µ ∈ G(γ ) and T is a product transformation, a natural
candidate is the family γ ⊗ T of stochastic kernels

(γ ⊗ T )�×�′(dω�, dω′
�′ |ω�c, ω′

(�′)c ) =

Norm−1
∏

x′ �∈�′ :
Bx′∩��=∅

Tx′(ω′
x′ |ωBx′ )

∏
x′∈�′

Tx′(dω′
x′ |ωBx′ ) γ�(dω�|ω�c) .

Definition 2.26. A pair (γ, T ), where γ is a specification and T a product
renormalization transformation, is a monotonicity-preserving pair if the family
γ ⊗ T is a monotonicity-preserving specification.
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It does not seem to be so simple to construct such monotonicity-preserving
pairs. The only examples we know of are pairs for which γ ⊗T is Gibbsian for a
FKG interaction. This happens, for instance, for noisy projections (in particular
noisy decimations) of the Ising measure.

3 Results

The following result follows immediately from Definitions 2.12 and 2.22.

Lemma 3.1. If µ ∈ M+
1 (�) is asymptotically decoupled, then so is µT for every

block-spin transformation T .

From the results of Pfister, we can then conclude the following:

Theorem 3.2. Let µ ∈ M+
1,inv(�) be asymptotically decoupled and T be a block-

spin transformation such that µT is translation-invariant. Then the renormal-
ized measure µT satisfies the specification-independent variational principle of
Definition 2.17.

In [30, Section 3.4] it is showed that the relative entropy density h( · |µT ) is
the large deviation rate function of the empirical measure L� = ∑

x∈� δτxσ . The
next theorem states the criterion used in this paper to prove the implication to
the right in (2.21) for non-quasilocal measures ν.

Theorem 3.3. Let γ be a specification that is quasilocal in the direction θ ∈ �

and ν ∈ Ginv(γ ). For each � ∈ S, M ∈ N, � ⊂ �M and each local f , let
γ

M,θ
� (f ) denote the function ω → γ�(f |ω�M

θL\�M
). Then, if µ ∈ M+

1,inv(�)

is such that h(µ|ν) = 0,

µ ∈ Ginv(γ ) ⇐⇒ ν
[ dµ�M\�

dν�M\�

(
γ

M,θ
� (f ) − γ�(f )

)]
−→
M→∞ 0 (3.4)

for all � ∈ S and f ∈ Floc.

We present two applications of the previous theorem. First we discuss systems
with monotonicity-preserving specifications.

Corollary 3.5. Consider a specification γ that is monotonicity preserving and
translation invariant. Then, with the notation of Lemma 2.23,

(a) h(µ−|µ+) = 0 implies that µ− ∈ G(γ (+)) and µ−(�γ (+) ) = µ−(�γ (−) ) =
1 (hence µ− is almost quasilocal).

(b) For µ ∈ M+
1,inv(�), h(µ|ν+) = 0 and µ(�±) = 1 imply that µ ∈ G(γ (+)),

and thus that µ almost quasilocal.
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Analogous results are valid interchanging “+” with “−”.

By part (d) of Lemma 2.23, and the comments immediately thereafter, the
preceding results apply when µ± are the projections (possibly noisy) of the
“plus” and “minus” phases of the Ising model. More generally, they can be the
renormalized measures of the “plus” and “minus” measures of a monotonicity-
preserving specification whenever the specification and the transformation form
a monotonicity-preserving pair (Definition 2.26). At low temperature, the deci-
mations (possibly noisy) µ+T and µ−T of the “plus” and “minus” phases of the
Ising model are non-Gibbsian [17, 8], that is, all specifications with which these
measures are consistent show essential discontinuities. The preceding corol-
lary shows that, nevertheless, in these cases the implication to the right of the
variational principle (2.21) can be recovered up to a point. If γ is a quasilo-
cal translation-invariant specification and T a block-spin transformation, then
h(µT |νT ) = 0 for each µ, ν ∈ Ginv(γ ) such that µT and νT are translation
invariant [8, formula (3.28)]. Hence, from part (a) of the previous corollary we
conclude the following.

Corollary 3.6. Let γ be a quasilocal, monotonicity-preserving, translation-
invariant specification, and T a block-spin transformation that preserves trans-
lation invariance and such that the pair (γ, T ) is monotonicity-preserving. Let
µ± be the extremal measures for γ [part (b) of Lemma 2.23] and π(±) be the
right(left)-continuous specifications such that µ±T ∈ Ginv(π

±). Then

µ−T ∈ G(π+) and µ−T (�π+) = µ−T (�π−) = 1 (3.7)

(hence µ−T is almost quasilocal). Analogous results are valid interchanging
“+” with “−”.

This corollary applies in particular for decimations (possibly noisy) of the
Ising model. At low temperature, the renormalized measures µ+T and µ−T

are in general non-Gibbsian [17, 8], that is, the specifications π+ and π− show
essential discontinuities. Nevertheless, the preceding corollary, together with
part (b) of Corollary 3.5 shows that in these cases the implication to the right of the
variational principle (2.21) can be recovered, together with almost quasilocality.
Several remarks are in order.

Remark 3.8. The preceding corollary strengthens, for (noisy) decimation
transformations, the results of [2, 29] where only weak-Gibbsianness is proven.
Our argument is apparently simpler than the renormalization and expansion-
based procedures set up in these references, but, of course, it does not give such
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a complete description of the support of the decimated measures and it is only
restricted to models with monotonicity properties.

Remark 3.9. For d = 2, the corollary implies that all the decimated measures
of the Ising model are consistent with π+ and almost quasilocal. This follows
from the results of Aizenman [1] and Higuchi [16] showing that µ+ and µ− are
the only extremal measures in G(γ ).

Remark 3.10. Lefevere proves in [25] the implication to the left in (2.21), for
ν a block-transformed measure and µ concentrated on an appropriate set �̃ ⊂ �

of ν-measure 1.

Our second application of Theorem 3.3 does not involve any monotonicity
hypothesis. To formulate it we need some notation. For � a fixed finite volume,
f a local function and ε > 0, let

AM
ε (θ, �, f ) =

{
η ∈ � :

∣∣∣γ M,θ
� (f ) − γ�(f )

∣∣∣ > ε
}

. (3.11)

If γ is continuous in the direction θ , then µ(AM
ε ) −→ 0 as M ↑ ∞ for any

probability measure µ.

Proposition 3.12. Let γ be a specification, ν ∈ G(γ ) and θ a configuration.
Let us call a ν-rate of θ -continuity an increasing sequence of positive numbers
αM ↑ ∞ such that

lim sup
M↑∞

1

αM

log ν[AM
ε (θ, �, f )] < 0 (3.13)

for all ε > 0, f local and � finite. Then, a sufficient condition for a probability
measure µ to be consistent with γ is the existence of a ν-rate of θ -continuity
such that

lim
M↑∞

1

αM

H�M
(µ|ν) = 0 . (3.14)

This proposition applies, for instance, to Schonmann’s example. Indeed, if
ν+ is the projection on a (one-dimensional) layer of the low-temperature plus-
phase of the two-dimensional Ising model, then the estimates in [27] imply that
the monotone right-continuous specification γ + [such that ν+ ∈ G(γ +)] admits
αM = M as ν+-rate of right-continuity. Hence for this example we can conclude
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that for any other measure µ on the layer, h(µ|ν+) = 0 implies µ ∈ G(γ +). This
is a strengthening of part (b) of Corollary 3.5. We emphasize that such a µ can
not be the projection ν− of the minus Ising phase. Indeed, while at present the
existence of h(ν−|ν+) has not rigorously been established, Schonmann’s original
argument [31] implies that h(ν−|ν+) > 0 if it exists.

4 Proofs

The proofs are basically transcriptions of those given in [11]. We include them
for the sake of completeness.

4.1 Proof of Theorem 3.3

If h(µ|ν) is defined then, for n sufficiently large there exists a F�n
-measurable

function g�n
:= dµ�n

/dν�n
. We fix a local f and � ∈ S and pick M such that

�M ⊃ � and g�M
exist. We have

µ(γ�f − f ) = AM + BM + RHS of (3.4) , (4.1)

with

AM = µ
[
γ�M

(f ) − γ
M,θ
�M

(f )
]

−→
M→∞ 0 (4.2)

by dominated convergence, because of the assumed quasilocality in the direction
θ of γ , and

|BM | =
∣∣∣ν[

(g�M
− g�M\�) f

]∣∣∣
≤ √

2 ‖f ‖∞
[
H�(µ|ν) − H�\�(µ|ν)

]1/2

for any � ⊃ �M . The last bound is due to Csiszár’s inequality [3]. This bound
goes to zero as � ↑ L, thanks to the hypothesis h(µ|ν) = 0, as shown in [14] or
[30]. �

4.2 Proof of Corollary 3.5

It is enough to verify the right-hand side of (3.4) for increasing local functions
f since linear combinations of these are uniformly dense in the set of quasilocal
functions. Let us define

CM(µ) = µ+
[
g�M\�

(
γ

M,+
� (f ) − γ

(+)
� (f )

)]
(4.3)
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where gD = dµD/dµ+
D for D ⊂ L. In view of Theorem 3.3 consistency follows

if CM −→ 0 as M ↑ ∞. In all cases, 0 ≤ CM because γ is monotonicity
preserving. We focus on upper bounds.

Part (a). It is a consequence of the following two relations. First,

µ+
(
g�M\� γ

M,+
� (f )

)
= µ−

(
γ

M,+
� (f )

)
(4.4)

because γ
M,+
� f is F�M\�-measurable. Second

µ+
(
g�M\� γ

(+)
� (f )

)
= µ+

[
g�M\� µ+(γ�(f )|F�M\�)

]
≥ µ+

[
g�M\� µ−(γ

(+)
� (f )|F�M\�)

]
= µ−

(
γ

(+)
� (f )

)
.

(4.5)

The first and second lines are due to part (c) of Lemma 2.23 and the last one to
the F�M\�-measurability of µ−(γ

(+)
� (f )|F�M\�)( · ).

We conclude that

CM(µ−) ≤ µ−
(
γ

M,+
� (f ) − γ

(+)
� (f )

)
which converges to zero, as M → ∞, because of the right-continuity of γ (+)

and dominated convergence.

Part (b). We have

CM(µ) ≤ µ+
[
g�M\�

(
γ

M,+
� (f ) − γ

M,−
� (f )

)]
= µ

(
γ

M,+
� (f ) − γ

M,−
� (f )

)
.

The inequality is by monotonicity and the equality by the F�M\�-measurability
of γ

M,+
� (f ) − γ

M,−
� (f ). Dominated convergence implies that the bound tends

to zero with M , because µ(�±) = 1. �

4.3 Proof of Proposition 3.12

Let us fix a local function f , a finite set � and some ε > 0. We have

ν

[
dµ�M\�
dν�M\�

(
γ

M,θ
� (f ) − γ�(f )

)]
≤ ε + 2‖f ‖∞ µ̃M(AM

ε ) (4.6)
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where

µ̃M(AM
ε ) = ν

(
dµ�M\�
dν�M\�

1AM
ε

)
. (4.7)

By (3.13) there exists c > 0 such that for M large enough,

ν(AM
ε ) ≤ e−c αM , (4.8)

hence, for 0 < δ < c, and we can write the following inequalities:

µ̃M(AM
ε ) ≤ 1

αM δ
log

∫
exp(δ αM 1AM

ε
) dν + 1

αM δ
H(µ̃M |ν)

≤ 1

αM δ
log

(
1 + eαM δ ν(AM

ε )
) + 1

αM δ
H(µ̃M |ν)

≤ 1

αM δ
eαM(δ−c) + 1

αM δ
H(µ̃M |ν)

(4.9)

where we have first used a standard upper bound of relative entropy obtained by
Jensen’s inequality ([18]). By (3.14), the last line tends to zero as M → ∞. By
(4.6), and the fact that ε > 0 is arbitrary, we conclude that condition (3.4) of
Theorem 3.3 is satisfied, which implies that µ ∈ G(γ ). �
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