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Symbolic analysis of finite words:
the complexity function

Sébastien Jaeger, Ricardo Lima and Brigitte Mossé

Abstract. We present several properties of the complexity function of finite words, the
function counting the number of different factors in a word, for each length. To establish
a first set of properties, we use the de Bruijn graphs and the suffix tree representations of
a word. This allows us to show some inequalities that control the variation as well as the
maximal value of the complexity function. Motivated by the applications, we discuss
the change of the complexity function when sliding or increasing the size of a window
laid down on a sequence to be analysed.
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1 Introduction

For any given finite word ω, the complexity function quantifies the diversity of
factors of the word ω. More precisely, for each natural number n (from 1 up to
the length of ω), the complexity function is defined as the number of different
factors of length n in ω. Such a function is well known in the literature, where the
reader may find important results on this topic, see [11] and references therein,
but mainly for the case of infinite sequences of symbols.

It was recently recognized that such a function, in the case of the analysis of
a finite sequence in which we are interested, obeys certain constraints ([6],[5]).
When using the complexity function to analyze finite symbolic sequences, it is
important to notice first that there are some general properties of this function
that are independent of any specific sequence.

Then we consider some other issues which are related with several applications:
the study of the complexity of a window that is either moved along the sequence,
or the size of which increases around a fixed position.
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We hope that the present work may be useful for a better understanding of the
analysis of a specific sequence by means of the complexity function as well as
for the tuning of the algorithms used to compute it.

The present paper is organized as follows. In section 2 we recall some defini-
tions, whereas section 3 is devoted to a presentation of some useful tools for the
study of the complexity function, together with some new basic general results.
The tools include a graph representation of words (de Bruijn and Rauzy graphs)
as well as a tree representation (the suffix tree). In section 4 we prove a family
of inequalities which gives a new insight on the still open problem of completely
characterizing the set of all possible functions arising as the complexity function
of a finite symbolic sequence. Typically, for a two letters alphabet, the ratio of
the gradients of the complexity in two successive points is bounded by two; this
fact implies, in particular, the known constraints on the variation of the com-
plexity function. It is worth noticing that a word with the maximal complexity
always exists, a fact that we also prove in this section. In the last section we
prove some other new results which can be used in the analysis of the complexity
of a window, which either is sliding along a sequence, or the width of which is
changing. Besides their own interest, we will use these results in a forthcoming
work, [7], when analyzing the entropy function of finite sequences.

2 Basic concepts and notation

Let us denote by A a finite alphabet of λ elements, called letters. Then, AN

stands for the set of all words of length N inA. We shall write ω = ω0 . . . ωN−1,
where ωi ∈ A and 0 ≤ i ≤ N − 1, and in such a case, we set N = |ω|. For
convenience, we also introduce the empty word ε, with |ε| = 0.

The words ω[i, i + n − 1] = ωiωi+1 . . . ωi+n−1 are the factors of ω, and are
called prefixes when i = 0, and suffixes when i+n = N . We denote byFact (ω)

the set of all factors of a word ω, by Factn(ω) the subset of factors with a given
length n , Pref (ω) (resp. Suff (ω)) the set of all prefixes (resp. suffixes) of ω.
By convention, we add the empty word ε to Fact (ω), Pref (ω) and Suff (ω).
We also write Ln(ω) (resp. Rn(ω)) to denote the prefix (resp. suffix) of length
n of ω.

For each factor v of ω, D(v) (resp. G(v)) denotes the set of all possible right
(resp. left) extensions of v in Fact|v|+1(ω), and we set d(v) = |D(v)| (resp.
g(v) = |G(v)|). A factor v is right (resp. left) special if |d(v)| > 1 (resp.
|g(v)| > 1).

Finally, occω(v) denotes the number of occurrences of v in ω.
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The complexity function of ω is defined as

pω(n) = #Factn(ω), if 0 ≤ n ≤ |ω|
and

pω(n) = 0, if n > |ω| .

3 Useful tools and basic results

In this section we present some tools that are useful when dealing with the
combinatorics of the factors of a given word, as well as when building algorithms
used to quantify them. We also use such tools in order to show some new results.

3.1 The de Bruijn an Rauzy graphs

The reader may find in [2] the background in graph theory used in what follows.
It was N.G. de Bruijn ([3]) who first introduced a graph representation for the

linking of a sequence of words; namely, for any integer k, he defined the oriented
graph Gk whose vertices are the words inAk and arrows are connecting a word
v ∈ Ak to a word v′ ∈ Ak when v′ is suffix of va, for some letter a ∈ A. In this
case we say that a labels such an arrow. The graphs Gk are nowadays known as
de Bruijn graphs.

The paths in Gk are in a one-to-one correspondence with the words of length
≥ k, in a natural way: any path (v0, v1, ..., vr) whose arrows are labelled by
a1, a2, ..., ar is associated with the word ω = v0a1...ar . The support of such a
path is called the Rauzy graph of order k associated to ω ([12]).

It is clear how an arrow of Gk can be identified with a vertex of Gk+1, as it is
clear that the incoming arrows in a vertex v represent G(v) and the outcoming
arrows represent D(v).

The graph Gk is connected and pseudo-symmetric; therefore, by a classical
theorem in graph theory, it contains Eulerian cycles (each arrow appears in the
cycle exactly once). By the corresponding property in Gk+1, it contains also
Hamiltonian cycles (passing through each vertex exactly once).

The following remark will be used in section 4.

Proposition 1. Let Hk be a Hamiltonian cycle in Gk. Then, any connected
component of the graph obtained from Gk by erasing the arrows of Hk has an
Eulerian cycle.
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Figure 1: The graph G3 with alphabet {a, b}.

Proof. The graph so obtained is again pseudo-symmetric, each vertex having
exactly (λ − 1) incoming and outgoing arrows. �

We shall now give examples of such situations. First, for a two letters alphabet
{a, b}, we show two very different cases.

In figure 2 we can see that the complement of the Hamiltonian cycle H3 in
G3 is connected, up to the vertices supporting the loops, whereas in figure 3
we see the complement of a Hamiltonian cycle H4 in G4, that has five different
connected components. Because of the existence of loops, we never obtain a
connected graph.

The following result shows that this situation cannot happen if the cardinality
of the alphabet is at least three. We didn’t find any convincing proof of this result
in the literature.
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Figure 2: The graph G3 with alphabet {a, b} (representation showing a Hamil-
tonian cycle H3.)

Proposition 2. If #A = λ is at least three, the graph G′
k obtained from Gk by

erasing the arrows of a Hamiltonian cycle Hk is connected.

Proof. Let uy be a vertex in Gk, with |u| = k−1 and y ∈ A. By construction,
there are λ − 1 letters xi , 1 ≤ i ≤ λ − 1, such that there exists an arrow xiu in
G′

k arriving at uy.
Since λ − 1 is at least equal to two, for any couple (i, j) of different elements

in {1, ..., λ − 1} and any letter z ∈ A, at least one of the words xiu or xju is
connected by an arrow in G′

k to uz. For if not, the cycle Hk would go through the
vertex uz twice, which is not allowed. Therefore the words xiu (1 ≤ i ≤ λ − 1)
and all the words uz (z ∈ A) are in the same connected component of G′

k.
Alltogether, if αωβ is in a connected component C of G′

k, with α and β in A,
then for any letter z, the word αωz is a vertex of C. But since ωz is in turn
a prefix of a vertex of C, any element of Ak is in C, and consequently G′

k is
connected. �
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Figure 3: Graph G4 with alphabet {a, b}

From Propositions 1 and 2 we deduce the following:

Corollary 1. If #A = λ is greater than or equal to three and ω is a word of
lenght λk + k − 1 associated to a Hamiltonian cycle in Gk, then ω is a prefix of
a word ω′ of length λk+1 + k associated to a Hamiltonian cycle of Gk+1.

This means that, when λ ≥ 3, one can construct an infinite word ω such that,
for each k, every factor of length k appears exactly once in the prefix of ω of
length λk + k − 1.
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Figure 4: Graph G2 with alphabet {a, b, c}: an Eulerian cycle is represented
(follow the arrows from 1 to 17).

3.2 The suffix tree

Another classic representation of the structure of the set of factors of a given
word is the suffix tree of ω. Here the symbol $ designates a new letter which
does not belong to the alphabet A.

The suffix tree is a tree whose root is the empty word and leaves correspond
to the factors of ω; an arrow labelled by a joins v to v′ when v′ ∈ D(ω) and
v′ = va.

This representation, which is commonly used in algorithmic for the searching
of patterns inside a text, as well as for data compression, may be presented as a

Bull Braz Math Soc, Vol. 34, N. 3, 2003



464 SÉBASTIEN JAEGER, RICARDO LIMA and BRIGITTE MOSSÉ

suffix automaton; it is obtained from ST (ω) by deletion of the marker $ and by
identifying the factors of ω ending at the same ranks in ω. In figure 5 we give
an example of such a construction.
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Figure 5: Suffix tree and suffix automaton of ω = abccabb

For theoretical purposes, ST (ω) is certainly appropriate when working with
right extensions of factors (or left extensions, after reversing ω), and when we
are interested simultaneously in factors of ω of different lengths. In such cases, it
is easier to handle ST (ω) than the corresponding path in the de Bruijn graph Gk.
Therefore the choice among the two representations will depend of the context,
a fact that we shall explore in section 3.

3.3 The particular factors L(ω) and R(ω)

When studying the complexity of a finite word ω, there is a suffix that plays a
special role; this is the shorter suffix of ω that appears only once in ω. Since
occω(ω) = 1, such a suffix always exists.

We denote it by R(ω), and by r(ω) = |R(ω)| its length. Notice that R(ω) is
also the shorter suffix of ω that has no right extension as a factor of ω. It also
appears as the vertex that is the most distant from the root in the suffix automaton
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of ω. Notice also that, by construction, R(ω$) = 1. We similarly denote by
L(ω) the shorter prefix of ω that appears only once in ω, and by l(ω) = |L(ω)|
the corresponding length.

We shall use such factors in a systematic way in what follows; the reader
may also see [5] and references therein for other interesting applications of these
factors.

We now introduce the following set:

E(ω) = {n ∈ {1, . . . , |ω| − 1} ; Ln(ω) = Rn(ω) and occω(Ln(ω)) = 2} .

Proposition 3.

1. The set E(ω) has at most one element, denoted by b(ω).

2. If E(ω) �= ∅, then b(ω) < r(ω) and b(ω) < l(ω); more precisely r(ω) =
l(ω) = b(ω) + 1.

Proof.

1. Let p and q be two different elements of E(ω) with, for instance, p <

q ≤ |ω|; then Lq(ω) = Rq(ω) and also Lp(ω) = Rp(ω). But then Lp(ω)

appears at least 3 times in ω, as prefix and suffix of ω and as suffix of
Lq(ω). This implies that p cannot be an element of E(ω).

2. Clearly we have b(ω) < r(ω) and b(ω) < l(ω). Now, by definition of
b(ω), the word Lb(ω)(ω) = Rb(ω)(ω) appears twice in ω, one of which
appearing as a suffix. Therefore Lb(ω)+1(ω) is the unique right extension
of Lb(ω)(ω) and appears only once in ω. Finally we get l(ω) = b(ω) + 1
and, on the same way, r(ω) = b(ω) + 1. �

4 General properties of the complexity of finite words

4.1 The variations of the complexity function

The constraints appearing in the behavior of the complexity function of a finite
word were investigated by several authors. For the time being, the full char-
acterization of the functions from N to N that are the complexity function of a
finite word, in a fixed alphabet, remains unknown. Only very recently, see [8]
for more details, it has been possible to give a characterization of the possible
values of the total complexity, i.e. the total number of factors of a finite word,
without restraints on the cardinality of the alphabet.
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In [6] first, and in [5] in full generality, appears a description of some constraints
on the possible variations of the complexity function pω(n), that we now recall.

For any word ω of length N on an alphabet A of cardinality λ, the number
pω(n) is clearly bounded from above by min(λn, N −n+1); the first item refers
to the size of the alphabet and the second to the number of possible different
positions of a window of length n in a word of length N .

The following result gives more information on the complexity function.

Theorem 1. ([5]) Let ω be a word of length N in an alphabet A of cardinal λ.
There exist three natural integers n0(ω), n1(ω) and n2(ω) such that 0 ≤ n0(ω) ≤
n1(ω) ≤ n2(ω), for which

• pω(n) = λn on [0, n0(ω)],
• pω(n) is increasing on [n0(ω), n1(ω)] and pω(n) < λn on ]n0(ω), n1(ω)],
• pω(n) is constant on [n1(ω), n2(ω)],
• pω(n) = N − n + 1 on [n2(ω), N ].

n  (  )ωn  (  )ωn  (  )ω
n

N

p  (n)ω

0 1 2

λ
n

N-n+1

Figure 6: The variations of (pω(n))n
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4.2 Maximal value of the complexity function

By repeating the same letter N times, we build a word of minimal complexity,
namely pω(n) = 1, for 0 < n ≤ N . The natural question concerning the
existence of a word of maximal complexity then arises. We show in the following
that a word whose complexity is equal to the natural upper bound always exists.
We shall came back to this fact in [7], where some of these words will be shown,
in a precise sense, to have the maximal randomness: this is somehow surprising
for finite words on a finite alphabet. The present proof also shows how the de
Bruijn graph may be used. (The reader will find in [5] another - closely related
- proof of the same result.)

Proposition 4. Let A be an alphabet of cardinal λ. For any integer N there
exists a word ω of length N such that

pω(n) = min(λn, N − n + 1) , for 0 ≤ n ≤ N .

Proof. Let k be the largest integer such that λk < N −k+1 and m = N − (k+
1) + 1. Following the notation in Proposition 1, let us consider a Hamiltonian
cycle Hk and the graph G′

k obtained from Gk by deleting all the arrows of Hk.
Let us denote by v1, ..., vλk the arrows of Hk, and by C1, ..., Cr the connected
components of G′

k, two by two disjoint, labelled in increasing order from 1 to
r , as they appear while running Hk from v1 to vλk . For each component Ci ,
1 ≤ i ≤ r , let us denote by ui the initial extremity of the arrow vαi

where we
meet Ci for the first time in Hk (in particular vα1 = v1). Let ci be the number of
arrows of Ci .

We have λk + c1 + · · · + cr = λk+1, and there exists an integer j ∈ {1, ..., r}
for which m fulfills the following identity:

m = λk + dj + cj+1 + · · · + cr , with 1 ≤ dj ≤ cj .

Let u denote a vertex of Gk belonging to the connected component Cj , and
linked by an Eulerian path of length dj to the vertex uj .

We now consider a cycle in Gk constructed by concatenating the following
arrows:

• dj different successive arrows of Cj , starting at u and ending at uj ,

• the arrows of Hk from vαj
to vαj+1−1, starting at uj and ending at uj+1,

• the arrows of an Eulerian cycle of Cj+1, starting at uj+1 and ending at
uj+1,
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• the arrows of Hk from vαj+1 to vαj+2−1, starting at uj+1 and ending at uj+2,

• etc...,

• the arrows of an Eulerian cycle of Cr , starting at ur and ending at ur ,

• the arrows of Hk from vαr
to vλk , starting at ur and ending at u1,

• finally the arrows of Hk from v1 to vαj −1, starting at u1 and ending at uj .

The word associated to the cycle defined above has length M = N − k and
exactly λk factors of length k and m factors of length k + 1. Therefore its
complexity function has the desired property.

Note that, in the particular case where j = r (which will be the case when
λ ≥ 3, as needed in Proposition 3) the construction is somehow simpler. It is
sufficient to build the desired cycle by concatenating

• dj different successive arrows of Cj , starting at u and ending at uj ,

• finally the arrows of Hk, starting at ur and ending at ur . �

4.3 A familly of inequalities

We shall state now a set of inequalities fulfiled by the complexity function pω(n),
which show the “smoothness” of such a function. This will make more precise
the results stated in Theorem 1. In doing so, we shall focus on the suffix tree
representation of the word ω.

Theorem 2.

1. Let A be an alphabet of cardinal λ and ω a word of lenght N on A. Let
dk

n (resp. gk
n) be the maximal number of right (resp. left) extensions of an

element of Factn(ω) as elements of Factn+k(ω). Then

pω(n + k + 1) − pω(n + k) ≤ min{gk
n, d

k
n} (pω(n + 1) − pω(n)) ,

if n + k + 1 ≤ N + 1 and pω(n + 1) − pω(n) + 1 > 0.

2. Any complexity function p(n) of a word of length N on A satisfies the
following inequalities:

p(n + k + 1) − p(n + k) ≤ min{p(k), N − n + 2 − p(n)}
×(p(n + 1) − p(n)),

if n + k + 1 ≤ N + 1 and p(n + 1) − p(n) + 1 > 0.
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Remarks.

1. The inequalities above contain the fact that

pω(n + 1) − pω(n) = 0

entails pω(n + k + 1) − pω(n + k) = 0 or − 1 ,

as stated in Theorem 1.

2. The following equality holds for the sequence u(n) = λn itself:

u(n + k + 1) − u(n + k) = u(k)(u(n + 1) − u(n)) .

3. Note that the same inequalities as in Theorem 2 may be stated in the
following somehow different form:

pω(m + 1) − pω(m) ≤ min
n≤m

[min(gm−n
n , dm−n

n ) (pω(n + 1) − pω(n))]
≤ min

n≤m
[min(pω(m − n), N − n + 2 − pω(n)) (pω(n + 1) − pω(n))] .

The remainder of section 4 is devoted to the complete proof of Theorem 2.

The reader shall notice that, in the 6 following lemmas, we consider a word
ω = u$ of length N , where $ /∈ A, the set A is replaced by A ∪ {$} and we
consider the suffix tree of u.

In this tree, the deep of a vertex is defined to be the length of the path which
connects the vertex to the root of the tree. Let us denote by E(i, j) the sequence,
with repetitions, of the labels of the paths joining the vertex of deep i to those of
deep j (i ≤ j ), in the lexicographic order; let E(i, j) be the set of such labels.

For instance, there is no repetition in E(0, n), and E(0, n) is just the set
Factn(ω), containing pω(n) elements (n ≤ N ). The sequence E(1, n + 1) is a
sequence of pω(n + 1) different words of length n, each element of E(1, n + 1)

appearing as many times as it has left extensions by a letter (n + 1 ≤ N).

Lemma 1. We have
∑

v∈Factn(ω)
v /∈Suff (ω)

(d(v) − 1) = pω(n + 1) − pω(n) + 1 ,

for n + 1 ≤ N .
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Proof. This lemma follows immediately from the equality:

pω(n + 1 − pω(n)) =
∑

v∈Factn(ω)

(d(v) − 1)

=
∑

v∈Factn(ω)
v /∈Suff (ω)

(d(v) − 1) − 1 . �

From Lemma 1 we get a first upper bound of pω(n + 2) − pω(n + 1):

Lemma 2. Let gn = max{g(v) ; v ∈ Factn(ω)}. Then

pω(n + 2) − pω(n + 1) ≤ gn(pω(n + 1) − pω(n) + 1) − 1 , for n + 1 ≤ N .

Proof. Each element v of E(1, n + 1), except the suffix of length n of ω,
appears no more than gn times in E(1, n + 1); moreover, if αv ∈ Factn+1(ω)

then d(αv) ≤ d(v).
On the other hand, the suffix Rn(ω) has a unique left extension, Rn+1(ω), the

last having no right extension in Fact (u). By using Lemma 1, we end up the
proof by setting:

pω(n + 2) − pω(n + 1) ≤
∑

v∈Factn(ω)
v /∈Suff (ω)

g(v)(d(v) − 1) − 1

≤ gn(pω(n + 1) − pω(n) + 1) − 1 . �

We shall now sharpen the previous inequalities, using an argument which is
implicit in [5] and which may be useful in its own right.

Lemma 3. Suppose that vn is a right special factor with length n ≥ 1 of ω,
appearing in the last (right) position among all the right special factors of ω

with length n. If in this position the word vn is followed by a letter c, then there
is no other occurrence of vnc in ω.

Remarks.

1. Any non empty suffix S of ω ends with $ and satisfies d(S) = 0; therefore
the word vn, if it exists, cannot be suffix, which shows then the existence
of c.

2. The assertion of the lemma is false without the use of $, as we can see in
the following counter-example: n = 2 and ω = bacabac.
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Proof. Let ω = ω0 . . . ωN−1. Let i be the starting position of the last occurrence
of vnc. Let j , j �= i, be another starting position of vnc. Then we can write
ωi . . . ωN−1 = vncα1 . . . αr and ωj . . . ωN−1 = vncβ1 . . . βs , with r ≥ 1 and s >

r ≥ 1. Since αr = $ and r < s, there is an integer k ≥ 1 such that vncα1 . . . αk

and vncβ1 . . . βk are identical, but for the last letter. Setting vncα1 . . . αk = vαk,
and vncβ1 . . . βk = vβk, we see that the suffix v is right special and has length
exactly n, which is in contradiction with the assumption on vn. �

From Lemma 3 immediately follows the next:

Lemma 4. With the same notation as before, we have g(vnc) = 1.

We use this lemma to prove the following:

Lemma 5. With the same notation as before, we have

pω(n + 2) − pω(n + 1) ≤ gn(pω(n + 1) − pω(n)) ,

if pω(n + 1) − pω(n) + 1 > 0.

Proof. Under the above assumption on n, there exists a right special factor of
length n in ω.

According to Lemma 4, it is the possible to refine the inequality of Lemma 2:
if αvnc and βvn are two factors of ω, then d(βvn) ≤ d(vn) − 1.

Therefore

pω(n + 2) − pω(n + 1) ≤
∑

v∈Factn(ω)
v /∈Suff (ω)

v �=vn

g(v)(d(v) − 1)

+ (g(vn) − 1)(d(vn) − 2) + (d(vn) − 1) − 1

≤
∑

v∈Factn(ω)
v /∈Suff (ω)

v �=vn

gn(d(v) − 1) + (gn − 1)(d(vn) − 2) + (d(vn) − 1) − 1

= gn

∑
v∈Factn(ω)
v /∈Suff (ω)

(d(v) − 1) − gn = gn(pω(n + 1) − pω(n)) . �

Lemma 6. With the same notation as before, we have

pω(n + k + 1) − pω(n + k) ≤ gk
n(pω(n + 1) − pω(n)) ,

if n + k + 1 ≤ N and pω(n + 1) − pω(n) + 1 > 0.
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Proof. It remains to extend Lemma 5, by considering now the sequence
E(k, n + k) inside ST (u).

In this sequence, every word is repeated as many times as the number of its left
extensions by words of k letters. This is why we defined gk

n as being the maximal
number of left extensions by words of k letters of an element of Factn(ω) in
elements of Factn+k(ω).

Let us first consider the case where vn does not appear in the sequenceE(k, n+
k); in this case, since vn is the last among all the right special factors of length
n in ω, there is no right special factor in E(k, n + k), and then

pω(n + k + 1) − pω(n + k) = −1 and gk
n(pω(n + 1) − pω(n)) ≥ 0 ,

and the lemma follows. On the contrary, if vn appears in the sequenceE(k, n+k),
we only need to repeat the proof of Lemma 5, replacing gn by gk

n. �

Proof of Theorem 2.

1. Let us now come back to the case of a word ω of length N onA, without
adding the extra symbol $.

From one side

pω$(n) = pω(n) + 1, if 1 ≤ n ≤ |ω| + 1 ,

and therefore, for n + k + 1 ≤ N + 1, we get

pω(n + k + 1) − pω(n + k) = pω$(n + k + 1) − pω$(n + k) .

From the other side, the maximal number of left extensions of factors of
length n as factors of length n + k is the same for ω and ω$, since Ln(ω$)

does not occur in ω. We thus get, for n and k such that n+ k + 1 ≤ N + 1
and pω(n + 1) − pω(n) + 1 > 0,

pω(n + k + 1) − pω(n + k) ≤ gk
n(pω(n + 1) − pω(n)) .

From there we deduce the desired inequalities, using the symmetry of role
of left and right extensions of the factors of ω.

2. It remains to get an upper bound for gk
n. It is clear that gk

n < p(k).
Moreover gk

n is certainly smaller than the maximal number of occurrences
of a factor v of length n in ω. Since there are pω(n) such factors, we get

occω(v) ≤ (N − n + 1) − (pω(n) − 1) . �
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4.4 Localization of l(ω) and of r(ω)

It is now possible to use Theorem 1 to localize l(ω) and r(ω), with respect to
n0(ω), n1(ω) and n2(ω).

Proposition 5. Both integers l(ω) and r(ω) belong to the set [n0(ω), n1(ω)] ∪
{n2(ω)}.

Proof. If n < n0(ω), then the word Ln(ω) has λ left extensions, and therefore
l(ω) > n; in the same way, r(ω) > n. For n ≥ n2(ω), the word Ln(ω) has no
left extensions and then l(ω) ≤ n2(ω), as well as r(ω) ≤ n2(ω).

Finally, if the interval [n1(ω), n2(ω)[ is not empty, there are two possible cases:

• either all the factors of length n of ω have a unique left extension, for all
n ∈ [n1(ω), n2(ω)[,

• or, for any n ∈ [n1(ω), n2(ω)[, the word Ln(ω) has no left extension, one
factor of length n has two left extensions and all the others have only one
extension.

Therefore, we can never have l(ω) ∈]n1(ω), n2(ω)[, and similarly for
r(ω). �

5 The complexity function of a window

We shall now use the complexity function as a tool for the analysis of symbolic
sequences.

Let a finite alphabet A and a (large) sequence S that we want to analyze be
given. In this case we can think about a word ω ∈ AN , N < |S|, as the factor of
the sequence S appearing in a window of length N , set down at some position of
S. It is then natural to consider observables �, being functions of An to some
set of numbers, functions, histograms, etc..., that give some piece of information
about the sequence.

In such a situation, it may be interesting to describe the fluctuations of �(ω)

when ω slides along S (ω = S[i, i + n − 1] and i varies), or when the size of
the window increases around a given position in S (ω = S[i − n, i + n] and n

varies).
In the present section we shall analyze this situation when �(ω) stands for the

complexity function of ω, a case met, for instance, when analyzing the variety
of patterns present in a sequence S. It is then important to have a control of the
possible fluctuations of �(ω) along S.
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5.1 The complexity of a sliding window

Let S be a sequence on an alphabet A, and N an integer which is the length of
the sliding window.

Given a factor ω of S of length N , let us write ω = S[i, i + N − 1] with
i + N < |S|; we now intend to compare the complexity functions of ω and of
σω = S[i + 1, i + N ].

In the sequel, ω′ denotes the word S[i, i + N ].
Proposition 6. With the same notation as before, we have

1. if n < min(l(ω′), r(ω′)), then

pω(n) = pω′(n) = pσω(n) ,

2. • if l(ω′) < r(ω′) and l(ω′) ≤ n < r(ω′), then

pω(n) = pω′(n) = pσω(n) + 1 ,

• if r(ω′) < l(ω′) and r(ω′) ≤ n < l(ω′), then

pω(n) + 1 = pω′(n) = pσω(n) ,

3. if n ≥ max{l(ω′), r(ω′)}, then

pω(n) + 1 = pω′(n) = pσω(n) + 1 .

Proof. It is clear that pω′(n) ∈ {pω(n), pω(n) + 1}: the only factor of ω′ that
can be in Factn(ω

′) �Factn(ω) is Rn(ω
′). But this only happens when Rn(ω

′)
occurs once in ω′, that is to say when n > r(ω′).

To complete the proof, it remains to use the symmetry between ω and σw, by
reversing S. �

Let us now denote σ i = S[i, i + N − 1], li = l(S[i, i + N ]) and ri =
r(S[i, i + N ]), for 0 ≤ i ≤ |S| − N − 1.

A consequence of Proposition 6 is that knowing the complexity function
of the first window σ 0 = S[0, N − 1] and the sequences (li)0≤i≤|S|−N−1 and
(ri)0≤i≤|S|−N−1, we are able to reconstruct the complexity functions of all the
successive windows of length N in S (see figure 7):

• if n < min{li , ri} or if n ≥ max{li , ri}, then pσi+1(ω) = pσi (ω),
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Figure 7: The sequences (li) and (ri) and the reconstruction of pσi .

• if li ≤ n < ri , then pσi+1(ω) = pσi (ω) − 1,

• if ri ≤ n < li , then pσi+1(ω) = pσi (ω) + 1.

Note that, in Proposition 6, only appear the lenghts l(ω′) and r(ω′), and not
directly l(ω), r(ω), l(σω) or r(σω). The following proposition allows us to
make connections between these quantities. Furthermore, it enables us to make
more precise the variations of li and ri .

Proposition 7.

1. With the same notation as before, we have

• either B(ω′) �= ∅, and then

l(ω) + 1 = l(ω′) = r(ω′) = r(σω) + 1 ,

• or B(ω′) = ∅ and then

l(ω) = l(ω′) and r(ω′) = r(σω) .

2. In each case, we have

l(ω) ≤ l(σω) + 1
and r(σω) ≤ r(ω) + 1 .
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Proof.

1. If L(ω) is a suffix of ω′, we have occω′(L(ω)) = 2 and occσω(L(ω)) = 1,
and then B(ω′) = {L(ω)} and R(σω) = L(ω); but by proposition 3 we
get

l(ω′) = r(ω′) = b(ω′) + 1 = l(ω) + 1 = r(σω) + 1 .

If, on the contrary, L(ω) is not suffix of ω′, then occω′(L(ω)) = 1 and
L(ω) = L(ω′); thus l(ω) = l(ω′), and also r(ω′) = r(σω) by reversing
ω′.

2. Let α be the last letter of ω′. We do not have occω(R(ω)α) > 1, for
otherwise occω(R(ω)) > 1. Thus r(σω) ≤ r(ω) + 1, and also l(ω) ≤
l(σω) + 1 by reversing ω′. �

The following result is then immediate (see figure 7):

Corollary 2.

1. If ri+1 > ri , then ri+1 = ri + 1.

2. If li+1 < li , then li+1 = li − 1. �

5.2 The complexity of a window of increasing size

We want now to compare the complexity functions of the factors w = S[i, i +
N − 1] and W = S[i − 1, i + N ] of the sequence S, with 1 ≤ i ≤ |S| − N − 1.

For this purpose, we use the set E(W) = {n < |W | ; Ln(W) = Rn(W) and
occW(Ln(W)) = 2} introduced in section 2.

Let us recall that, following Proposition 3, the set E(W) is either empty or
reduced to a single element {b(W)}. We then get the following assertion:

Proposition 8. With the same notation as before, we have

• either E(W) �= ∅, and then

pW(n) =



pw(n) if n < b(W)

pw(n) + 1 if n = b(W)

pw(n) + 2 if n > b(W)

,

• or E(W) = ∅, and then

pW(n) =



pw(n) if n < min(l(W), r(W))

pw(n) + 1 if min(l(W), r(W)) ≤ n < max(l(W), r(W))

pw(n) + 2 if n ≥ max(l(W), r(W))

.
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Proof. It is sufficient to remark that pW(n) − pw(n) ∈ {0, 1, 2}, since only
Ln(ω) and Rn(ω) may be elements of Factn(W) �Factn(w). �
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