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Can HIV invade a population which
is already sick?

Rinaldo B. Schinazi

Abstract. It is known that an HIV infection when concomitant with another disease
such as tuberculosis or pneumonia is a lot more lethal than HIV alone. We introduce
two mathematical models for which if the concomitant diseases are prevalent enough in
a given population and if double infections are lethal enough then HIV cannot take hold
in this population. This provides an alternative (or a complement) to the theory that what
determines whether a population will suffer an HIV epidemic is its sexual behavior. Our
point of view may be relevant to the situation in Southeast Asia.
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1 Introduction

There are many infectious diseases that plague the poorest populations: tuber-
culosis, pneumonia, sexually transmitted diseases. The combination of one of
these infectious diseases with HIV is known to be more lethal than HIV alone.
For instance, it is thought that today at least one billion people are infected with
tuberculosis. Of these, if they are not also infected with HIV, only a fraction
(between 5% and 15%) will develop the disease during their lifetime, see Enar-
son and Rouillon (1998). The appearance of HIV in an individual infected with
TB disrupts the balance between the tubercle bacillus and its human host. It is
believed that more than 30% of people infected with both HIV and TB develop
TB during their lifetime. Moreover, the response to TB treatment is much better
in people who are HIV negative than in people who are HIV positive, see Enarson
and Rouillon (1998), Rieder et al. (1989) and Chum et al. (1996).

The HIV pandemic has hit very hard some populations (in particular in Africa)
while it has largely spared some other populations (in particular in some parts
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of Asia). A widely accepted explanation for that is the difference in sexual
behavior in different populations (see UNAIDS (1998) and (1999)). In this
paper we propose an alternative theory. If the double infection by HIV and a
given concomitant infection is lethal enough and if a given population has a high
enough density of the concomitant infection then HIV cannot take hold in the
population. It is known that if a given disease is too virulent (such as Ebola, for
instance) then it cannot spread. Our hypothesis is that many double infections
such as TB/HIV are too virulent to spread. We are in particular interested in
Southeast Asia where TB is highly prevalent (more than 50% of the population
is infected in some countries) and which has been somewhat spared by the HIV
pandemic so far, see Dye et al. (1999). We will use two simple mathematical
models to make our point more precise. In the first model we will assume that
all individuals mix together. In the second model there will be a spatial structure
and the individuals will be able to mix only with their nearest neighbors. Our
results will show that the two models have the same qualitative behavior. Since
these two models are at opposite ends in terms of mixing and they show the same
qualitative behavior we think this is a good indication that our results hold for a
rather general class of models. The models used below are variations of models
used in Schinazi (2001) for another question.

2 A model with total mixing

We consider a population for which there is at least one endemic disease such as
TB, pneumonia or a sexually transmitted disease which is not HIV. An individual
taken at random in the population is infected with the endemic disease with
probability p. For each individual in the population there are three possible
states: 0 (HIV negative), 1 (HIV positive, no concomitant infection) or 2 (HIV
positive, concomitant infection). Our (very) simple minded model evolves as
follows. An individual in state 0 is infected by HIV at a rate proportional to the
density of HIV infected individuals in the population. A newly HIV infected
individual is in state 2 with probability p or in state 1 with probability 1 − p,
depending whether he was already infected by something else or not. Individuals
in states 1 and 2 die at rate δ1 and δ2, respectively. We will assume the biologically
meaningful hypothesis that

δ1 < δ2.

Let ui , i = 0, 1, 2, be the density of individuals in state i. In particular, u0 +u1 +
u2 = 1. Assuming that all individuals mix with each other we get the following
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system of differential equations:

du1

dt
= λ(1 − p)u0(u1 + u2) − δ1u1

du2

dt
= λpu0(u1 + u2) − δ2u2

where λ is the infection rate. It is clear that (u1, u2) = (0, 0) is an equilibrium
for the system above. This is the HIV free equilibrium. If this equilibrium is
unstable we will say that an HIV epidemic is possible. If (0,0) is stable then we
will say that an HIV epidemic is not possible. We know that an equilibrium is
stable if and only if all eigenvalues of the Jacobian matrix have strictly negative
real parts. For an elementary introduction to stability see for instance Boyce and
DiPrima (1992). The Jacobian of the system of differential equations at (0,0) is

(
λ(1 − p) − δ1 λ(1 − p)

λp λp − δ2

)
.

The determinant of this matrix is

Det = λp(δ2 − δ1) − δ2(λ − δ1)

and its trace is
T r = λ − (δ1 + δ2).

There are three cases to consider.

(a) Assume that λ < δ1 < δ2. In this case the determinant is positive and the
trace is negative for any p in [0,1] and δ2 > δ1. Thus, the eigenvalues of
the Jacobian have negative real parts. The equilibrium (0,0) is stable and
no epidemic can take place.

(b) Assume that δ1 < λ < δ2. Note that the determinant is negative if and
only if

p < pc

where

pc = δ2

δ2 − δ1
(1 − δ1/λ).

Observe that under the assumption δ1 < λ < δ2 the critical value pc is
strictly between 0 and 1.

If
p > pc
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then the determinant is positive and the trace is negative. Thus, no epidemic
is possible.

In conclusion, under the assumption δ1 < λ < δ2 an epidemic is possible
if and only if p is smaller than pc.

(c) Assume that δ1 < δ2 < λ. In this case the determinant is negative for all
p in [0,1]. For, using that p ≤ 1 we get

Det = λp(δ2 − δ1)− δ2(λ− δ1) ≤ λ(δ2 − δ1)− δ2(λ− δ1) = δ1(−λ+ δ2) < 0.

Thus, in this case an epidemic is always possible.

Case (b) is the most interesting one. There, we assume that δ1 < λ < δ2. That
is, an HIV epidemic is possible in the absence of concomitant diseases (p = 0
and δ1 < λ) but is not possible in the case where the whole population is infected
by a concomitant disease (p = 1 and λ < δ2). We have shown that an HIV
epidemic is possible if and only if the proportion p of the population infected
with a concomitant infection is above a certain threshold pc. So, at least in
theory, if the double infection is lethal enough (mathematically this is translated
by λ < δ2) then an HIV epidemic is not possible in a population where other
infections are highly prevalent (that is, if p > pc).

3 A model with little mixing

We now consider a continuous time spatial stochastic model ηt on Zd where each
site may be in one of three states: 0, 1 or 2. If the model is in configuration η,
let n1(x, η) and n2(x, η) be the number of nearest neighbors of x (among the 2d

nearest neighbors of x) that are in state 1 and in state 2, respectively. Assume
that the model is in configuration η, then the state at a given site x evolves as
follows:

0 → 1 at rate λ(1 − p)(n1(x, η) + n2(x, η))

0 → 2 at rate λp(n1(x, η) + n2(x, η))

1 → 0 at rate δ1

2 → 0 at rate δ2

In words, 1’s and 2’s infect nearest neighbors that are in state 0 at rate λ. Newly
infected individuals are 1 with probability 1−p or 2 with probability p. Infected
individuals in state 1 and 2 die at rates δ1 and δ2, respectively. For this model we
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will say that an HIV epidemic is possible if there is a positive probability that
the process never hits the configuration where all sites are in state 0.

In the absence of concomitant infection, i.e. p = 0, we have a population of
0’s and 1’s only. In this particular case, the system evolves as

0 → 1 at rate λn1(x, η)

1 → 0 at rate δ1

The model above is called a contact process. It is known that there is a critical
value λc (that depends on the dimension d of the grid Zd) such that if λ ≤ λc then
an epidemic is not possible (the 1’s die out) while if λ > λc then an epidemic is
possible. For more on the contact process, see for instance Liggett (1999). We
are now ready to state our result.

Theorem.

(a) If
λ

δ1
< λc then no HIV epidemic can take place for any p in [0,1] and

any δ2 > δ1.

(b) If
λ

δ2
< λc then for any δ1 < δ2 there is a pc(λ, δ1, δ2) in (0,1) such that

no HIV epidemic can take place for any p > pc.

(c) If
λ

δ2
> λc then for any δ1 < δ2 and any p in [0,1] an epidemic is possible.

Observe that the spatial stochastic model has the same qualitative behavior as
the mean field model. We see again in (b) that if a large proportion of a population
is already sick and if the double infection with HIV is lethal enough then HIV
will not be able to invade this population. This might be one explanation why
Southeast Asia has been largely spared (so far) by the HIV pandemic: this is one
of the regions in the world where TB prevalence is the highest (see Dye et al.
(1999)). However, there are certainly other explanations why some populations
have been hit harder than others by the HIV pandemic. In particular, sexual
practices such as the number of partners per individual seem to play a pivotal
role, see Rotello (1997), UNAIDS (1998) and (1999). It might be the case that
the proportion in the population of concomitant infection is useful as a secondary
explanatory variable (after sexual practices) to predict whether HIV will invade
a given population.
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4 Proof of the Theorem

We now give the explicit graphical construction for the process ηt . The graphical
construction takes place in the space-time region Zd × (0, ∞). Consider a
collection of independent Poisson processes: {Nx,y, Dx : x, y ∈ Zd, ||x −y|| =
1}. For x and y in Zd such that ||x − y|| = 1 let the intensities of Nx,y , Dx be λ

and δ2, respectively. For each x in Zd , at each arrival time of the Poisson process
Dx , if there is a 2 at x it is replaced by a 0. If there is a 1 at x then it is replaced
by a 0 with probability δ1/δ2. With this recipe deaths of 2’s occur at rate δ2 and
deaths of 1’s occur at rate δ1. Moreover, the deaths are coupled in a way that will
be useful in our proof. At an arrival time of Nx,y if there is a 1 or a 2 at x and a
0 at y we put a 1 at y with probability 1 − p or a 2 at y with probability p. In
this way we obtain a version of our spatial stochastic process. We construct the
process restricted to a space-time region A if we only use the arrival times of
the Poisson processes Nx,y and Dx for x and y insideA. For more on graphical
constructions, see p. 32 in Liggett (1999).

Proofs of Theorem (a) and (c). Consider the contact process ξt with only
states 0 and 1 and rates:

0 → 1 at rate λn1(x, ξ)

1 → 0 at rate δ1

We construct the process ξt with the same Poisson processes Nx,y and Dx that
we use for ηt . However, for ξt we take p = 0 in this construction. It is easy to
check that if we take initial configurations ξ0 and η0 such that if there is a 1 or 2
at x for the configuration η0 then there is a 1 at x for the configuration ξ0 then the
same is true at any time t for configurations ηt and ξt . This is due to the fact that
birth rates for ξt and ηt are the same but death rates are lower for ξt than for ηt .
Under the assumption λ

δ1
< λc, the 1’s in ξt die out for any initial configuration

thus the 1’s and 2’s in ηt must die out as well. An epidemic is not possible. This
completes the proof of (a). �

The proof of (c) is quite similar to the proof of (a). We consider a contact
process ζt that evolves according to the following rates:

0 → 2 at rate λn2(x, ζ )

2 → 0 at rate δ2

We also construct ζt in the same probability space as ηt by using the same Poisson
processes to construct both processes. However, for ζt we take p = 1 in this
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construction. This time ζt is below ηt in the following sense. If we take initial
configurations ζ0 and η0 such that if there is a 2 at x for the configuration ζ0

then there is a 1 or a 2 at x for the configuration η0 then the same is true at any
time t for configurations ζt and ηt . This is due to the fact that birth rates are
the same for both processes but death rates are higher for ζt than for ηt . Under
the assumption λ

δ2
> λc, starting with at least one 2, the 2’s in ζt have a positive

probability of surviving forever. The same must be true for ηt . An epidemic is
possible. This completes the proof of (c). �

Proof of Theorem (b). This has essentially been proved in Schinazi (2001).
However, the 1’s there correspond to the 2’s here, p near 0 there corresponds to
p near 1 here. Since the proof is not that long we decided to give a complete
proof with the necessary modifications.

We prove (b) under the assumption d = 2, in order to avoid more cumbersome
notation. The same ideas work in any d ≥ 1.

We define two space–time regions:

A = [−2L, 2L]2 × [0, 2L], B = [−L, L]2 × [L, 2L]
where L is an integer to be chosen later. Define C to be part of the ‘boundary’
of the box A:

C =
{
(m, n, t) ∈ A : |m| = 2L or |n| = 2L or t = 0

}

We will compare our spatial stochastic model to a certain dependent percolation
process on the set L = Z2 × Z+, where Z+ = {0, 1, 2, . . . }. For a short
introduction to oriented percolation, see p. 13 in Liggett (1999). We say that
the site (k, m, n) in L is wet if there are no 1’s and no 2’s in (kL, mL, nL) + B
whatever the configuration in (kL, mL, nL) + C is for the process restricted to
(kL, mL, nL) +A. Sites which are not wet are called dry.

For any ε > 0, given λ
δ2

< λc and δ1 < δ2 we will show that there is an integer
L and a proportion pc such that:

P
(
(k, m, n) is wet

) ≥ 1 − ε if p > pc.

We start by showing the above property when p = 1. Then, using a continuity ar-
gument, we will deduce that the inequality remains true for p close to but smaller
than 1. By translation-invariance, it suffices to consider the site (0, 0, 0) ∈ L.
Note that if p = 1 then 1’s and 2’s do not give birth to 1’s in the space-time
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regionA and the 1’s that are in [−2L, 2L]2 at time 0 will rapidly disappear. Let
E be the event that there are no 1’s left at time L/2 in [−2L, 2L]2. Because
there are (4L + 1)2 sites in A and since the death rate of 1’s is δ1 we have that

P(E) ≥ (1 − e−δ1L/2)(4L+1)2
.

By taking L large enough, the r.h.s. may be made larger than 1 − ε/4 for an
arbitrarily small ε > 0.

On E there are only 0’s and 2’s left in [−2L, 2L]2 by time L/2. Thereafter
the 2’s evolve as a subcritical contact process inA. Let F be the event that there
are no 2’s in the space time region B. On E, if there is a 2 in B there must be
an infection path from [−2L, 2L]2 × L/2 into B or from one of the sides of the
box A into B. Let D be

D = {(m, n) ∈ Z2 : |m| = 2L or |n| = 2L}.
Let {(x, t) → B} denote the event that there is an infection path from (x, t) to
B inside A. We have that

P(∃x ∈ D, ∃t ∈ [0, 2L] : (x, t) → B) ≤
∫ 2L

0

∑
x∈D

P((x, t) → B)dt.

An infection path from x in D to B has length at least L. Bezuidenhout and
Grimmett (1991) have shown, for the subcritical contact process, that the prob-
ability that an infection path is at least L long is less than Ce−γL where C and γ

are strictly positive constants. Thus,

P(∃x ∈ D, ∃t ∈ [0, 2L] : (x, t) → B) ≤
∫ 2L

0

∑
x∈D

Ce−γLdt

= 2L × 4(4L + 1)Ce−γL.

Similarly the probability of an infection path from [−2L, 2L]2 × L/2 to B is
less than (4L + 1)2Ce−γL/2. Therefore, we have

P(F |E) ≥ 1 − 8L(4L + 1)Ce−γL − (4L + 1)2Ce−γL/2.

By taking L large enough the probability above may be made larger than 1−ε/4.
We have

P
(
(0, 0, 0) is wet

) ≥ P(EF) = P(E)P (F |E) ≥ 1 − ε/2 if p = 1.
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SinceA is a finite box there is pc < 1 such that with probability at least 1 − ε/2
there are no arrivals inside A of Poisson processes with rate λ(1 − p). That is,
by picking p close enough to one there will be no birth of 1 insideA, with high
probability. Therefore, we get

P
(
(0, 0, 0) is wet

) ≥ 1 − ε if p > pc.

We define a percolation process on L for which the probability that a given
site is wet is 1 − ε. We position oriented edges between sites in L in or-
der to obtain a percolation model. For (k, m, n) and (x, y, z) in L, we draw
an oriented edge from (k, m, n) to (x, y, z) if n ≤ z and if the intersection
between (kL, mL, nL) + A and (xL, yL, zL) + A is not empty. Note that
the event {(k, m, n) is wet} depends only on the graphical construction within
(kL, mL, nL) +A. Given (k, m, n) in L there is only a fixed number of sites
(j, r, s) inL such that (kL, mL, nL)+A and (jL, rL, sL)+A intersect. Given
that events that depend on disjoint regions of the graphical construction are inde-
pendent, the percolation process we have defined in L although dependent, has
an interaction with only finite range.

A path of dry sites for this model is a connected oriented path which moves
along oriented edges (in the direction of the edge) and through dry sites only.

Since ε > 0 can be taken arbitrarily small, it is not difficult to see that the
probability of a path of dry sites between sites x and y in the percolation process
decreases exponentially fast with ||x−y||, see (8.2) in Berg et al. (1998). Notice
that a 1 or 2 at x at time t implies an infection path from time 0 to time t . This
infection path for the spatial stochastic process corresponds to a path of dry sites
for the percolation process. But long dry paths for the percolation process are
very unlikely. By using this comparison it is possible to show that for any fixed
site, after a finite random time, there will never be a 1 or a 2 at that site if p > pc

for the spatial stochastic process. See the proof of Theorem 4.4 in Berg et al.
(1998) for more details. This completes the proof of Theorem (b). �
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