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KMS States for generalized Gauge actions on
Cuntz-Krieger algebras
(An application of the Ruelle-Perron-Frobenius Theorem)
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Abstract. Given a zero-one matrix A we consider certain one-parameter groups of
automorphisms of the Cuntz-Krieger algebra OA, generalizing the usual gauge group,
and depending on a positive continuous function H defined on the Markov space �A.
The main result consists of an application of Ruelle’s Perron-Frobenius Theorem to show
that these automorphism groups admit a single KMS state.
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1 Introduction

In 1978 Olesen and Pedersen [9] showed that the periodic gauge action on the
Cuntz algebra On admits a unique KMS state, whose inverse temperature is
β = log n. Two years later Evans [4: 2.2] extended their result to include, among
other things, non-periodic gauge actions, namely one-parameter automorphism
groups on On given on the standard generating partial isometries Sj by

γt (Sj ) = Nit
j Sj , ∀ t ∈ R,

where {Nj }nj=1 is a collection of real numbers with Nj > 1 for all j . See also
[3: 3.1]. In 1984 Enomoto, Fujii and Watatani treated the case of the periodic
gauge action on the Cuntz-Krieger algebra OA for an irreducible matrix A and
again arrived at the conclusion that there exists a unique KMS state. The case
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of a non-periodic gauge action on OA was discussed in [8] in the context of
Cuntz-Krieger algebras for infinite matrices but, specializing the conclusions to
the finite case, one gets the expected result that if the matrix A is irreducible and
the parameters Nj are all greater than 1 then there exists a unique KMS state.

The present work aims to take a new step in the direction of understanding
the KMS states on Cuntz-Krieger algebras (over finite matrices) by studying
generalized gauge actions onOA. In order to describe these actions let�A be the
one-sided Markov space for the given matrix A and consider the copy of C(�A)
withinOA that is generated by the elements of the formSi1 . . . SikS

∗
ik
. . . S∗

i1
, where

the Si are the standard generating partial isometries. Fixing an invertible element
U ∈ C(�A) it is not hard to see that the correspondence

Sj �→ USj

extends to give an automorphism of OA. Therefore if H ∈ C(�A) is a strictly
positive element there exists a unique one-parameter automorphism group {γt}t∈R

of OA such that
γt (Sj ) = HitSj .

We will refer to γ as the generalized gauge action. It is easy to see that this in
fact generalizes both the periodic and the non-periodic gauge actions referred to
above.

The goal of this paper, as the title suggests, is to study the KMS states for the
generalized gauge action onOA. Our main result, Theorem 4.4, states that under
certain hypotheses there exists a single such KMS state.

The method employed consists of considering OA as the crossed product of
C(�A) by the endomorphism induced by the Markov subshift [6] and applying
Theorem 9.6 from [7] to reduce the problem to the search for probability measures
on �A which are fixed by Ruelle’s transfer operator [12, 13, 1, 2]. This turns
out to be closely related to Ruelle’s version of the Perron-Frobenius Theorem
(see e.g. [2: 1.7]), except that the latter deals with eigenvalues for the transfer
operator while we need actual fixed points. With not too much effort we are then
able to exploit Ruelle’s Theorem in order to understand the required fixed points
and thus reach our conclusion.

It should be stressed that Ruelle’s Theorem requires two crucial hypotheses,
namely that the matrix A be irreducible and aperiodic in the sense that there
exists a positive integer m such that all entries of Am are strictly positive (see
e.g. [1: Section 1.2]), and thatH is Hölder continuous. We are therefore forced
to postulate these conditions leaving open the question as to whether one could
do without them.
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The organization of this paper is as follows: in section (2), the longer and more
technical section of this work, we give a brief account of Ruelle’s Theorem and
draw the conclusions we need with respect to the existence and uniqueness of
probability measures that are fixed under the transfer operator.

Section (3) is devoted to reviewing results about crossed products by endo-
morphisms and in the final section we put all the pieces together proving our
main result.

After this article circulated as a preprint we learned of Renault’s interesting
paper [11] on cocycles for AF-equivalence relations which is closely related to
what we do here.

I would finally like to acknowledge helpful conversations with M. Viana who,
among other things, brought Ruelle’s Theorem to my attention.

2 Ruelle’s Perron-Frobenius Theorem

Beyond establishing our notation this section is intended to present Ruelle’s
Perron-Frobenius Theorem and to develop some further consequences of it to be
used in later sections.

Fix, once and for all, an n×nmatrix A = {Ai,j }1≤i,j≤n, with Ai,j ∈ {0, 1} for
all i and j , such that no row or column of A is identically zero.

Throughout this paper we will be concerned with the associated (one-sided)
subshift of finite type, namely the dynamical system (σ,�A), where �A is the
compact topological subspace of the infinite product space

∏
i∈N{1, 2, . . . , n}

given by

�A =
{
x = (x0, x1, x2, . . . ) ∈

∏
i∈N

{1, 2, . . . , n} : Axi,xi+1 = 1 for all i ≥ 0
}
,

and σ : �A → �A is the “left shift”, namely the continuous function given by

σ(x0, x1, x2, . . . ) = (x1, x2, x3, . . . ).

From the assumption that no column of A is identically zero it follows that σ is
surjective.

Given a real number β ∈ (0, 1) define a metric d on �A by setting

d(x, y) = βN(x,y), ∀ x, y ∈ �A,
where N(x, y) is the largest integer N such that xi = yi for all i < N . In the
special case in which x = y we setN(x, y) = +∞ and interpret βN(x,y) as being
zero. It is easy to see that this metric is compatible with the product topology.
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Let C(�A) denote the C*-algebra of all continuous complex functions on�A.
We will consider the operator

L : C(�A) → C(�A)

given by

L(f )
x

=
∑

y∈σ−1({x})
f (y), ∀ f ∈ C(�A), ∀ x ∈ �A. (2.1)

Since σ is surjective one has that σ−1({x}) is never empty. It is also clear that
σ−1({x}) has at most n elements so that the above sum is finite for every x. One
checks that L(f ) is indeed a continuous function and hence that L is a well
defined linear operator on C(�A), which is moreover positive and bounded.

Given a real continuous function φ on �A the operator

Lφ : C(�A) → C(�A)

given by Lφ(f ) = L(eφf )was introduced by Ruelle in [12: 2.3] (see also [13],
[2], and [1]) and it is usually referred to as Ruelle’s transfer operator.

Most of the time we will assume that φ is Hölder continuous with respect to
the metric d above: recall that a complex function φ on a metric spaceM is said
to be Hölder continuous when one can find positive constantsK and α such that
|φ(x)− φ(x)| ≤ Kd(x, y)α, for all x and y in M .

The most important technical tool to be used in this work is the celebrated
Ruelle-Perron-Frobenius Theorem which we now state for the convenience of
the reader.

Theorem 2.2. (D. Ruelle) Let A be an n × n zero-one matrix and let φ be a
real function defined on �A. Suppose that:

(a) There exists a positive integer m such that Am > 0 (in the sense that all
entries are > 0), and

(b) φ is Hölder continuous.

Then there are: a strictly positive function h ∈ C(�A), a Borel probability
measure ν on �A, and a real number λ > 0, such that

(i) Lφ(h) = λh,

(ii) L∗
φ(ν) = λν, where L∗

φ is the adjoint operator acting on the dual of
C(�A), and

(iii) for every g ∈ C(�A) one has that lim
k→∞ ‖λ−kLk

φ(g)− ν(g)h‖ = 0.
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Proof. See e.g. [2: 1.7].

Proposition 2.3. Under the hypotheses of (2.2) there exists a unique pair
(λ1, ν1) such that λ1 is a complex number, ν1 is a probability measure on �A,
and L∗

φ(ν1) = λ1ν1.

Proof. The existence obviously follows from (2.2.ii). As for uniqueness let
(λ1, ν1) be such a pair and let (λ, ν) be as in (2.2). For all g ∈ C(�A) we have

lim
k→∞

(
λ1

λ

)k
ν1(g) = lim

k→∞ ν1
(
λ−kLk

φ(g)
) = ν(g)ν1(h),

by (2.2.iii). Pluggingg = 1 above we conclude that the sequence
(
λ1
λ

)k
converges

to the nonzero value ν1(h) but this is only possible if λ1 = λ. For every g we
then have that ν1(g) = ν(g)ν1(h), so ν1 is proportional to ν. But since these are
probability measures we must have ν1 = ν. 
�

In particular it follows that both the λ and the ν in the conclusion of (2.2) are
uniquely determined. In the following we give an explicit way to compute λ in
terms of Lφ (see [1: 1.39]).

Proposition 2.4. Under the hypotheses of (2.2) one has that

λ = lim
k→∞ ‖Lk

φ(1)‖1/k.

Proof. Plugging g = 1 in (2.2.iii) we conclude that

lim
k→∞ λ

−k‖Lk
φ(1)‖ = ‖h‖ > 0.

So we may choose n0 ∈ N such that for all n ≥ n0

‖h‖
2

< λ−k‖Lk
φ(1)‖ < 2‖h‖.

Taking kth roots and then the limit as k → ∞ we get the conclusion. 
�
In the application of Ruelle’s Theorem that we have in mind we will take

φ = φβ = −β log(H), (2.5)
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where H is a strictly positive continuous function on �A and β > 0 is a real
number.

Observe that if H is Hölder continuous then so is φβ for every real β (this is
because “log” is Lipschitz on every compact subset of (0,+∞), e.g. the range
of H ). In this case Ruelle’s Theorem gives a correspondence β → λ which we
would like to explore more closely in what follows.

Proposition 2.6. Let A be an n × n zero-one matrix satisfying (2.2.a) and
suppose that H is a Hölder continuous function on �A such that

H(y) > 1, ∀ y ∈ �A.
For every β ≥ 0 let φβ be as in (2.5) and denote by λ(β) the unique λ satisfying
the conditions of (2.2) for φ = φβ . Then one has that

(i) λ(0) > 1,

(ii) lim
β→∞ λ(β) = 0, and

(iii) λ is a strictly decreasing continuous function of β.

Proof. Observe that

Lφβ (f ) = L(eφβf ) = L
(
e−β log(H)f

) = L
(
H−βf

)
.

Letm andM be the supremum and infimum ofH on�A, respectively. For every
β ≥ 0 and y ∈ �A one therefore has that

M−β ≤ H(y)−β ≤ m−β,

so that if f ∈ C(�A) is nonnegative we have

M−βL(f ) ≤ Lφβ (f ) ≤ m−βL(f ).

By induction it is easy to see that for all k ∈ N

M−kβLk(f ) ≤ Lk
φβ
(f ) ≤ m−kβLk(f ).

Taking norms and kth roots we conclude that

M−β‖Lk(f )‖1/k ≤ ‖Lk
φβ
(f )‖1/k ≤ m−β‖Lk(f )‖1/k.
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Plugging f = 1 above and observing that 1 ≤ ‖Lk(1)‖ ≤ ‖L‖k we obtain

M−β ≤ ‖Lk
φβ
(1)‖1/k ≤ m−β‖L‖,

and hence (2.4) yields

M−β ≤ λ(β) ≤ m−β‖L‖.
Observing that H > 1, and hence that m > 1, we deduce (ii). It is also clear
from the above that λ(0) ≥ 1 so it is enough to show that λ(0) �= 1 in order to
obtain (i).

Arguing by contradiction suppose that λ(0) = 1. Let h > 0 be given by (2.2)
so that Lφ0(h) = L(h) = h. Choose x0 ∈ �A such that h(x0) = infy∈�A h(y),
and observe that, since

h(x0) =
∑

y∈σ−1({x0})
h(y),

there exists a unique y in σ−1({x0})which moreover satisfies h(y) = h(x0). Re-
peating this process one obtains a sequence {xk}k∈N in�A such that σ−1({xk}) =
{xk+1} for all k. Letting xk = xk0 (the zeroth coordinate of xk) we have that
Axk+1,xk = 1 and also that this is the only nonzero entry of A in the column
xk. Since A is a finite matrix the sequence {xk} must be periodic. Assuming
without loss of generality that the first period of this sequence is {1, . . . , m},
where m ≤ n, we see that A has the form

A =
[
Sm B

0 C

]
,

where Sm is the matrix of the forward permutation ofm elements. However this
is easily seen to contradict (2.2.a) both when m < n (because the zero block in
the lower left corner will appear in any power of A) and when m = n (because
Sm definitely fails to satisfy (2.2.a)).

In order to prove (iii) let δ > 0 so that mδ ≤ H(y)δ ≤ Mδ for all y in �A.
Given β ∈ R we then have that

mδH(y)−β ≤ H(y)−(β−δ) ≤ MδH(y)−β.

For every nonnegative continuous function f it follows that

mδLφβ (f ) ≤ Lφβ−δ (f ) ≤ MδLφβ (f ),
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and if k ∈ N one has

mkδLk
φβ
(f ) ≤ Lk

φβ−δ (f ) ≤ MkδLk
φβ
(f ).

Taking norms and kth roots we conclude that

mδ‖Lk
φβ
(f )‖1/k ≤ ‖Lk

φβ−δ (f )‖1/k ≤ Mδ‖Lk
φβ
(f )‖1/k.

With f = 1 and taking the limit as k → ∞, we get by (2.4) that

mδλ(β) ≤ λ(β − δ) ≤ Mδλ(β). (2.7)

Substituting β + δ for β above leads to

M−δλ(β) ≤ λ(β + δ) ≤ m−δλ(β). (2.8)

By (2.7) and (2.8) one sees that λ is a continuous function of β. Sincem > 1 by
hypothesis the rightmost inequality in (2.8) gives λ(β + δ) < λ(β) and hence
that λ is strictly decreasing. 
�

Corollary 2.9. Under the hypotheses of (2.6) there exists a unique β > 0 such
that λ(β) = 1.

3 Preliminaries on Crossed Products

Define the map α : C(�A) → C(�A) by the formula

α(f ) = f ◦ σ, ∀ f ∈ C(�A).
It is easy to see that α is a C*-algebra endomorphism of C(�A). Since σ is
surjective one has that α is injective. We should also notice that α(1) = 1.

For x ∈ �A let
Q(x) = #

{
y ∈ X : σ(y) = x

}
,

(“#” meaning number of elements). Alternatively Q(x) may be defined as the
number of “ones” in the column of A indexed by x0. Therefore 1 ≤ Q(x) ≤ n

for all x ∈ �A so that in particular Q is invertible as an element of C(�A).
Define the operator

L : C(�A) → C(�A)

byL(f ) = Q−1L(f ), where L is defined in (2.1). It is easy to see thatQ = L(1)
and hence that L(1) = 1. Moreover

L(
α(f )g

) = fL(g), ∀ f, g ∈ C(�A),
Bull Braz Math Soc, Vol. 35, N. 1, 2004
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which tells us that L is a transfer operator for the pair (C(�A), α) according to
Definition (2.1) in [6]. One may therefore construct the crossed product algebra

C(�A)�α,L N,

or C(�A)� N, for short, as in [6:3.7], which turns out to be a C*-algebra gen-
erated by a copy of C(�A) and an extra element S which, among other things,
satisfies

• S∗S = 1,

• Sf = α(f )S, and

• S∗f S = L(f ),
for all f ∈ C(�A). See [6] for the precise definition of C(�A)� N.

In [6:6.2] it is proved that C(�A)� N is isomorphic to the Cuntz-Krieger
algebraOA. It will be convenient for us to bear in mind the isomorphism between
OA and C(�A)� N given in [6], which we next describe. For this consider for
each j = 1, . . . , n, the clopen subset �j of �A given by

�j = {x ∈ �A : x0 = j}.
These are precisely the sets forming the standard Markov partition of �A. Also
let Pj be the characteristic function of �j . According to [6] there exists an
isomorphism


 : OA → C(�A)� N

which is determined by the fact that the canonical generating partial isometries
Sj ∈ OA are mapped under 
 as follows:


(Sj ) = PjSQ
1/2.

We would next like to review the definition of the generalized gauge action on
OA. For this fix a strictly positive element H ∈ C(�A). According to [7:6.2]
there exists a unique one parameter automorphism group γ of C(�A)� N such
that for all t ∈ R,

γt (S) = HitS, and γt (f ) = f, ∀ f ∈ C(�A).
Transferring γ to OA via the isomorphism 
 described above one gets an auto-
morphism group on OA which is characterized by the fact that

γt (Sj ) = HitSj , ∀ j = 1, . . . , n.
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Observe that in caseH is a constant function, say everywhere equal to Neper’s
number e, and Aij ≡ 1, then OA coincides with the Cuntz algebra On and one
recovers the action overOn considered in [9]. We shall refer to this as the scalar
gauge action.

For a slightly more general example suppose that H is constant on each �j ,
taking the value Nj there. Then

γt (Sj ) = HitSj = HitPjSj = Nit
j Sj ,

and we obtain special cases of actions studied in [4] or [8].
Observe that the composition E = α ◦L is a conditional expectation from

C(�A) onto the range of α. By [7: Section 11], using the set {P1, . . . , Pn}, we
see that E is of index-finite type. It therefore follows from [7:8.9] that there
exists a unique conditional expectation

G : OA → C(�A)

which is invariant under the scalar gauge action. This conditional expectation
must therefore coincide with the conditional expectation given by [5:2.9] for the
Cuntz-Krieger bundle (see [10] and [5]).

Let us now give a concrete description ofG based on the well known fact that
OA is linearly spanned by the set of all SµS∗

ν , where µ and ν are finite words in
the alphabet {1, . . . , n}, and we let Sµ = Sµ0 . . . Sµk whenever µ = µ0 . . . µk.

For any such µ and ν we have by [5] that

G(SµS
∗
ν ) =

{
SµS

∗
ν , if µ = ν,

0 , if µ �= ν
(3.1)

4 KMS states

It is our main goal to describe the KMS states on OA for the gauge action γ
determined by a given H as above. Recall from [7:9.6] that for every β > 0 the
correspondence

ψ �→ ν = ψ |C(�A) (4.1)

is a bijection from the set of KMSβ states ψ on C(�A)� N and the set of
probability measures1 ν on �A such that

ν(f ) = ν
(
L(
H−β ind(E)f

))
, ∀ f ∈ C(�A), (4.2)

1By the Riesz Representation Theorem we identify probability measures and states as usual.
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where ind(E) is the Jones-Kosaki-Watatani index of E. See [7] for details. As
observed in [7:Section 11] the right hand side of (4.2) coincides with ν

(
Lφβ (f )

)
,

where φβ is as in (2.5), so that (4.2) is equivalent to

L∗
φβ
(ν) = ν. (4.3)

We now arrive at our main result.

Theorem 4.4. Let A be an n× n zero-one matrix satisfying (2.2.a) and let H
be a Hölder continuous function on �A such thatH(y) > 1 for all y in �A. Let
γ be the unique one-parameter automorphism group of OA such that

γt (Sj ) = HitSj , ∀ j = 1, . . . , n,

where theSj are the canonical partial isometries generatingOA. ThenOA admits
a unique KMS state ψ for γ . The inverse temperature at which this state occurs
is the unique value of β for which λ(β) = 1 (see 2.9). In addition ψ is given by

ψ = ν ◦G,

whereG is the conditional expectation described in (3.1) and ν is the unique mea-
sure on�A satisfying the Ruelle-Perron-Frobenius Theorem forφ = −β log(H).
Finally there are no ground states for γ .

Proof. By (2.9) let β > 0 be such that λ(β) = 1. Applying (2.2) for φ = φβ =
−β log(H), let ν be the unique probability measure on �A satisfying

L∗
φβ
(ν) = λ(β)ν = ν.

Then (4.3) holds and hence by [7:9.6] the composition ψ = ν ◦G is a KMSβ
state for γ .

Suppose now that β1 > 0 and letψ1 be a KMSβ1 state for γ . Set ν1 = ψ1|C(�A)
and observe that, again by [7:9.6], one has that ν1 satisfies (4.3) for φβ1 . So the
pair (1, ν1) satisfies the conditions of (2.3) and hence λ(β1) = 1 so that β1 = β

by (2.9). Also by (2.3) ν1 must coincide with ν and hence ψ1 = ψ because the
correspondence in (4.1) is bijective.

That no ground states exist follows from [7:10.1]. 
�
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