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Vector measure range duality and factorizations
of (D, p)-summing operators from
Banach function spaces
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Abstract. We characterize the relationship between the space L1(λ
′) and the dual

L′
1(λ) of the spaceL1(λ), where (λ, λ′) is a dual pair of vector measures with associated

spaces of integrable functions L1(λ) and L1(λ
′) respectively. Since the result is rather

restrictive, we introduce the notion of range duality in order to obtain factorizations
of operators from Banach function spaces that are dominated by the integration map
associated to the vector measure λ. We obtain in this way a generalization of the
Grothendieck-Pietsch Theorem for p-summing operators.
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Consider the space L1(λ) of (classes of) real functions that are integrable with
respect to a vector measure λ, following the definition of Bartle, Dunford and
Schwartz [1], and Lewis [10]. The aim of this paper is to study the properties and
applications of the notion of dual pair of vector measures, and the relation with
the corresponding spaces of integrable functions. Thus, Section 2 is devoted
to the analysis of the natural relationship that appears between the notion of
duality for a pair of vector measures (λ, λ′) (see [8]) and the dual of the Banach
space L1(λ). In this direction, we characterize when the dual space L′

1(λ) can
be represented in terms of L1(λ

′). The papers of Curbera [3] and Okada [13]
are closely related to the general question of finding a good description for the
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dual space L′
1(λ). However, as far as we know, no representation in terms of λ

is known, but the results that can be obtained following the quoted scheme lead
to the restrictive conclusion that the integration operator associated to the vector
measure λ must be an isomorphism.

Therefore, we define in Section 3 the weaker notion of range duality between
vector measures, and we prove that it can be successfully applied to general-
ize the Grothendieck-Pietsch Domination Theorem for operators from a Banach
function space L that are dominated by the integration map of a vector measure.
In order to do this, we introduce several compactness arguments for the topolog-
ical space defined by the weak* closure of the unit ball of the space L1(λ

′) of a
vector measure, that can be considered as a subspace of the dual of a projective
tensor product of certain function spaces.

1 Preliminaries

Let (�,�) be a measurable space and X a (real) Banach space with dual X′.
The closed unit ball of X will be denoted by BX. Suppose that λ : � → X is a
countably additive vector measure. We denote by |λ| and ‖λ‖ its variation and
semivariation, respectively.

A measurable function f : � → R is integrable with respect to λ if for each
A ∈ � there is an element

∫
A
f d λ ∈ X such that for every x ′ ∈ X′ the function

f is x ′λ-integrable and
〈∫
A

f d λ, x ′
〉

=
∫
A

f d x ′λ,

where x ′λ(B) := 〈
λ(B), x ′〉 for every B ∈ �. The set of the (classes of ‖λ‖-a.e.

equal) functions endowed with the norm

‖f ‖λ = sup

{∫
�

|f | d
∣∣x ′λ

∣∣ : x ′ ∈ BX′

}
, f ∈ L1(λ)

defines the Banach space L1(λ) (see [10, 11]). The (classes of) simple functions
are dense in this space. If we consider the ‖λ‖-almost everywhere order, L1(λ)

becomes a Banach lattice. The norm

|‖f ‖|λ = sup
A∈�

∥∥∥∥
∫
A

f d λ

∥∥∥∥, f ∈ L1(λ)

is equivalent to the above one. In fact |‖f ‖|λ ≤ ‖f ‖λ ≤ 2|‖f ‖|λ for every
f ∈ L1(λ) (see [2]).
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This space has been also studied in [9], [4, 3, 2], [13] and [18]. It is also known
that L1(λ) can be described as a Banach (Köthe) function space over a positive
measure which controls λ. This fact provides a useful characterization of the
dual of L1(λ) (see [3, 13, 12]).

If λ is a bounded vector measure the integration operator can be defined as the
linear and continuous map

Iλ : L1(λ) → X | Iλ(f ) :=
∫
�

f d λ, f ∈ L1(λ).

The properties of the integration operator have been studied by Okada, Ricker
and Rodríguez-Piazza in [14, 15, 16].

Let rg(λ) be the range of λ. It is said that λ is a complete vector measure if
span{rg(λ)} is dense in X, i.e. if the range of Iλ is dense in X.

Consider (λ, λ′) a compatible pair of vector measures, that is, two vector
measures λ : � → X and λ′ : � → X′. If (λ, λ′) satisfies

(1)
〈
λ(A), λ′(B)

〉 = 0 for disjoint A,B ∈ �,

(2)
〈
λ(A), λ′(A)

〉 �= 0 if at least one of the elements λ(A) or λ′(A) is non-zero,

then (λ, λ′) is said to be a dual pair of vector measures. The duality relation
between vector measures has been defined and studied by Kadets and Zheltukhin
in [8].

In all the paper, we will suppose that the vector measures of a dual pair (or of a
range dual pair, that will be defined in Section 3) (λ, λ′) are countably additive.
Our basic reference for vector measure theory is the book of Diestel and Uhl [6].
The notation for Banach spaces is standard. We will say that a subset B of a
Banach space (X, ‖ · ‖) is norming if supx∈B

〈
x, x ′〉 defines a norm on X′ that

is equivalent to ‖ · ‖′. Throughout the paper, (�,�) and (�′, �′) will denote
measurable spaces. The definitions and fundamental results on Banach (Köthe)
function spaces and p-summing operators can be found in [12], [5] and [17].

2 Dual vector measures and function spaces duality

It is well known that L1(λ) is a Banach function space with weak unit [2]. Thus,
if µ is a certain finite measure that controls λ (for instance, a Rybakov measure,
see [6, 3]), then it is possible to characterize the dual space as a space of scalar
functions by means of the duality relation

〈f, g〉 =
∫
�

fg dµ,
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where f ∈ L1(λ) and g ∈ L′
1(λ) (see [12, Th. 1.b.14] and [3, 13]). For the

representation of the dual space we use a positive measure related to the dual
pair (λ, λ′) that appears in a natural way. The trace of (λ, λ′) (see [8, Sec. 3.1])
is the scalar measure tr(λ, λ′) : � → R defined by

tr(λ, λ′)(A) := 〈
λ(A), λ′(A)

〉
, A ∈ �.

Sinceλ is countably additive we obtain that tr(λ, λ′) is also countably additive [8].
Consider the variation µt of tr(λ, λ′). It is clear that λ is absolutely continuous
with respect to µt . Then the following lemmas clarify that the dual space L′

1(λ)

is also a function space over (�,�,µt) (see [4, 14]) and we can represent the
duality by

〈f, g〉 =
∫
�

fg dµt, f ∈ L1(λ), g ∈ L′
1(λ).

Lemma 2.1. Let (λ, λ′) be a dual pair of vector measures, and letµ := tr(λ, λ′).
For f ∈ L1(λ), g ∈ L1(λ

′) we have〈∫
�

f d λ,
∫
�

g d λ′
〉

=
∫
�

fg dµ.

Proof. For A,B ∈ � we have
〈
λ(A), λ′(B)

〉 = µ(A ∩ B) (see [8, Sec. 3.1]).
The set of simple functions that are equalµt -a.e. is dense in the spacesL1(λ) and
L1(λ

′). Thus, it will be enough to show the equality for simple functions. Take
f = ∑n

i=1 hiχAi and g = ∑m
i=1 kiχBi where {Ai}ni=1 and {Bi}mi=1 are sequences

of disjoint subsets of �. We have〈∫
�

f d λ,
∫
�

g d λ′
〉

=
n∑
i=1

m∑
j=1

hikj
〈
λ(Ai), λ

′(Bj )
〉

=
n∑
i=1

m∑
j=1

hikjµ(Ai ∩ Bj) =
∫
�

fg dµ.

Moreover, for A,B ∈ �,〈∫
A

f d λ,
∫
B

g d λ′
〉

≤
∥∥∥∥
∫
A

f d λ

∥∥∥∥
∥∥∥∥
∫
B

g d λ′
∥∥∥∥,

and then 〈∫
�

f d λ,
∫
�

g d λ′
〉

≤ |‖f ‖|λ|‖g‖|λ′ .

A standard density argument completes the proof. �

Bull Braz Math Soc, Vol. 35, N. 1, 2004



VECTOR MEASURE RANGE DUALITY FROM BANACH FUNCTION SPACES 55

Lemma 2.2. Let (λ, λ′) be a dual pair of vector measures such that λ is complete.
Then the map

i : L1(λ
′) → L′

1(λ) | i(f ) = f

is a well defined continuous injection.

Proof. Let µ := tr(λ, λ′). By the Hahn decomposition there is a partition
{A+, A−} of � such that for A ∈ � we have µ(A) = µ(A ∩A+)−µ(A ∩A−)
(see [7, page 121]), and the measures µ(A ∩A+) and µ(A ∩A−) are finite and
positive.

Consider the positive measure µt := ∣∣tr(λ, λ′)
∣∣. It is clear that µt(A) =

µ(A ∩ A+)+ µ(A ∩ A−). Take f ∈ L1(λ
′) and g ∈ L1(λ). Lemma 2.1 gives

∣∣∣∣
∫
�

fg dµt

∣∣∣∣ ≤
∣∣∣∣
∫
A+
fg dµ

∣∣∣∣ +
∣∣∣∣
∫
A−
fg dµ

∣∣∣∣ ≤ 2|‖f ‖|λ′ |‖g‖|λ.

We therefore obtain that i is a continuous and well-defined map.
If

∫
�
fg dµt = 0 for everyg ∈ L1(λ), a direct calculation based on Lemma 2.1

shows that
〈∫
�
g d λ,

∫
A
f d λ′〉 = 0 for all g ∈ L1(λ) and all A ∈ �. Since λ is

a complete measure we obtain the conclusion. �
The statements (i) and (ii) of next proposition are proved in Theorem 3.6 of [8]

for minimal measures.

Proposition 2.3. Let (λ, λ′) be a dual pair of complete vector measures. Then
there exists a vector measure λ∗ such that:

(i) (λ, λ∗) is a dual pair.

(ii) The measure tr(λ, λ∗) coincides with the variation of tr(λ, λ′). In partic-
ular, tr(λ, λ∗) is a positive measure.

(iii) L1(λ
′) is isometric to L1(λ

∗).

Proof. Let µ := tr(λ, λ′) and µt := ∣∣tr(λ, λ′)
∣∣. An application of the Radon-

Nikodym Theorem gives a function g ∈ L1(µt) such that µ(A) = ∫
A
g dµt (in

fact, |g| = 1 µt -a.e.). We define the vector measure

λ∗ : � → X′ | λ∗(A) :=
∫
A

g−1 d λ′.
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The facts that g−1 = g µt -a.e., µt controls λ, and g ∈ L1(λ
′) implies that the

measure λ∗ is well defined. For A,B ∈ �
〈
λ(A), λ∗(B)

〉 =
〈
λ(A),

∫
B

g−1 d λ′
〉

=
∫
A∩B

g−1 dµ = µt(A ∩ B).

This and the fact that µt controls µ give that (λ, λ∗) is a dual pair of vector
measures and its trace is µt . These implies (i) and (ii).

The multiplication operator

Ig : (
L1(λ

′), |‖.‖|λ′
) → (

L1(λ
∗), |‖.‖|λ∗

) | Ig(f ) := gf

is an isometry since

∣∣∥∥Ig(f )∥∥∣∣
λ∗ = sup

A∈�

∥∥∥∥
∫
A

gf d λ∗
∥∥∥∥ = sup

A∈�

∥∥∥∥
∫
A

gfg−1 d λ′
∥∥∥∥ = |‖f ‖|λ′ .

This proves (iii). �
According to the above proposition we may suppose that the dual pair (λ, λ′)

is defined such that tr(λ, λ′) is a positive measure. In this case we say that (λ, λ′)
is a positive dual pair.

Theorem 2.4. Let (λ, λ′) be a compatible pair of complete vector measures,
λ : � → X. Then the following are equivalent.

(1) (λ, λ′) is a positive dual pair.

(2) The inclusion map i : L1(λ
′) → L′

1(λ) is well-defined and factorizes as
i = I ′

λ ◦ Iλ′ , i.e. the diagram

L1(λ
′) i � L′

1(λ)

Iλ′

������� I ′
λ

X′ �������

commutes, where I ′
λ is the adjoint operator associated to Iλ.

Proof. (1) → (2). Set µ := tr(λ, λ′). Take f ∈ L1(λ
′). By Lemma 2.2

f = i(f ) ∈ L′
1(λ). Let g ∈ L1(λ). Since µ controls λ, we can write the duality

between f and g as

〈g, f 〉 = 〈g, i(f )〉 =
∫
�

gf dµ.
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Now, Lemma 2.1 gives

〈g, i(f )〉 = 〈Iλ(g), Iλ′(f )〉 = 〈
g, I ′

λ(Iλ′(f ))
〉
.

This implies i = I ′
λ ◦ Iλ′ .

(2) → (1). The definition of the duality in the function space L1(λ) gives a
(finite) positive measure µ that controls λ. ForA,B ∈ �, we have χA ∈ L1(λ

′),
χB ∈ L1(λ) and

µ(A ∩ B) =
∫
�

χAχB dµ = 〈χB, i(χA)〉
= 〈Iλ(χB), Iλ′(χA)〉 = 〈

λ(B), λ′(A)
〉
.

This equality holds for each pair of subsets A,B ∈ �. Direct calculations give
conditions (1) and (2) of the definition of dual pair for (λ, λ′). Sinceµ is positive
we have that (λ, λ′) is a positive dual pair. �

Next we will prove the main result of this section. We show that the coincidence
between the duality for the vector measures and the duality between L1(λ) and
L1(λ

′) is only satisfied when the integration map is an isomorphism. We begin
with an example.

Example 2.5. Let 1 < p < ∞ and consider the usual spaceLp([0, 1], �0, µ0)

of p-integrable functions on [0, 1]. We define the vector measure λp : �0 →
Lp[0, 1] by mean of λp(A) := χA. It is a countably additive (hence bounded)
vector measure. Moreover, if p′ satisfies 1

p
+ 1

p′ = 1, then (λp, λp′) is a dual
pair of vector measures.

In this case, the integration map Ip : Lp[0, 1] → Lp[0, 1] defined as Ip(f ) :=∫
�
f d λp is an isomorphism, since for every simple function f = ∑n

i=1 hiχAi
(where {Ai}ni=1 are disjoint subsets of �0),

Ip(f ) =
∫
�

f d λp =
n∑
i=1

hiλp(Ai) =
n∑
i=1

hiχAi ,

and

∣∣∥∥Ip(f )∥∥∣∣
λp

= sup
A∈�0

∥∥∥∥
∫
A

f d λp

∥∥∥∥
Lp

= sup
A∈�0

{∫
A

|f |p dµ0

} 1
p

= ‖f ‖Lp .

It is clear that we can represent the dual of L1(λp) as L1(λp′), i.e. the dual
pair (λp, λp′) of vector measures leads to a direct representation of the duality of
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the corresponding function spaces. On the other hand, the integration maps Ip
and Ip′ define isomorphic relations between the function spaces and the Banach
spaces where the vector measures take their values.

The following theorem shows that this situation holds for the general case, that
is, function spaces related to the measures of a dual pair are dual spaces if and
only if the corresponding integration maps are isomorphisms.

Theorem 2.6. Let (λ, λ′) be a dual pair of complete vector measures. Then the
following are equivalent.

(1) L1(λ
′) is a subspace of L′

1(λ).

(2) The quotient map I λ : L1(λ)

ker Iλ
→ X is an isomorphism.

(3) Iλ′ defines an isomorphism between L1(λ
′) and X′.

(4) Iλ defines an isomorphism between L1(λ) and X.

Proof. As a consequence of Proposition 2.3, we can suppose that (λ, λ′) is
a positive dual pair. Then we can define the dual space L′

1(λ) by the duality∫
�
fg dµ, with the measure µ = tr(λ, λ′).

(2) → (1). Lemma 2.2 gives the continuity of the map i : L1(λ
′) → L′

1(λ).
Thus we just need to prove that there is a constant Q > 0 such that

‖f ‖L1(λ′) ≤ Q‖f ‖L′
1(λ)

for each f ∈ L′
1(λ). First, we know that

|‖f ‖|λ′ = sup
A∈�

∥∥∥∥
∫
A

f d λ′
∥∥∥∥ = sup

{〈
x,

∫
A

f d λ′
〉

: A ∈ �, x ∈ BX
}
.

Since I λ is an isomorphism, the definition of the norm on the quotient space
L1(λ)

ker Iλ
makes clear that there is a function g ∈ BL1(λ), a set A ∈ � and a constant

Q > 0 (which does not depend on g or A) such that

|‖f ‖|λ′ ≤ Q

〈∫
�

g d λ,
∫
A

f d λ′
〉
.

Then, by Lemma 2.1

|‖f ‖|λ′ ≤ Q

∫
A

gf dµ = Q

∫
�

(gχA)f dµ.
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Taking into account that |‖gχA‖|λ ≤ |‖g‖|λ ≤ 1 we obtain

|‖f ‖|λ′ ≤ Q‖f ‖L′
1(λ)
.

Hence L1(λ
′) can be identified with a subspace of L′

1(λ).
Now let us show that (1) → (3). Theorem 2.4 gives the factorization through

X′. Since the identity map i is an injection as a consequence of (1), Iλ′ is also
injective. There is a K > 0 such that, for every f ∈ L1(λ

′),

‖f ‖L1(λ′) ≤ K sup
|‖g‖|λ≤1

∫
�

fg dµ

= K sup
|‖g‖|λ≤1

〈∫
�

g d λ,
∫
�

f d λ′
〉

≤ K

∥∥∥∥
∫
�

f d λ′
∥∥∥∥ = K‖Iλ′(f )‖.

These inequalities and the completeness of the measure λ′ give the result.
Finally we show (3) → (4). There are constants K and Q such that

|‖f ‖|λ = sup
A∈�

∥∥∥∥
∫
A

f d λ

∥∥∥∥ = sup

{〈∫
A

f d λ, x ′
〉

: ∥∥x ′∥∥ ≤ 1, A ∈ �
}

≤ K sup

{〈∫
A

f d λ,
∫
�

g d λ′
〉

: ‖g‖λ′ ≤ 1, A ∈ �
}

= (∗)

Since for every A ∈ � and g ∈ BL1(λ′) we have gχA ∈ L1(λ
′), ‖gχA‖λ′ ≤

‖g‖λ′ ≤ 1 and
〈∫
A
f d λ,

∫
�
g d λ′〉 = ∫

A
fg dµ = 〈∫

�
f d λ,

∫
�
gχA d λ′〉, we

can write

(∗) = K sup

{〈∫
�

f d λ,
∫
�

g d λ′
〉

: ‖g‖λ′ ≤ 1

}
≤ KQ‖Iλ(f )‖.

Thus, the completeness of λ implies that Iλ is an isomorphism.
Since the fact that (4) implies (2) is obvious, this finishes the proof. �

Corollary 2.7. Let (λ, λ′) be a dual pair of complete vector measures. Suppose
that the set of (classes of) simple functions is dense in L′

1(λ). Then the following
are equivalent.

(1) L1(λ
′) = L′

1(λ).

(2) Iλ′ defines an isomorphism between L1(λ
′) and X′.

(3) Iλ defines an isomorphism between L1(λ) and X.
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3 The range dual of a space L1(λ)

After the results of Section 2, we know that the only case that we can represent
the dual of L1(λ) as a space L1(λ

′) is the trivial case when it is isomorphic to
the space X where the vector measure is defined. This leads to the definition
of a weak duality relation between L1(λ) and other space L1(γ ) when γ is a
(countably additive) vector measure γ : �′ → X′, that is given by the bilinear
form

(f, g) :=
〈∫
�

f d λ,
∫
�′
g d λ′

〉
, f ∈ L1(λ), g ∈ L1(γ ).

The inequality

(f, g) ≤ |‖f ‖|λ|‖g‖|γ , f ∈ L1(λ), g ∈ L1(γ )

proves the continuity of this bilinear map.

Definition 3.1. Consider the spaceL1(λ) of a countably additive vector measure
λ : � → X. We define the range dual of L1(λ) as the linear space given by the
range of the adjoint operator I ′

λ, i.e.

(L1(λ))
R = {φx′ ∈ (L1(λ))

′ : φx′(f ) :=
〈∫
�

f d λ, x ′
〉
,

for x ′ ∈ X′, f ∈ L1(λ)},
endowed with the norm ‖φx′‖Rλ = ‖φx′‖L′

1(λ)
.

The linear map R : X′ → (L1(λ))
R given by R(x ′) = φx′ , x ′ ∈ X′, is

continuous, since
|φx′(f )| ≤ ‖f ‖λ‖x ′‖.

The properties of a range dual of a space L1(λ) are obviously associated to
the relationship between this function space and the Banach space X where the
vector measure is defined. In a certain sense, it represents the elements of the dual
space L1(λ) that can be defined by mean of the elements of X′. The following
proposition clarifies this relation. It is a direct consequence of the properties of
the adjoint operators.

Proposition 3.2. Consider the space L1(λ) of a countably additive vector mea-
sure λ. If Iλ is open, or onto, or Iλ(BL1(λ)) is norming, then R defines an
isomorphism between (L1(λ))

R and X′.
Moreover, if R defines such an isomorphism, then Iλ(BL1(λ)) is norming and

(L1(λ))
R (and then X′) is isomorphic to a closed subspace of (L1(λ))

′.
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Definition 3.3. Let λ : � → X and λ′ : �′ → X′ be countably additive vector
measures. We say that the couple (λ, λ′) is a range dual pair if

(1) the seminorm

‖g‖(λ,λ′) = sup
f∈BL1(λ)

〈∫
�

f d λ,
∫
�′
g d λ′

〉

is equivalent to ‖ ∫
�′ g d λ′‖ for every g ∈ L1(λ

′), and

(2) the seminorm

‖f ‖(λ′,λ) = sup
g∈BL1(λ

′)

〈∫
�

f d λ,
∫
�′
g d λ′

〉

is equivalent to ‖ ∫
�
f d λ‖ for every f ∈ L1(λ).

A direct consequence of Proposition 3.2 is the following corollary, that clearly
shows that uniqueness is not a defining property of the range dual pair relation
between vector measures.

Corollary 3.4. If Iλ and Iλ′ are open, or onto, or Iλ(BL1(λ)) and Iλ′(BL1(λ)) are
norming, then (λ, λ′) is a range dual pair.

Definition 3.5. Let λ : � → X and λ′ : �′ → X′ be countably additive vector
measures. We define the seminorms

‖f ‖λ′
λ := sup

A∈�
‖
∫
A

f d λ‖(λ′,λ), f ∈ L1(λ),

and

‖g‖λλ′ := sup
A∈�′

‖
∫
A

g d λ′‖(λ,λ′), g ∈ L1(λ
′).

Remark 3.6. Consider a range dual pair (λ, λ′). It is clear by construction that

(1) ‖ · ‖λ′
λ and ‖ · ‖λ are equivalent on L1(λ), and

(2) ‖ · ‖λλ′ and ‖ · ‖λ′ are equivalent on L1(λ
′).
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Therefore, range dual pairs provide a right framework to define the topology of
the spaces of integrable functions by mean of a weak duality relation based on
the computation of the corresponding integrals.

Lemma 3.7. If λ and λ′ define a range dual pair and µ is a Rybakov measure
for λ′, then L1(λ

′) is isomorphic to a subspace of

(L∞(µ)⊗π L1(λ))
′.

Proof. Let g ∈ L1(λ
′). Let us define the function�g : L∞(µ)⊗π L1(λ) → R

by

�g(h⊗ f ) :=
〈∫
�

f d λ,
∫
�′
hg d λ′

〉
, h⊗ f ∈ L∞(µ)⊗π L1(λ),

and extended by linearity to the whole tensor product. It is well defined, since it
is clear that�g(z) does not depend on the particular representation of the tensor
z that is considered. The norm ‖g‖λ′ can also be computed as the supremum
supBL∞(µ)

‖ ∫
�′ hg d λ′‖ (see [19]). Thus, for every

z =
n∑
i=1

hi ⊗ fi ∈ L∞(µ)⊗ L1(λ)

we have

�g

( n∑
i=1

hi ⊗ fi

)
≤

n∑
i=1

‖
∫
�

fi d λ‖‖
∫
�′
hig d λ′‖‖

≤ ‖g‖′
λ

( n∑
i=1

‖hi‖L∞(µ)‖fi‖λ
)
,

and then
�g(z) ≤ ‖g‖λ′π(z).

Moreover, since λ and λ′ define a range dual pair, we have that the norm

sup
A∈�′,f∈BL1(λ)

�g(χA ⊗ f )

is equivalent to ‖ ·‖λ, and obviously χA ∈ L∞(µ) for everyA ∈ �′. This proves
the result. �
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Now, let us consider the weak* topology on (L∞(µ)⊗π L1(λ))
′. By Lemma

3.7, BL1(λ′) can be considered as a norm closed subset on this space. Since it
is convex, it is closed also for the weak topology, but it is not in general closed
for the inherited weak* topology. Let us denote by BL1(λ′) the weak* closure of
this set. The following lemma shows that we can still consider the elements of
BL1(λ′) (in a weak sense) as elements of a function space.

Lemma 3.8. Let f ∈ L1(λ) and φ ∈ BL1(λ′). Then there is a function φf ∈
L1(µ) such that for every h ∈ L∞(µ),

〈
h⊗ f, φf

〉 =
∫
�′
hφf dµ.

Proof. Sinceφ ∈ BL1(λ′), there is a net (gτ )τ∈T ⊂ BL1(λ′) so that limτ∈T gτ = φ.
Let f ∈ L1(λ), and consider the measures νf,τ given by

νf,τ (A) :=
〈∫
�

f d λ,
∫
�′
χAgτ d λ′

〉
, A ∈ �′,

and the set function

νf (A) := lim
τ∈T νf,τ (A) = φ(χA ⊗ f ) A ∈ �′.

Note that |νf (A)| ≤ ‖f ‖λ for every A ∈ �′ and then νf is a finite measure. It
is absolutely continuous with respect to µ, since so is each measure νf,τ . Thus,
there is a function φf ∈ L1(µ) such that νf (A) = ∫

A
φf dµ for every A ∈ �′.

Therefore, for every h ∈ L∞(µ) we obtain

φ(h⊗ f ) =
∫
�′
hφf dµ. �

Lemma 3.8 allows us to introduce the following notation for the extension
of the action of the elements of BL1(λ′) on L∞(µ) ⊗ L1(λ). If φ ∈ BL1(λ′),
h ∈ L∞(µ) and f ∈ L1(λ), we define

(f, hφ) :=
∫
�′
hφf dµ.

If h = χ�′ we simply write (f, φ). Note that for every element g ∈ BL1(λ′),

(f, hg) =
〈∫
�

f d λ,
∫
�′
hg d λ′

〉
.
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Definition 3.9. We say that a Banach function space L is compatible with a
vector measure λ if the identity map Id : L → L1(λ) given by Id(f ) := f ,
f ∈ L, is well defined, continuous and its range is dense in L1(λ).

Definition 3.10. Consider a Banach function space L that is compatible with
the countably additive vector measure λ of the range dual pairD = (λ, λ′). Let
1 ≤ p < ∞. Let Y be a Banach space, and consider an operator T : L → Y .
We say that T is (D, p)-summing if there is a positive constant K such that for
every finite set of functions f1, ..., fn ∈ L, the inequality

n∑
i=1

‖T (fi)‖p ≤ Kp sup
g∈BL1(λ

′)

n∑
i=1

∣∣∣∣
〈∫
�

fi d λ,
∫
�′
g d λ′

〉 ∣∣∣∣
p

holds. We denote by π(D,p) to the infimum of all such constants K .

Theorem 3.11. Let L be a Banach function space that is compatible with the
countably additive vector measure λ of the range dual pair D = (λ, λ′). Let Y
be a Banach space, 1 ≤ p < ∞, and consider an operator T : L → Y . Then
the following statements are equivalent.

(1) T is (D, p)-summing.

(2) There is a positive constant K and a regular Borel probability measure η
on the compact set BL1(λ′) such that

‖T (f )‖ ≤ K

( ∫
BL1(λ

′)
|(f, φ)|p d η(φ)

) 1
p

for every f ∈ L.

Moreover, the infimum of such constants K equals π(D,p).

Proof. It follows the lines of the proof of the Grothendieck-Pietsch Domination
Theorem (see 2.12 in [5]). To see (2) → (1), consider a finite family of functions
f1, ..., fn ∈ L. Then there is a constantK > 0 and a probability measure η such
that

n∑
i=1

‖T (fi)‖p ≤ Kp

n∑
i=1

(

∫
BL1(λ

′)
|(fi, φ)|p d η(φ)) = (∗)

Thus, since BL1(λ′) is weak* dense in BL1(λ′) and the functions |(fi, φ)| are
continuous for the weak* topology, we obtain

(∗) ≤ Kp sup
φ∈BL1(λ

′)

n∑
i=1

|(fi, φ)|p ≤ Kp sup
g∈BL1(λ

′)

n∑
i=1

∣∣∣∣
〈∫
�

fi d λ,
∫
�′
g d λ′

〉 ∣∣∣∣
p
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This gives (1). For the converse, consider any finite set of functions F = {fi ∈
L1(λ) : i = 1, ..., n}. We can define the function

ψF(g) =
n∑
i=1

‖T (fi)‖p − π
p

(D,p)

∣∣∣∣
〈∫
�

fi d λ,
∫
�′
g d λ′

〉 ∣∣∣∣
p

.

It is a continuous function on BL1(λ′) with respect to the weak* topology, which
definition can be extended by continuity to the wholeBL1(λ′). LetM be the set of
all such functions F . It can be easily shown that it is a convex set. If we denote
by C the positive cone of the space of continuous functions C(BL1(λ′)), i.e.

C = {γ ∈ C(BL1(λ′))|γ (φ) > 0, for every φ ∈ BL1(λ′)}.
Since T is (D, p)-summing it is clear thatC andM are disjoint. SinceC is open
and convex, the Hahn-Banach Theorem gives an element η ∈ (C(BL1(λ′)))

′ and
a constant k such that

〈ψ, η〉 ≤ k < 〈γ, η〉
for every ψ ∈ M , γ ∈ C. Since 0 ∈ M and every positive constant function h
belongs to C, it follows that k = 0. Thus, η is a positive regular Borel measure,
that we can suppose that is a probability measure. Therefore,

∫
BL1(λ

′)
ψ d η ≤ 0

for every ψ ∈ M . This gives the result. �
The definition of (D, p)-summing operators directly provides the following

factorization theorem. The reader can find a study of related factorizations in
[18].

Lemma 3.12. In the conditions of Definition 3.10, if T is (D, p)-summing then
we can factorize it as T = T0 ◦ Id, where Id : L → L1(λ) is the corresponding
identity map and T0 : L1(λ) → Y is defined by T0(f ) = T (f ) for every f ∈ L,
and by continuity when f does not belong to L. Moreover, T0 is also (D, p)-
summing.

Proof. Since Id is continuous, it is enough to prove the continuity of T0. But
for every f ∈ L,

‖T0(f )‖ ≤ π(D,p) sup
g∈BL1(λ

′)

∣∣∣∣
〈∫
�

f d λ,
∫
�′
g d λ′

〉 ∣∣∣∣ ≤ π(D,p)‖f ‖λ.
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Thus, the continuity ofT0 holds. Consider a finite family of functionsfi ∈ L1(λ),
i = 1, ..., n. Let ε > 0. The density of Id(L) and the continuity of the expression

sup
g∈BL1(λ

′)

n∑
i=1

|
〈∫
�

fi d λ,
∫
�′
g d λ′

〉
|p

with respect to the norm topology of L1(λ) gives that there are f ′
i ∈ L such that

‖T0(fi)− T0(f
′
i )‖ <

ε

n
, i = 1, ..., n.

and

sup
g∈BL1(λ

′)
(

n∑
i=1

|
〈∫
�

fi − f ′
i d λ,

∫
�′
g d λ′

〉
|p) 1

p < ε.

This can be found for every ε > 0. Thus, a direct calculation using the inequality
that holds for {f ′

i : i = 1, ..., n} by the fact that T is (D, p)-summing gives the
result. �

In particular, each (D, p)-summing operator T is dominated by the integration
operator Iλ, i.e. for every f ∈ L,

‖T (f )‖ ≤ π(D,p)‖
∫
�

f d λ‖.

Although this property gives a strong restriction when λ is a scalar measure, this
is not the case in the vectorial situation (see Remark 3.14).

Theorem 3.13. In the conditions of Definition 3.10, an operator T : L → Y is
(D, p)-summing if and only if there is a factorization as follows,

G ⊂ C(BL1(λ′))

L

Id �

L1(λ)

J �

S

�Ip
Ip(G) ⊂ Lp(BL1(λ′), η)

Y�T

�

where

(a) J is the map given by J (f )(g) := 〈∫
�
f d λ,

∫
�′ g d λ′〉, for every f ∈

L1(λ) and g ∈ L1(λ
′), and G is the closure of J (L1(λ)).
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(b) Ip is the identity continuous map defined as Ip(h) = h, h ∈ C(BL1(λ′)).

(c) S is the map defined from the closure of Ip(G) by continuity by the expres-
sion S(Ip(J (Id(f )))) = T (f ), f ∈ L.

Moreover,‖S‖ = π(D,p).

Proof. We first show that every (D, p)-summing operator T factorizes in this
way. Lemma 3.12 gives a previous factorization; there is a (D, p)-summing
operator T0 : L1(λ) → Y such that T = T0 ◦ Id. So we only need to obtain the
factorization scheme for T0. The function J : L1(λ) → C(BL1(λ′)) is continuous,
since obviously the unit ball of L1(λ

′) is dense in its closure with respect to the
weak* topology, and then

‖J (f )‖ = sup
g∈BL1(λ

′)

〈∫
�

f d λ,
∫
�′
g d λ′

〉
≤ ‖f ‖L1(λ), f ∈ L1(λ).

The operator Ip is well defined and continuous, and then we can consider the
closure Ip(G) of Ip(G).

Let w be a function of Ip(G) and let ε > 0. Then there is a function f ∈ L
such that Ip(J (Id(f )))) = y and ‖y − w‖ < ε. It satisfies S(y) = T (f ) and

‖S(y)‖ ≤ π(D,p)

( ∫
BL1(λ

′)
|(f, φ)|p d η(φ)

) 1
p

= π(D,p)‖y‖Lp(BL1(λ
′),η),

as a consequence of Theorem 3.11. Thus, the same inequality holds for w and
then S is continuous. This proves the factorization for (D, p)-summing maps.

For the converse, it is enough to use the continuity of S in the same way that
has been used above. For every f ∈ L, T (f ) = S(Ip(J (Id(f ))))) = S((f, ·)),
and

‖T (f )‖ = ‖S((f, ·))‖ ≤ ‖S‖
( ∫

BL1(λ
′)
|(f, φ)|p d η(φ)

) 1
p

.

Therefore, T is (D, p)-summing. These arguments also show that the norm of
S equals π(D,p). �

Remark 3.14. Note that after the results of Section 2 and [4], we can always
find a dual pair of vector measures that defines the duality between L and L′,
via the representation that can be obtained for every Banach function space with

Bull Braz Math Soc, Vol. 35, N. 1, 2004



68 FÉLIX MARTÍNEZ-GIMÉNEZ and E. A. SÁNCHEZ PÉREZ

weak unit by mean of the countably additive vector measure λ : � → L defined
as λ(A) = χA. Thus, it can be easily shown that in this case Theorem 3.13 gives
the classical factorization theorem for p-summing operators. In this sense, we
have obtained a generalization of the Grothendieck-Pietsch Theorem for Banach
function spaces.
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