

Remarks on osculating linear spaces to projective varieties

E. Ballico*

Abstract. Let $X \subset \mathbf{P}^N$ be an integral *n*-dimensional variety and m(X, P, i) (resp. m(X, i)), $1 \le i \le N - n + 1$, the Hermite invariants of X measuring the osculating behaviour of X at P (resp. at its general point). Here we prove $m(X, x) + m(X, y) \le m(X, x + y)$ and $m(X, P, x) + m(X, y) \le m(X, P, x + y)$ for all integers x, y such that $x + y \le N - n + 1$, the case n = 1 being known (M. Homma, A. Garcia and E. Esteves).

Keywords: osculating spaces, order of contact.

Mathematical subject classification: 14N05.

1 Introduction

We work over an algebraically closed field **K**. Let $X \subset \mathbf{P}^N$ be an integral nondegenerate variety. Set $n := \dim(X)$. For any $Q \in X$ set m(X, Q, 0) = 0and m(X, Q, 1) = 1. Fix an integer i with $2 \le i \le N - n + 1$; if there is a linear space V with $\dim(V) = i - 1$, $Q \in V$ and such that $V \cap X$ contains a curve C with $Q \in C$, set $m(X, Q, i) = +\infty$; if there is no such linear space, let m(X, Q, i) be the supremum of the length of the connected component supported by Q of all schemes $X \cap V$, where V is a linear space with $\dim(V) = i - 1$ and $Q \in V$. For all integers i with $0 \le i \le N - n + 1$, let m(X, i) be the infimum of all m(X, Q, i) with $Q \in X$. Thus m(X, 0) = 0 and m(X, 1) = 1. If n = 1 the integers m(X, i), $0 \le i \le N$, are called the Hermite invariants of the curve X (see [6] or [3]). If char(\mathbf{K}) = 0 and dim(X) = 1 we have m(X, i) = ifor every i; for curves in positive characteristic, see [3], Remark 1.5. For the osculating behaviour of surfaces in characteristic zero, see [7]. We always make

Received 5 September 2001.

^{*}Partially supported by MIUR and GNSAGA of INdAM (Italy).

the convention that $+\infty + +\infty = +\infty$ and $a + +\infty = +\infty$ for all integers $a \ge 0$.

Remark 1. Let $X \subset \mathbf{P}^N$ be an integral *n*-dimensional non-degenerate variety and $Q \in X$. We have $m(X, x) \leq m(X, y)$ and $m(X, Q, x) \leq m(X, Q, y)$ if $x \leq y \leq N - n + 1$. If $m(X, x) \neq +\infty$ (resp. $m(X, Q, x) \neq +\infty$) and x < y, then m(X, x) < m(X, y) (resp. m(X, Q, x) < m(X, Q, y)). Fix an integer *i* with $2 \leq i \leq N - n + 1$ and assume that there is no linear space *V* with dim(*V*) = *i* - 1 and such that $V \cap X$ contains an irreducible curve *C* with $Q \in C$. Since the Grassmannian G(i, N + 1) of all (i - 1)-dimensional linear subspaces of \mathbf{P}^N is algebraic, the value of m(X, i) is computed by a maximum, not just a supremum, and in particular $m(X, i) < +\infty$.

Here are our results.

Theorem 1. Let $X \subset \mathbf{P}^N$ be an integral *n*-dimensional variety and *x*, *y* integers with $x \ge 0$, $y \ge 0$ and $x + y \le N - n + 1$. Then $m(X, x) + m(X, y) \le m(X, x + y)$.

Theorem 2. Let $X \subset \mathbf{P}^N$ be an integral *n*-dimensional variety, $P \in X$, and x, y integers with $x \ge 0$, $y \ge 0$ and $x + y \le N - n + 1$. Then $m(X, P, x) + m(X, y) \le m(X, P, x + y)$.

Theorem 3. Let $X \subset \mathbf{P}^N$ be an integral *n*-dimensional variety, $n \ge 2$, and *C* an integral curve contained in *X*. Fix $P \in C$ and a general $Q \in C$. Let x, y be integers with $x \ge 0$, $y \ge 0$ and $x + y \le N - n + 1$. Then $m(X, P, x) + m(X, Q, y) \le m(X, P, x + y)$.

In the case of curves Theorem 1 was proved using combinatorial techniques by M. Homma ([3], Th. 1). His proof was simplified by A. Garcia still using combinatorial techniques ([2]). E. Esteves gave a geometric proof of a more general inequality. In the same year M. Homma gave a very short proof of his original inequality and another proof of Esteves ' inequality ([4]).

Remark 2. Let $X \subset \mathbf{P}^{g-1}$ be the canonical model of a smooth curve of genus g. Assume that the Hermite invariants of X are not classical in the sense of [6]. Such curves do exists in positive characteristics ([8], [5] or [3]). Theorem 1 gives a relation for the Hermite sequence of any Weierstrass point of X.

2 The proofs

Proof of Theorem 1. It is sufficient to prove the case y > x. The result is obvious if x = 0 or $m(X, x) = +\infty$. The second part of Remark 1 gives that either $m(X, y) = +\infty$ or m(X, y) < m(X, y+1), proving the case x = 1. Hence we may assume $x \ge 2$. Fix a general pair $(P, Q) \in X \times X$ and linear subspaces V and W with dim(V) = x - 1, $P \in V$, $X \cap V$ containing a zero-dimensional scheme A(P) of length m(X, x) with $A(P)_{red} = \{P\}, \dim(W) = y - 1, Q \in W$ and $X \cap W$ containing a zero-dimensional scheme Z(Q) of length m(X, y) with $Z(Q)_{red} = \{Q\}$ (use the last part of Remark 1). The linear span $\langle V \cup W \rangle$ of $V \cup W$ has dimension at most x + y - 1. We choose a linear space M with dim(M) = x + y - 1 and $V \cup W \subseteq M$. There is a flat family of pairs $\{Q_t, W_t\}_{t \in T}$ such that T is an integral curve, $o \in T$, $Q_o = Q$, $W_o = W$, for every $t \in T$, $Q_t \in X$, W_t is a linear subspace of \mathbf{P}^N with dim $(W_t) = y - 1$, $W_t \cap X$ contains a zero-dimensional scheme $Z(Q_t)$ such that $Z(Q_t)_{red} = \{Q_t\}$ and length($Z(Q_t)$) $\geq m(X, y), Z(Q_o) = Z(Q)$, and there is $a \in T$ with $Q_a = P$. Indeed, since $m(X, Q, y) \neq +\infty$, we may find such a flat family with $m(X, Q_t, y) = m(X, y)$ and length $(Z(Q_t)) = m(X, y)$ for general $t \in T$. By the properness of the Grassmannian G(x + y, N + 1) of all (x + y - 1)dimensional linear subspaces of \mathbf{P}^N , we may construct (taking if necessay a finite covering of T) a flat family $\{M_t\}_{t \in T}$ of (x + y - 1)-dimensional linear subspaces of \mathbf{P}^N with $M_o = M$ and $W_t \cup V \subseteq M_t$ for every t. In particular $P \in M_a$. By the properness of the Hilbert scheme Hilb(X) of X, the scheme $M_a \cap X$ contains a zero-dimensional subscheme of length m(X, x) + m(X, y) with P as support; here we use $Q_t \neq Q_a$ for general $t \in T$ and hence $Z(Q_t) \cap A(P) = \emptyset$ and $length(Z(Q_t) \cup A(P)) = length(Z(Q_t)) + length(A(P))$ for general $t \in T$. Thus $m(X, P, x + y) \ge m(X, x) + m(X, y)$. Since P is general, we have m(X, x + y) = m(X, P, x + y), concluding the proof.

Proofs of Theorems 2 and 3. Just copy verbatim the proof of Theorem 1 with *P* fixed and not general. For the proof of Theorem 3 take a flat family $\{Q_t, W_t\}_{t \in T}$ with $Q_t \in C$ for every *t*.

References

- [1] Esteves, E.: A geometric proof of an inequality of order sequences, Comm. Algebra **21** (1) (1993), 231–238.
- [2] Garcia, A.: Some arithmetic properties of order-sequences of algebraic curves, J. Pure Applied Algebra **85** (1993), 259–269.

- [3] Homma, M.: Linear systems on curves with no Weierstrass points, Bol. Soc. Brasil Mat. (N.S.) 23 (1992), 93–108.
- [4] Homma, M.: On Esteves' inequality of order sequences of curves, Comm. Algebra 21 (1) (1993), 3685–3689.
- [5] Laksov, D.: Weierstrass points on curves, in: Tableaux de Young et foncteurs de Schur en algebre et géometrie, Astérisque **87/88** (1981), 221–247.
- [6] Laksov, D.: Wronskians and Plücker formulas for linear systems on curves, Ann. Scient. Éc. Norm. Sup. **17** (1984), 565–579.
- [7] Piene, R. and Tai, H.: A characterization of balanced rational normal scrolls in terms of their osculating spaces, in: Enumerative Geometry, Proc. Sitges 1987, pp. 215–224, Lect. Notes in Math. 1436, Springer, 1990.
- [8] Schimdt, F. K.: Die Wronskisch Determinante in belebigen differenzierbaren Funktionenkörper, Math. Z. **45** (1939), 62–74.

E. Ballico

Department of Mathematics University of Trento 38050 Povo (TN) ITALY

E-mail: ballico@science.unitn.it