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Determination of the top Baum-Bott number
via classical intersection theory

Marcio G. Soares

Abstract. We determine geometrically the number
∫

Vm cm(TVm − i∗TF ), associated
to a smooth m-dimensional projective variety Vm, invariant by a one-dimensional holo-
morphic foliation F of Pn

C
, using polar divisors associated to the foliation and Bézout’s

theorem.
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1 Introduction

Baum-Bott’s theorem is a deep generalization, in the complex realm, of both
Poincaré-Hopf and Gauss-Bonnet theorems. It relates the evaluation of Chern
classes (curvatures) to a sum of residues (indices) of a holomorphic foliation
along a singular locus.

The aim of this work is to determine the characteristic number
∫

Vm cm(TVm −
i∗TF), associated to a holomorphic one-dimensional foliation F of Pn

C
and to

a smooth algebraic m-dimensional variety i : Vm ↪→ Pn
C

invariant by the fo-
liation, where TVm and TF are the tangent bundles of the variety and of the
foliation, respectively, i∗TF is the pull-back, via the imbedding i, of TF to Vm

and cm(TVm − i∗TF) is the top Chern class of the virtual bundle TVm − i∗TF ,
which coincides with the class cm(TVm ⊗ i∗T∗

F) since TF has rank one. Assum-
ing the singularities of F along the variety Vm, sing(F) ∩ Vm, to be a finite set
of points, this gives a positive integer which we refer to as the top Baum-Bott
number of F relative to Vm. It measures the number of singularities, counting
multiplicities, of the foliation along the invariant variety, or the degree of the
algebraic 0-cycle S = sing(F) ∩ Vm.
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This determination is not new since theorem I of [6] exhibits this number
through usual properties of Chern classes. In this paper we recover this result
by using Bézout’s theorem in projective spaces, hence providing an effective
and geometrical computation. The motivation for the approach we give here
comes from the fact that theorem I of [6] displays this number as a polynomial
on the degree of the foliation, whose coefficients are alternating sums of the polar
classes of the invariant variety. It is then natural to relate the extrinsic geometry
of a variety, invariant by a foliation, to some geometrical object associated to
the foliation. This object is what we call the polar (or tangency) divisor of the
foliation with respect to a pencil of hyperplanes. Our result states that, given
a holomorphic one-dimensional foliation F of Pn

C
and a smooth irreducible F-

invariant variety i : Vm ↪→ Pn
C

then, by choosing conveniently m polar divisors
ofF , sayD1,D2, . . . ,Dm, the number

∫
Vm cm(TVm −i∗TF) can be obtained by

intersecting the Di’s with Vm and by taking suitable hyperplane sections. The
main result is given in section 6.

2 The top Baum-Bott number, Grothendieck residues and counting de-
grees

We start by recalling the particular case of Baum-Bott’s theorem which is of
interest to us. Let W be a compact complex manifold of dimension m and F
be a one-dimensional holomorphic foliation on W . Assume the singular set
sing(F) ⊂ W is a finite set of points. Such a foliation is given by a bundle map

� : L−1 −→ TW
where L is a holomorphic line bundle on W and sing(F) is the analytic sub-
variety sing(F) = {p : �(p) = 0}. L−1 is called the tangent bundle of the
foliation and L is then the cotangent bundle of F . These are denoted by TF and
T∗
F , respectively. Consider the Chern classes of the virtual bundle TW − TF ,

ck(TW − TF) = ck(W ) + ck−1(W )c1(T
∗
F) + · · · + (c1(T

∗
F))

k
, 1 ≤ k ≤ m

and let
cα(TW − TF) = c

α1
1 (TW − TF) . . . cαm

m (TW − TF)

where
α = (α1, . . . , αm) α1 + 2α2 + · · · + mαm = m.

By top Baum-Bott number we mean the integer∫
W

cm(TW − TF)
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DETERMINATION OF THE TOP BAUM-BOTT NUMBER 129

obtained by taking α = (0, 0, . . . , 0, 1) and where integration is over the funda-
mental class of W .

We now specialize to projective spaces. Let F be a one-dimensional holo-
morphic foliation on Pn

C
. Since line bundles on Pn

C
are classified by their Chern

classes, such a F is given by a bundle map

� : O⊗ (1−d) −→ TP
n
C

where O is the hyperplane bundle on Pn
C
, d ∈ Z and d ≥ 0. This integer d is

called the degree of the foliation and we assume throughout that d ≥ 2. Also,
O⊗ (1−d) = TF , the tangent bundle of the foliation and we will write Fd for
a foliation F of degree d of Pn

C
. In general, the singular set sing(Fd) of Fd

is an analytic set of codimension at least 2. Clearly, Fd is given locally by a
polynomial vector field.

Now, let i : Vm ↪→ Pn
C

be a smooth projective variety of dimension m and
assume Vm is Fd-invariant. Moreover, suppose S = sing(Fd) ∩ Vm is a finite
set. Our aim is to determine ∫

Vm

cm(TVm − i∗TFd ).

In order to evaluate this number we recall the point residues introduced by
Grothendieck. Let f1, . . . , fm be germs of holomorphic functions at 0 ∈ Cm

whose divisors intersect properly, that is, set theoretically f −1(0) = {0}, where
f = (f1, . . . , fm). Consider a germ of holomorphic m-form ω at 0 ∈ Cm and let
� be the real (homological) m-cycle defined by � = {z : |fi(z)| = εi}, 0 < εi

sufficiently small, i = 1, . . . , m. Give � the orientation prescribed by declar-
ing positive the m-form d(argf1) ∧ · · · ∧ d(argfm). The Grothendieck residue
symbol at 0 is defined by

Res0

[
ω

f1 · · · fm

]
=
(

1

2π
√−1

)m ∫
�

ω

f1 · · · fm

.

Let p ∈ S and choose local coordinates around p such that, locally, Vm is given
by zm+1 = · · · = zn = 0. Assume p is sent to 0 ∈ Cm by this local coordinate
chart. The vector field defining Fd around p is sent, say, to the vector field

Y =
n∑

i=1

Yi

∂

∂zi

=
m∑

i=1

Yi

∂

∂zi

+
n∑

i=m+1

Yi

∂

∂zi

,
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130 MARCIO G. SOARES

with Y (0) = 0 and Y∗ = ∑m
i=1 Yi

∂
∂zi

being the tangential component to Vm of
Y . Let (z1, . . . , zm, 0, . . . , 0) = (z∗, 0) and

JY∗(z∗, 0) =
(

∂Yj

∂zi

)
(z∗, 0)

be the Jacobian matrix of Y∗ along Vm and define Resp(i∗Fd, cm) by

Resp(i∗Fd, cm) = Res0

[
det(JY∗(z∗, 0)) dz1 ∧ · · · ∧ dzm

Y1(z∗, 0) · · · Ym(z∗, 0)

]
.

A particular case of Baum-Bott’s theorem (see [1]or [7]) asserts that

Theorem. ∫
Vm

cm(TVm − i∗TFd ) =
∑
p∈S

Resp(i∗Fd, cm). �

Lemma 1.
∫

Vm cm(TVm − i∗TFd ) = ∑
p∈S

(Vm · sing(Fd))p, the sum of the

intersection multiplicities of Vm with sing(Fd).

Proof. It is shown in ([3]-chapter 5) or [8] that

Res0

[
df1 ∧ · · · ∧ dfm

f1 · · · fm

]
= dimCOm/〈f1 · · · fm〉

and hence the residue gives the intersection multiplicity (D1 · · · Dm)0 at 0 ∈ Cm

of the divisors Di defined by fi .
Now,

Res0

[
det(JY∗(z∗, 0)) dz1 ∧ · · · ∧ dzm

Y1(z∗, 0) · · · Ym(z∗, 0)

]
= Res0

[
dY1(z∗, 0) ∧ · · · ∧ dYm(z∗, 0)

Y1(z∗, 0) · · · Ym(z∗, 0)

]
and since Vm is smooth, we conclude that Resp(i∗Fd, cm) = (Vm · sing(Fd))p.
The lemma follows from Baum-Bott’s theorem. �

We shall refer to the number
∑

p∈S (Vm · sing(Fd))p as the degree of the
algebraic zero-cycle S and denote it by N (i∗Fd, Vm). It measures the number
of singularities of the foliation along Vm, counting multiplicities.
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DETERMINATION OF THE TOP BAUM-BOTT NUMBER 131

3 The polar divisor of a foliation

We recall the notion of a polar (or tangency) divisor of a foliation with respect
to a pencil of hyperplanes (to my knowledge this idea is already present in the
works of Painlevé, [5]). Let Fd be a one-dimensional holomorphic foliation on
Pn

C
of degree d ≥ 2, with singular set of codimension at least 2. We associate a

polar divisor to Fd as follows:
Choose affine coordinates (z1, . . . , zn) such that the hyperplane at infinity, with

respect to these, is notFd-invariant. In these coordinatesFd is given by a vector
field of the form X = gR+∑n

i=1 Yi
∂

∂zi
(this is nothing but the local expression of

a bundle map � : O⊗ (1−d) → TPn
C
), where R = ∑n

i=1 zi
∂

∂zi
, g(z1, . . . , zn) 
≡ 0

is homogeneous of degree d and Yi(z1, . . . , zn) is a polynomial of degree ≤ d,
1 ≤ i ≤ n. Let H be a hyperplane in Pn

C
which is not invariant by Fd . Then,

the set of points in H which are either singular points of Fd or at which the
leaves of Fd are not transverse to H is an algebraic set, denoted by T (H,F),
of dimension n − 2 and degree d (observe that g(z1, . . . , zn) = 0 is precisely
T (H∞,F)).

Definition. Consider a pencil of hyperplanes H = {Ht}t∈P
1
C

with axis Ln−2.

The polar (or tangency) divisor of Fd with respect to H is

DH =
⋃

t∈P
1
C

T (Ht ,Fd).

Observe thatDH is the tangency variety between two foliations of Pn
C
; the first

one is the codimension one foliation H , which is singular along the axis Ln−2,
and the other is the one-dimensional foliation Fd .

Lemma 2. DH is either Pn
C

or a (possibly singular) hypersurface of degree
d + 1. Moreover, the set of axes Ln−2, of pencils H for which DH is a hyper-
surface, is Zariski open in the Grassmanian Gr(n − 2; n).

Proof. If there is a hyperplane belonging to the pencil H which is not Fd-
invariant, set it to be the hyperplane at infinity. Then choose coordinates in Pn

C

such that the pencil H is given, in affine coordinates, by zn = c, c ∈ C. The
vector field inducing Fd has an expression of the form

X =
n∑

i=1

[
zig(z1, . . . , zn) + Yi(z1, . . . , zn)

]
∂

∂zi
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where g 
≡ 0. Then DH is given by Fn(z0, . . . , zn) = 0, the homogenization
of the last component of X, zng(z1, . . . , zn) + Yn(z1, . . . , zn), and hence is a
hypersurface of degree d +1. Another way of showing that it has degree d +1 is
the following: let p be a point in Ln−2, the axis of the pencil. If p ∈ sing(F) then
p is necessarily inDH , otherwise p is a regular point ofFd . In this case, if L is
the leaf of Fd through p, then either TpL ⊂ Ln−2 or TpL, together with Ln−2,
determine a hyperplane Hα ∈ H , and hence we have p ∈ T (Hα,Fd) ⊂ DH ,
so that Ln−2 ⊂ DH . Now, let p ∈ Ln−2 be a regular point of Fd and choose a
generic line 
, transverse to Ln−2, passing through p and such that Ln−2 and 


determine a hyperplane Hβ , distinct from Hα. This line 
 meetsDH at p and at
d further points, counting multiplicities, corresponding to the intersections of 


with T (Hβ,Fd). Hence DH has degree d + 1. If all hyperplanes in the pencil
H are Fd-invariant, then T (Ht ,Fd) = Ht for all t ∈ P1

C
, so that DH = Pn

C
.

Observe that in this case the singular set of the foliation contains the axis Ln−2

of the pencil as a component. Now, choose a hyperplane H in the pencil H to
be the hyperplane at infinity and choose coordinates such that the pencil is given,
in the affine space Pn

C
\ H , by zn = c, c ∈ C. The foliation is then represented

by a vector field of the form

X =
n∑

i=1

Yi(z1, . . . , zn)
∂

∂zi

where Yn ≡ 0. By slightly moving the axis Ln−2 we obtain a pencil whose
hyperplanes are transverse to the hyperplanes zn = c and, in this new pencil,
there is a hyperplane which is not Fd-invariant. Then apply the reasoning at the
begining of the proof of this lemma. �

Example 1. If we consider the two-dimensional Jouanolou’s example

X = (
yd − xd+1

) ∂

∂x
+ (

1 − yxd
) ∂

∂y

and the pencil H = {(at, bt) : t ∈ C , (a : b) ∈ P1
C
}, a straightforward

manipulation shows thatDH is given, in homogeneous coordinates (X : Y : Z)

in P2
C
, by the equation Y d+1 −XZd = 0. Now, considering the pencils of vertical

lines x = c and of horizontal lines y = c (both based along the line at infinity), we
obtain divisors whose equations are just the homogenization of the coordinates
of the vector field X namely, Y dZ − Xd+1 = 0 and Zd+1 − XdY = 0.
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Remark. If H is a hyperplane belonging to the pencil H , then H ∩DH =
Ln−2 ∪ T (H,Fd).

This is exemplified by H∞ ∩D{zi=c} = {zi = 0} ∪ {g(z1, . . . , zn) = 0}.

4 Polar varieties and classes

Let us follow Fulton ([2]-example 14.4.15) and recall polar varieties. Sup-
pose Vm i−→ Pn

C
is a smooth irreducible algebraic subvariety of Pn

C
and let

Ln−m+j−2 ⊂ Pn
C

be a linear subspace of dimension n − m + j − 2. Then,
the j-th polar locus of Vm is defined by

Pj (L
n−m+j−2) = {

q ∈ Vm| dim
(
TqVm ∩ Ln−m+j−2

) ≥ j − 1
}

for 0 ≤ j ≤ m.
Let us digress briefly on the meaning of polar loci. Recall that a finite set

W1, . . . , Wk, of pure dimensional subvarieties of Pn
C
, is said to be in general

position or to intersect properly provided

k∑
i=1

codim Wi = codim

(
k⋂

i=1

Wi

)
.

We have codim TqVm + codim Ln−m+j−2 = n − j + 2 and hence we would
expect to have dim(TqVm ∩ Ln−m+j−2) = j − 2. Polar loci are then defined by
demanding higher order contact between TqVm and Ln−m+j−2. A computation
shows that, if Ln−m+j−2 lies in a Zariski open subset of the Grassmanian Gr(n−
m + j − 2; n), then the codimension of Pj (L

n−m+j−2) in Vm is precisely j . On
the other hand, the subspaces Ln−m+j−2 which intersect Vm properly also lie in a
Zariski open set of this Grassmanian. We shall refer to the subspaces Ln−m+j−2

which intersect Vm properly and for which codim (Pj (L
n−m+j−2), Vm) = j

as generic with respect to Vm. The j-th class of Vm, �j (Vm), is the degree of
Pj (L

n−m+j−2) and, since the cycle associated to Pj (L
n−m+j−2) is

[
Pj (L

n−m+j−2)
] =

j∑
i=0

(−1)i

(
m − i + 1

j − i

)
ci(Vm) c1(i

∗O(1))
j−i

we have

�j (Vm) =
∫

Vm

j∑
i=0

(−1)i

(
m − i + 1

j − i

)
ci(Vm) c1(i

∗O(1))
m−i

, 0 ≤ j ≤ m.
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Lemma 3. Suppose Vm is a smooth, irreducible algebraic variety, Fd-
invariant and not contained in sing(F). Let H be a pencil with axis Ln−2

generic with respect to Vm and such that DH is a hypersurface. Then

Pm(Ln−2) ⊂ DH and P0(L
n−m−2) = Vm 
⊂ DH .

Proof. Let us first assume Vm is a linear subspace of Pn
C
. In this case Pj = ∅,

for j ≥ 1, so the first assertion of the lemma is meaningless. Assume then Vm is
not a linear subspace and choose a pencil of hyperplanes H = {Ht}t∈P

1
C

, with

axis Ln−2 generic with respect to Vm, so that codim(Pm(Ln−2), Vm) = m. If
q ∈ Pm(Ln−2), then TqVm meets Ln−2 in a subspace W of dimension at least
m − 1. If TqVm ⊂ Ln−2 then any hyperplane Ht ∈ H contains TqVm, if not, a
line 
 ⊂ TqVm, 
 
⊂ Ln−2, 
∩W consisting of a point determines, together with
Ln−2, a hyperplane Ht ∈ H such that TqVm ⊂ Ht . Since Vm is Fd-invariant,
we have TqL ⊂ TqVm ⊂ Ht , in case q is not a singular point of Fd , where
L is the leaf of Fd through q. This implies q ∈ T (Ht ,F) ⊂ DH , so that
Pm(Vm) ⊂ DH . It remains to show that Vm 
⊂ DH . Choose a hyperplane
in the pencil which does not contain Vm, call it the hyperplane at infinity and
change coordinates in Pn

C
so that the pencil is given, in affine coordinates, by

zn = c, c ∈ C. The foliation is represented, in these coordinates, by

X = X1
∂

∂z1
+ · · · + Xn

∂

∂zn

and DH is given by {z ∈ Cn : Xn = 0}, where, by hypothesis, Xn 
≡ 0. If

{z ∈ Cn : Xn = 0} ∩ Vm

contains an open subset of Vm, then Vm ⊂ DH . But then, both Vm and Ln−2 are
contained inDH , which is of dimension n−1. Hence, dim(Vm∩Ln−2) ≥ m−1,
which contradicts the fact that Ln−2 is generic with respect to Vm. It follows that
{z ∈ Cn : Xn = 0} ∩ Vm has codimension 1 in Vm, so Vm 
⊂ DH . �

5 Genericity assumptions

In the proof of the main result we shall make use of several genericity conditions
as well as appropriate choices of linear subspaces of Pn

C
. We comment on these

now.
Consider the following arrangement of linear subspaces of Pn

C
, all generic with

respect to Vm (see section 4), where superscripts denote dimensions and arrows
denote inclusions:

Bull Braz Math Soc, Vol. 35, N. 1, 2004
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L
n−m−1
1,...,m

↙ ↘
L

n−m

1,...,m−1,m̂

� L
n−m

1̂,2,...,m

↙ ↘ ↙ ↘
L

n−m+1
1,...,m̂−1,m̂

� L
n−m+1
1̂,2,...,m−1,m̂

� L
n−m+1
1̂,̂2,...,m−1,m

...
...

...
...

...

...
...

...
...

L
n−2
1

� L
n−2
2 · · · · · · · · · · · · · · · · · · L

n−2
m−1

� L
n−2
m

↘ ↙ ↘ ↙
L

n−1
1,2 · · · · · · · · · · · · · · · · · · L

n−1
m−1,m

This diagram has the form of a Pascal’s triangle and is obtained as follows:
the (n − 2)-spaces Ln−2

i and Ln−2
i+1 generate the hyperplane Ln−1

i,i+1 and cut each
other along the (n − 3)-space Ln−3

i,i+1, i = 1, . . . , m − 1, so the three rows at the
bottom of the diagram are:

Ln−3
1,2 · · · · · · · · · · · · · · · · · · Ln−3

m−1,m

↙ ↘ ↙ ↘
Ln−2

1

� Ln−2
2 · · · · · · · · · · · · · · · · · · Ln−2

m−1

� Ln−2
m

↘ ↙ ↘ ↙
Ln−1

1,2 · · · · · · · · · · · · · · · · · · Ln−1
m−1,m

The fourth row, from bottom to top, is obtained as follows: the (n − 3)-
spaces Ln−3

i,i+1 and Ln−3
i+1,i+2 cut each other along the (n − 4)-space Ln−4

i,i+1,i+2,
i = 1, . . . , m − 2, so we have

Ln−4
1,2,3 · · · Ln−4

m−2,m−1,m

↙ ↘ ↙ ↘
Ln−3

1,2

� · · ·
� Ln−3

m−1,m

↙ ↘ ↙ ↘
Ln−2

1

� Ln−2
2 · · · Ln−2

m−1

� Ln−2
m .

Continuing this way we obtain the diagram. The right edge of the diagram

Ln−m−1
1,...,m → Ln−m

1̂,2,...,m
→ Ln−m+1

1̂,̂2,...,m−1,m
→ · · · → Ln−4

m−2,m−1,m → Ln−3
m−1,m → Ln−2

m
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will be the reference subspaces for the following polar varieties of Vm:

P1(L
n−m−1
1,...,m ) ⊃ P2(L

n−m

1̂,2,...,m
) ⊃ P3(L

n−m+1
1̂,̂2,...,m−1,m

) ⊃
· · · ⊃ Pm−1(L

n−3
m−1,m) ⊃ Pm(Ln−2

m ).

We assume Vm is Fd-invariant, that S = sing(Fd) ∩ Vm is a finite set and let
Di be the polar divisor ofFd associated to the pencilHi , with axis Ln−2

i generic
with respect to Vm, i = 1, 2, . . . , m. We assume throughout that dimDi = n−1
(recall lemma 2). The first genericity condition is:

(GC1). D1, . . . ,Dm and Vm intersect properly, that is,

m∑
i=1

codimDi + codim Vm = codim

[(
m⋂

i=1

Di

)
∩ Vm

]

and Dj+1, . . . ,Dm,Pj (L
n−m+j−2

1̂,...,̂j−1,j,...,m
), j = 0, . . . , m − 1, also intersect prop-

erly.

Define the 0-cycles A0, A1, . . . , Am−1, Am as follows: let

Aj = Dj+1 ∩ · · · ∩Dm ∩ Pj (L
n−m+j−2

1̂,...,̂j−1,j,...,m
), j = 0, . . . , m − 1

A
j

i,i+1 = Dj+1∩· · ·∩D̂i∩D̂i+1∩· · ·Dm∩Pj (L
n−m+j−2

1̂,...,̂j−1,j,...,m
), j = 0, . . . , m−1

and set

Aj = Aj \
m−1⋃

i=j+1

A
j

i,i+1, j = 0, . . . , m − 1, Am = Pm(Ln−2
m ).

The other genericity conditions are:

(GC2). S ∩ Ln−1
i,i+1 = ∅, for i = 1, . . . , m − 1.

(GC3j ). Dj+1 ∩ · · · ∩ D̂i ∩ D̂i+1 ∩ · · ·Dm ∩Pj (L
n−m+j−2

1̂,...,̂j−1,j,...,m
) ∩ Ln−3

i,i+1 = ∅,

for j = 0, . . . , m − 1.

(GC4). S ∩ P1(L
n−m−1
1,...,m ) = ∅.

(GC5j ). Aj ∩ (∪j

i=1L
n−1
i,i+1) = ∅, for j = 1, . . . , m − 1.

(GC5m). Am ∩Dm−1 = ∅.

(GC6j ). Aj ∩ Ln−2
i,i+1 = ∅ for i ≥ j + 1 and j = 0, . . . , m − 1.
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We now comment on these conditions. They can all be realized by transver-
sality arguments. The following results can be found in [4]: let P̌n be the dual of
Pn

C
, that is, the set of hyperplanes of Pn

C
. All hyperplanes of Pn

C
which are tangent

to Vm form a closed irreducible subvariety V̌ ⊂ P̌n of dimension at most n − 1.
V̌ is the dual variety of Vm and is, in general, a singular variety. The hyperplanes
of Pn

C
which are in general position with Vm form the Zariski-open set P̌n \ V̌.

Let ζ ∈ P̌n \ V̌ (so the corresponding hyperplane of Pn
C

intersects Vm properly).
All projective lines in P̌n through ζ form an n − 1 dimensional projective space
E. If dim V̌ ≤ n−2, then the lines in E which do not meet V̌ form a non-empty
open subset of E, whereas in case dim V̌ = n − 1, the lines in E which avoid
the singular set of V̌ and intersect V̌ transversally form a non-empty open subset
of E. It follows from this that if P1 ⊂ P̌n is a projective line which intersects V̌
properly and avoids its singular set, then P1 defines a unique pencil H

P
1 in Pn

C
,

whose axis Ln−2 is in general position with Vm.
This is the procedure to obtain the axes Ln−2

i : start by choosing a P1
m that

cuts V̌ properly, avoids its singular set and then choose a point Ȟm ∈ P1
m \ V̌.

To Ȟm corresponds the hyperplane Ln−1
m−1,m and Ln−2

m is then transverse to Vm.

Also, choose Ȟm such that Ln−1
m−1,m does not intersect S. Now choose a P1

m−1

cutting P1
m precisely at Ȟm, transverse to V̌ and avoiding its singular set. To

P1
m−1 corresponds a unique Lefschetz pencil whose axis Ln−2

m−1 is transverse to
Vm and is contained in Ln−1

m−1,m. Clearly

Ln−2
m−1 ∩ Ln−2

m = Ln−3
m−1,m

and by moving Ȟm, if necessary, along P1
m we can assume that

Pm(Ln−2
m ) ∩Dm−1 = ∅

and also, by invoking Bertini-Sard, that Dm−1, Dm and Vm intersect properly.
Continuing this way we obtain the assumed genericity conditions. Examples 2
and 3 in the next section illustrate these conditions.

6 Geometric calculation of the top Baum-Bott number

In this section we present the main result. We assume throughout that we are given
a holomorphic foliationFd on Pn

C
, of degree d ≥ 2, and a smooth irreducibleFd-

invariant variety i : Vm ↪→ Pn
C
. In order to clarify the arguments we will use, we

give initially two examples, relative to dimensions one and two, respectively. The
one-dimensional case is very simple and we present it for the sake of completness,
but the main complications appearing in the case of arbitrary dimension are
already present in the two dimensional case.
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Example 2. Let i : V1 ↪→ Pn
C
, n ≥ 2, be a smooth irreducible Fd-invariant

curve, which is not contained in sing(Fd). Then∫
V1

c1(TV1 − i∗TFd ) = DH · V1 − �1(V1) = �0(V1)(d + 1) − �1(V1),

where DH is the polar divisor of Fd relative to a generic pencil H in Pn
C
. To

see this write S = sing(Fd) ∩ V1 and note that S is necessarily finite. Recall
that, by section 2, that

∫
V1 c1(TV1 − i∗TFd ) = N (i∗Fd, V1). Consider the

finite collection of lines {TxV1 | x ∈ S} and choose a linear subspace Ln−2

such that Ln−2 ∩ TxV1 = ∅ for all x ∈ S (this is always possible since we
are just requiring Ln−2 and TxV1 to be in general position). This tells us that
S ∩ P1(L

n−2) = ∅. If DH is the polar divisor of Fd relative to the pencil
H with axis Ln−2 then, by lemma 3, we have S ∪ P1(L

n−2) ⊆ DH ∩ V1.
On the other hand, let x ∈ (DH ∩ V1) \ S. Then TxV1 = TxL, the tangent
space to the leaf of Fd through x, is either contained in Ln−2 or cuts Ln−2 at
a point, since both lie in a hyperplane of H . Hence, x ∈ P1(L

n−2) so that
DH ∩ V1 = S ∪ P1(L

n−2). Taking degrees on both sides we get, by Bézout’s
theorem, DH · V1 = N (i∗Fd, V1) + degP1(L

n−2).

Example 3. Let i : V2 ↪→ Pn
C
, n ≥ 3, be a smooth irreducible Fd-invariant

surface with S = sing(Fd) ∩ V2 a finite set. Then∫
V2

c2(TV2 − i∗TFd ) = D1 ·D2 · V2 − T (Ln−1
1,2 ,Fd) · V2 −D2 · P1(L

n−3) + �2

= �0(d
2 + d + 1) − �1(d + 1) + �2.

where D1, D2 are polar divisors of Fd relative to pencils H1, H2 and Ln−3 ⊂
Ln−1

1,2 .
To show this let us consider the following arrangement of linear subspaces,

where superscripts denote dimensions and arrows denote inclusions:

Ln−3

↙ ↘
Ln−2

1

� Ln−2
2

↘ ↙
Ln−1

1,2
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The (n − 2)-planes Ln−2
1 , Ln−2

2 are the axes of the pencilsH1,H2, respectively,
D1 and D2 are polar divisors of Fd associated to these pencils and Ln−2

1 , Ln−2
2

are chosen in such a way that the following genericity conditions hold (we shall
comment on these conditions in the proof of the main theorem bellow):

(GC1) D1,D2 and V2 intersect properly.

(GC2) S ∩ Ln−1
1,2 = ∅.

(GC3) Ln−3 = Ln−2
1 ∩ Ln−2

2 is such that V2 ∩ Ln−3 = ∅.

(GC4) S ∩ P1(L
n−3) = ∅.

(GC5) T (Ln−1
1,2 ,Fd) ∩ P1(L

n−3) = ∅.

(GC6) D1 ∩ P2(L
n−2
2 ) = ∅.

Let A0 = D1 ∩D2 ∩ V2 and A0
1,2 = A0 ∩ Ln−1

1,2 = D1 ∩D2 ∩ V2 ∩ Ln−1
1,2 . By

(GC1), A0 is a 0-cycle and by the remark in section 3 we have

A0
1,2 = V2 ∩ (T (Ln−1

1,2 ,Fd) ∪ Ln−3)

but, by (GC3), this reduces to A0
1,2 = V2 ∩ T (Ln−1

1,2 ,Fd). Now, set A0 =
A0 \ A0

1,2 and invoke (GC2) to conclude S ⊂ A0. Let A1 = D2 ∩P1(L
n−3) and

A2 = P2(L
n−2
2 ). By (GC4), S ∩ A1 = ∅ and, by (GC6), A2 ∩ (A0 \ S) = ∅. We

claim that
(A0 \ S) = (A1 \ A2).

In fact, let x ∈ (A0 \ S). Then, the tangent space to the leaf of Fd passing
through x satisfies: TxL ⊂ H1 ∩ H2, where Hi is a hyperplane belonging to the
pencil Hi , and TxL ⊂ TxV2. Observe that Ln−3 ⊂ H1 ∩ H2. If TxL ⊂ Ln−3

then x ∈ Ln−3 and we obtain x ∈ Ln−2
i , for i = 1, 2, which says that x ∈ A0

1,2,
a impossibility since x ∈ A0. So we have TxL 
⊂ Ln−3 and TxL cuts each axis
Ln−2

i at exactly one point, TxL∩Ln−2
i = {pi}. Suppose p1 
= p2. Then, because

Ln−2
1 ∩ Ln−2

2 = Ln−3, TxL and Ln−2
1 generate a hyperplane which coincides

with the hyperplane generated by TxL and Ln−2
2 . But this hyperplane is then

Ln−1
1,2 and we get TxL ⊂ Ln−1

1,2 , which means x ∈ Ln−1
1,2 , a contradiction. Hence

p1 = p2 = p say, and p ∈ Ln−3 = Ln−2
1 ∩ Ln−2

2 , so that p = TxL ∩ Ln−3 and
dim(TxV2 ∩ Ln−3) ≥ 0. This gives x ∈ P1(L

n−3) and therefore x ∈ A1. This
shows (A0 \ S) ⊆ (A1 \ A2). Suppose now we are given x ∈ (A1 \ A2). By
hypothesis, dim(TxV2 ∩Ln−3) ≥ 0, x ∈ D2 and x is a regular point ofFd . Since
TxL ⊂ H2 ∈ H2 it cuts Ln−2

2 . If TxL ⊂ Ln−2
2 , then x ∈ Ln−1

1,2 which is absurd
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since x ∈ A1. Hence TxL ∩ Ln−2
2 = {p}, a single point. Assume p 
∈ Ln−3.

Then, because dim(TxV2 ∩ Ln−3) ≥ 0 we can choose a point q ∈ TxV2 ∩ Ln−3.
Consider the line pq, passing through p and q. It is contained in both TxV2 and
Ln−2

2 so that dim(TxV2 ∩Ln−2
2 ) ≥ 1 and we conclude x ∈ A2, an absurd. Hence

p ∈ Ln−3 and therefore TxL∩Ln−2
1 
= ∅. If TxL ⊂ Ln−2

1 then x ∈ Ln−1
1,2 and this

is forbidden by (GC5). The conclusion is that TxL ∩ Ln−2
1 reduces to the point

p, so that TxL and Ln−2
1 generate a hyperplane H1 ∈ H1 and hence x ∈ D1.

This shows x ∈ (A0 \ S). From the equality (A0 \ S) = (A1 \ A2) we conclude,
by counting degrees on both sides

deg(A0) −N (i∗Fd, V2) = deg(A1) − deg(A2)

which is the same as

D1 ·D2 · V2 − T (Ln−1
1,2 ,Fd) · V2 −N (i∗Fd, V2) = D2 · P1(L

n−3) − �2.

We now state the main result. Recall the zero-cycles Aj defined in section 5.

Theorem. Let Vm i−→ Pn
C
, n ≥ m + 1, be a smooth irreducible algebraic

variety which is invariant by a holomorphic one-dimensional foliation Fd , of
degree d ≥ 2. Assume S = sing(Fd) ∩ Vm is zero dimensional and let

N (i∗Fd, Vm) =
∫

Vm

cm(TVm − i∗TFd ).

Then, for a proper choice of the subspaces in the diagram of section 5,

N (i∗Fd, Vm) =
m∑

j=0

(−1)j deg(Aj ).

Moreover, deg(Aj ) = �j (Vm)(dj + dj−1 + · · · + d + 1) so that

N (i∗Fd, Vm) =
m∑

j=0

[ j∑
i=0

(−1)i�i(Vm)

]
dm−j .

Proof. The proof of the theorem will consist of two parts: in the first part we
characterize S and in the second one we use Bézout’s theorem to count degrees.
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Part I. Characterization of the 0-cycle S.

By (GC1) the varietiesD1, . . . ,Dm and Vm intersect properly. Let A0 be the zero
cycle A0 = D1∩D2∩· · ·∩Dm∩Vm. We have deg(A0) = D1 ·D2 · · ·Dm ·Vm =
�0(Vm) (d + 1)m.

We start by considering the hyperplane sections of A0 by Ln−1
i,i+1. So set, for

i = 1, . . . , m, A0
i,i+1 = A0 ∩ Ln−1

i,i+1 = ∩m
i=1Di ∩ Vm ∩ Ln−1

i,i+1. Each A0
i,i+1 is

again a 0-cycle and, by the remark in section 3

A0
i,i+1 = D1 ∩ · · · ∩ D̂i ∩ D̂i+1 ∩ · · ·Dm ∩ Vm ∩ (T (Ln−1

i,i+1,Fd) ∪ Ln−3
i,i+1

)
.

Impose the genericity conditions

(GC2). S ∩ Ln−1
i,i+1 = ∅, for i = 1, . . . , m − 1.

(GC30). D1 ∩· · ·∩D̂i ∩D̂i+1 ∩· · ·Dm∩Vm∩Ln−3
i,i+1 = ∅, for i = 1, . . . , m−1.

(GC30) implies that

A0
i,i+1 = D1 ∩ · · · ∩ D̂i ∩ D̂i+1 ∩ · · ·Dm ∩ Vm ∩ T (Ln−1

i,i+1,Fd)

We define A0 by

A0 = A0 \
m−1⋃
i=1

A0
i,i+1.

Observe that, by (GC2), S ⊂ A0. Next we consider the 0-cycle A1 = D2 ∩· · ·∩
Dm ∩ P1(L

n−m−1
1,...,m ). Impose the genericity condition

(GC4). S ∩ P1(L
n−m−1
1,...,m ) = ∅.

This tells us that A1 ∩ S = ∅. The next genericity condition is

(GC51). A1 ∩ Ln−1
1,2 = ∅.

Cutting A1 by Ln−1
i,i+1, i = 2, . . . , m − 1, give the 0-cycles

A1
i,i+1 = D2 ∩ · · · ∩ D̂i ∩ D̂i+1 ∩ · · ·Dm ∩P1(L

n−m−1
1,...,m ) ∩ (T (Ln−1

i,i+1,Fd) ∪ Ln−3
i,i+1).

Impose the genericity condition

(GC31). D2 ∩ · · · ∩ D̂i ∩ D̂i+1 ∩ · · ·Dm ∩ P1(L
n−m−1
1,...,m ) ∩ Ln−3

i,i+1 = ∅.

With this at hand we have

A1
i,i+1 = D2 ∩ · · · ∩ D̂i ∩ D̂i+1 ∩ · · ·Dm ∩ P1(L

n−m−1
1,...,m ) ∩ T (Ln−1

i,i+1,Fd).
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Define

A1 = A1 \
m−1⋃
i=2

A1
i,i+1.

The 0-cycles Aj , j = 2, . . . , m − 1, are successively defined by:

Let Aj = Dj+1 ∩ · · · ∩Dm ∩ Pj (L
n−m+j−2

1̂,...,̂j−1,j,...,m
) and

A
j

i,i+1 = Dj+1 ∩ · · · ∩ D̂i ∩ D̂i+1 ∩ · · ·Dm ∩ Pj (L
n−m+j−2

1̂,...,̂j−1,j,...,m
).

We impose throughout the genericity conditions

(GC3j ). Dj+1 ∩ · · · ∩ D̂i ∩ D̂i+1 ∩ · · ·Dm ∩ Pj (L
n−m+j−2

1̂,...,̂j−1,j,...,m
) ∩ Ln−3

i,i+1 = ∅
and

(GC5j ). Aj ∩ (∪j

i=1L
n−1
i,i+1) = ∅.

Observe that (GC3j ) tells us that

A
j
i,i+1 = Dj+1 ∩ · · · ∩ D̂i ∩ D̂i+1 ∩ · · ·Dm ∩ Pj (L

n−m+j−2

1̂,...,̂j−1,j,...,m
) ∩ T (Ln−1

i,i+1,Fd).

Set

Aj = Aj \
m−1⋃

i=j+1

A
j

i,i+1, j = 0, . . . , m − 1.

Finally, define
Am = Pm(Ln−2

m ).

Since

Pm(Ln−2
m ) ⊂ · · · ⊂ Pj (L

n−m+j−2

1̂,...,̂j−1,j,...,m
) ⊂ · · · ⊂ P1(L

n−m−1
1,...,m ),

by (GC4) we have S ∩ Aj = ∅ for j = 1, . . . , m. The genericity condition for
Am is

(GC5m). Am ∩Dm−1 = ∅.

To characterize S we need the following lemmas:

Lemma 4. (A0 \ S) ⊂ A1.
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Proof. Let x ∈ (A0 \ S). Then the tangent space to the leaf of Fd passing
through x satisfies TxL ⊂ H1 ∩ · · · ∩ Hm, where Hi is a hyperplane belonging
to the pencil Hi , and TxL ⊂ TxVm. Observe that Ln−m−1

1,...,m ⊂ H1 ∩ · · · ∩ Hm.
If TxL ⊂ Ln−m−1

1,...,m then x ∈ Ln−m−1
1,...,m and we obtain x ∈ Ln−2

i , for i = 1, . . . m,
which says that x ∈ A0

i,i+1, and this is not possible since x ∈ A0. So we
have TxL 
⊂ Ln−m−1

1,...,m and TxL cuts each axis Ln−2
i at exactly one point, TxL ∩

Ln−2
i = {pi}. Suppose ∃ i, j with pi 
= pj . We may assume i and j are

consecutive, say j = i + 1. Then, because Ln−2
i ∩ Ln−2

i+1 = Ln−3
i,i+1, TxL and Ln−2

i

generate a hyperplane which coincides with the hyperplane generated by TxL
and Ln−2

i+1 . But this hyperplane is then Ln−1
i,i+1 and we get TxL ⊂ Ln−1

i,i+1, which
means x ∈ Ln−1

i,i+1, a contradiction. We conclude p1 = p2 = · · · = pm = p say.
But then p ∈ Ln−m−1

1,...,m = ∩m
i=1L

n−2
i , so that {p} = TxL ∩ Ln−m−1

1,...,m and hence,
x ∈ P1(L

n−m−1
1,...,m ). This gives x ∈ A1. �

Lemma 5. (Aj \ Aj−1) ⊂ Aj+1.

Proof. Let x ∈ Aj . By (GC4) x is a regular point of Fd . If TxL is the tangent
space to the leaf of Fd through x, then TxL ⊂ Hj+1 ∩ · · · ∩ Hm, where Hi

belongs to the pencil Hi . TxL cuts each Ln−2
i , for i = j + 1, . . . , m. In case

TxL ⊂ Ln−2
i for some such i, we conclude x ∈ A

j

i,i+1, an absurd since x ∈ Aj .
Therefore TxL∩ Ln−2

i = {pi}, i = j + 1, . . . , m. Assume j < m − 1. Suppose
∃ i, k with pi 
= pk. We may assume i and k are consecutive, say k = i + 1.
Then, because Ln−2

i ∩Ln−2
i+1 = Ln−3

i,i+1, TxL and Ln−2
i generate a hyperplane which

coincides with the hyperplane generated by TxL and Ln−2
i+1 . But this hyperplane

is then Ln−1
i,i+1 and we get TxL ⊂ Ln−1

i,i+1, which is a contradiction since x ∈ Aj .
We conclude pj+1 = · · · = pm = p say. But then

TxL ∩ (∩m
i=j+1L

n−2
i ) = TxL ∩ L

n−m+j−1
1̂,...,ĵ ,j+1,...,m

= {p}.

Now, x ∈ Pj (L
n−m+j−2

1̂,...,̂j−1,j,...,m
) so that dim(TxVm ∩ L

n−m+j−2

1̂,...,̂j−1,j,...,m
) ≥ j − 1. If

p ∈ L
n−m+j−2

1̂,...,̂j−1,j,...,m
then TxL cuts Ln−2

j and thus we get: x ∈ Dj and

dim(TxVm ∩ L
n−m+j−3

1̂,...,̂j−2,j−1,...,m
) ≥ j − 2,

which means x ∈ Aj−1. By hypothesis this is not allowed. Hence,

p ∈ L
n−m+j−1
1̂,...,ĵ ,j+1,...,m

\ L
n−m+j−2

1̂,...,̂j−1,j,...,m
.
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Choose a point q ∈ TxVm ∩ L
n−m+j−2

1̂,...,̂j−1,j,...,m
. Then the line pq, passing through

p and q, is contained in both TxVm and L
n−m+j−1
1̂,...,ĵ ,j+1,...,m

. Therefore dim(TxVm ∩
L

n−m+j−1
1̂,...,ĵ ,j+1,...,m

) ≥ j , which furnishes x ∈ Pj+1(L
n−m+j−1
1̂,...,ĵ ,j+1,...,m

), so that x ∈
Aj+1. It remains to consider the case j = m − 1. Let x ∈ Am−1. Then
x ∈ Pm−1(L

n−3
m−1,m) so that dim(TxVm ∩ Ln−3

m−1,m) ≥ m − 2. Since TxL ⊂ Hm ∈
Hm, it cuts Ln−2

m . If TxL ⊂ Ln−2
m , then x ∈ Ln−1

m−1,m which is absurd since
x ∈ Am−1. Hence TxL ∩ Ln−2

m = {p}, a single point. Assume p ∈ Ln−3
m−1,m.

Then TxL ∩ Ln−2
m−1 
= ∅. If TxL ⊂ Ln−2

m−1 then x ∈ Ln−1
m−1,m and this is forbidden

by (GC5m−1). If TxL ∩ Ln−2
m−1 reduces to the point p, then x ∈ Dm−1 so that

x ∈ Am−2, which is not allowed by hypothesis. Therefore p ∈ Ln−2
m \ Ln−3

m−1,m.
Choose a point q ∈ TxVm ∩ Ln−3

m−1,m. Then the line pq, passing through p and
q, is contained in both TxVm and Ln−2

m . But this tells us that

dim(TxVm ∩ Ln−2
m ) ≥ m − 1

and we conclude x ∈ Pm(Ln−2
m ) = Am. �

Define B1 = A1 \(A0 \S), Bj = Aj \Bj−1, for 2 ≤ j ≤ m−1, and Bm = Am.

Lemma 6. Bm−1 = Bm.

Proof. Let x ∈ Bm = Am. We have x ∈ Am−1 and, by (GC5m), x 
∈ Aj ,
for j ≤ m − 2. Hence x ∈ Bm−1. On the other hand, by lemmas 3 and 4, if
x ∈ Bm−1, then x 
∈ Aj , for j ≤ m − 2. By lemma 5, x ∈ Am = Bm. �

This finishes the characterization of S.

Part II. Counting degrees.

Up to now we have obtained a set theoretical characterization of the singular set
of Fd along the invariant variety Vm, S = Vm ∩ sing(Fd), in terms of the sets
Aj and Bj . By the properties of Grothendieck residues stated in section 2, this
is in fact a characterization in terms of algebraic zero cycles. We now compute
their degrees, starting with the following:

Combinatorial Lemma. Let X be a variable. Then

Xm+1 − 1

X − 1
=

m
2∑

k=0

(−1)k

(
m − k

k

)
Xk(X + 1)m−2k
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if m is even and

Xm+1 − 1

X − 1
=

m−1
2∑

k=0

(−1)k

(
m − k

k

)
Xk(X + 1)m−2k

if m is odd.

Proof. Consider the sequence am = ∑
k≤m/2

(−1)k
(
m−k

k

)
ym−2k. The proof con-

sists in finding a closed form for the generating function F(x) = ∑
m≥0

am xm. We

have:

F(x) =
∑
m≥0

xm
∑

k≤m/2

(−1)k

(
m − k

k

)
ym−2k

which can be rewriten as

F(x) =
∑

k

(−1)k y−2k
∑
m≥2k

(
m − k

k

)
xmym.

But this is the same as

F(x) =
∑

k

(−1)k y−2kxkyk
∑
m≥2k

(
m − k

k

)
xm−kym−k

and so

F(x) =
∑

k

(−1)k xky−k
∑
r≥k

(
r

k

)
(xy)r .

Invoking the elementary identity
∑
r≥0

(
r

k

)
sr = sk

(1−s)k+1 we are left with

F(x) =
∑

k

(−1)k xky−k (xy)k

(1 − xy)k+1

and then

F(x) = 1

1 − xy

∑
k≥0

( −x2

1 − xy

)k

= 1

1 − xy

1

1 + x2

1−xy

= 1

1 − xy + x2
.

Set x± = y±
√

y2−4
2 . The last term in the equality above is precisely:

F(x) = 1

(1 − xx+)(1 − xx−)
.
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Expand in partial fractions to get

F(x) = x+
(x+ − x−)(1 − xx+)

− x−
(x+ − x−)(1 − xx−)

.

Expanding in powers of x and equating with the initial expression of F(x) we
conclude that

am = 1√
y2 − 4


(

y +√
y2 − 4

2

)m+1

−
(

y −√
y2 − 4

2

)m+1
 .

Replace y by x + (1/x). Then
√

y2 − 4 = x − (1/x) and since
∑
m≥0

am xm =
1

(1−xx+)(1−xx−)
we obtain

∑
k≤m/2

(−1)k

(
m − k

k

)
(x2 + 1)

m−2k
x2k = 1 − x2m+2

1 − x2
, m ≥ 0.

Finally, set X = x2 to get

∑
k≤m/2

(−1)k

(
m − k

k

)
(X + 1)m−2kXk = 1 − Xm+1

1 − X
, m ≥ 0

which is the content of the lemma. �
Let us calculate deg(A0). Since

A0
i,i+1 = D1 ∩ · · · ∩ D̂i ∩ D̂i+1 ∩ · · ·Dm ∩ Vm ∩ T (Ln−1

i,i+1,Fd)

we have deg(A0
i,i+1) = �0(Vm)d(d + 1)m−2. We now look at the 0-cycle

∪m−1
i=1 A0

i,i+1. Its degree is calculated through the combinatorial principle of ex-
clusion:

deg(∪A0
i,i+1) =

∑
deg(A0

i,i+1) −
∑

deg(A0
i,i+1 ∩ A0

j,j+1)+

+
∑

deg(A0
i,i+1 ∩ A0

j,j+1 ∩ A0
k,k+1) + · · · + (−1)m−1 deg(∩m−1

i=1 A0
i,i+1).

Consider A0
i,i+1 ∩ A0

i+1,i+2 = A0 ∩ Ln−1
i,i+1 ∩ Ln−1

i+1,i+2 = A0 ∩ Ln−2
i+1 . Since

codim(A0) + codim(Ln−2
i+1 ) = n + 2 we impose the genericity condition

(GC60). A0
i,i+1 ∩ A0

i+1,i+2 = ∅, for i = 1, . . . , m − 1.
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Hence, (GC60) tells us that, if m is even and we intersect more than m
2 such

cycles, then the intersection is void, whereas in case m is odd, the intersection
of more than m−1

2 of these cycles will be empty. Therefore, for m even

deg(∪m−1
i=1 A0

i,i+1) =
m−1∑
i=1

deg(A0
i,i+1) −

∑
i+1<j

deg(A0
i,i+1 ∩ A0

j,j+1) +

+
∑

i + 1 < j

j + 1 < k

deg(A0
i,i+1 ∩ A0

j,j+1 ∩ A0
k,k+1) + · · ·

· · · + (−1)
m
2

∑
i1 + 1 < i2

i2 + 1 < i3
...

i m
2 −1 + 1 < im

2

deg(A0
i1,i1+1 ∩ · · · ∩ A0

i m
2

,i m
2

+1)

and, for m odd

deg(∪m−1
i=1 A0

i,i+1) =
m−1∑
i=1

deg(A0
i,i+1) −

∑
i+1<j

deg(A0
i,i+1 ∩ A0

j,j+1) +

+
∑

i + 1 < j

j + 1 < k

deg(A0
i,i+1 ∩ A0

j,j+1 ∩ A0
k,k+1) + · · ·

· · · + (−1)
m−1

2

∑
i1 + 1 < i2

i2 + 1 < i3
...

i m−1
2 −1 + 1 < im−1

2

deg(A0
i1,i1+1 ∩ · · · ∩ A0

i m−1
2

,i m−1
2

+1).

To calculate these sums we consider intersections of two, three and successively
up to m

2 , for even m, (up to m−1
2 , for odd m) such cycles. Intersections of two of
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them, A0
i,i+1 ∩ A0

j,j+1 with i + 1 < j give

A0
i,i+1 ∩ A0

j,j+1 = D1 ∩D2 ∩ · · · ∩Dm ∩ Vm ∩ Ln−1
i,i+1 ∩ Ln−1

j,j+1 =
= D1 ∩ · · · ∩ D̂i ∩ D̂i+1 ∩ · · · ∩ D̂j ∩ D̂j+1 ∩ · · · ∩Dm ∩ Vm ∩

∩(T (Ln−1
i,i+1,Fd) ∪ Ln−3

i,i+1

) ∩ (T (Ln−1
j,j+1,Fd) ∪ Ln−3

j,j+1

)
.

Now, it follows from (GC30) that

A0
i,i+1 ∩ A0

j,j+1 = D1 ∩ · · · ∩ D̂i ∩ D̂i+1 ∩ · · · ∩ D̂j ∩ D̂j+1 ∩ · · · ∩Dm ∩
Vm ∩ ∩T (Ln−1

i,i+1,Fd) ∩ T (Ln−1
j,j+1,Fd)

so its degree is deg(A0
i,i+1 ∩A0

j,j+1) = �0(Vm)d2(d + 1)m−4. When we consider
intersections of three, four, etc. such cycles, repeated use of (GC30) leads to
deg(A0

i1,i1+1 ∩ · · · ∩ A0
i
,i
+1) = �0(Vm)d
(d + 1)m−2
. Now, there are

(
m−2

2

)
intersections of two such cycles, with i + 1 < j , and

(
m−





)
intersections of 


such cycles, with the constraint i1 + 1 < i2, . . . , i
−1 + 1 < i
. Therefore, for
even m

deg(∪m−1
i=1 A0

i,i+1) = �0(Vm)

m
2∑

k=1

(−1)k+1

(
m − k

k

)
dk(d + 1)m−2k

and, for odd m

deg(∪m−1
i=1 A0

i,i+1) = �0(Vm)

m−1
2∑

k=1

(−1)k+1

(
m − k

k

)
dk(d + 1)m−2k.

The conclusion is that the degree of the cycle A0 = A0 \ (∪m−1
i=1 A0

i,i+1) is, by the
Combinatorial Lemma,

deg(A0) = deg(A0) − deg(∪m−1
i=1 A0

i,i+1) = �0(Vm)(dm + dm−1 + · · · + d + 1).

To calculate the degrees of the cycles A1, . . . , Am−1 we proceed verbatim as for
A0, imposing the following genericity condition for Aj , j = 1, . . . , m − 1:

(GC6j ). Aj ∩ Ln−2
i,i+1 = ∅ for i ≥ j + 1.

We then obtain that the degree of Aj is

deg(Aj ) = deg(Aj ) − deg(∪m−1
i=j+1A

j

i,i+1) =
= �j (Vm)(dm−j + dm−j−1 + · · · + d + 1).
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Of course, the degree of Am is deg(Am) = �m(Vm). Let N (i∗Fd, Vm) denote
the degree of S. Then the degrees of the cycles Bj are:

deg(Bj ) = deg(Aj ) − deg(Bj−1) =

= (−1)j+1N (i∗Fd, Vm) +
j∑

i=0

(−1)i deg(Aj−i)

for j = 1, . . . , m − 1 and since Bm = Bm−1, it follows that

deg(Bm) = (−1)mN (i∗Fd, Vm) +
m−1∑
i=0

(−1)i deg(Am−1−i)

which amounts to N (i∗Fd, Vm) =
m∑

i=0

(−1)i deg(Ai).

This finishes the proof of the teorem. �
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