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1 Introduction

The ridges of surfaces in 3-space were introduced by I. Porteous [7] as the sets
of points at which the surface has a higher order contact with some of their focal
spheres. They are the image, through the exponential map, of the singular part
of the focal set off the umbilical foci. The generic structure of these sets may be
described by means of the analysis of the singularities of the distance squared
functions on the surface. The generalization of these ideas to hypersurfaces
in Rn follows in a natural way (cf., [9]). The analogous study, applied to the
singularities of the height functions over submanifolds of codimension 2 in Rn,
leads to the concept of flat ridges. They were introduced by the third named author
and E. Sanabria-Codesal in [8] and are made of points at which the submanifolds
have higher order contact with some hyperplane. In fact, the flat ridges of an
(n − 2)-submanifold M coincide with the image of the intersection locus of the
ridges and the parabolic subset of the canal hypersurface CM through the natural
projection ν : CM → M . The flat ridges may be classified in terms of the order
of contact of the submanifold with the hyperplanes. Those of maximal order are
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isolated points over generic submanifolds. An interesting fact, shown in [8], is
that these can be characterized as flattenings of the asymptotic lines, considered as
curves in the ambient Euclidean space. Asymptotic lines of (n−2)-submanifolds
of Rn were introduced in [6].

The purpose of this paper is to develop the analogous theory in the context of
the submanifolds of hyperbolic spaces and their contacts with hyperhorospheres.
To do this, we introduce in Section 3 the hyperbolic height functions family on
(n − 2)-submanifolds of Hn+(−1). This functions measure the contacts of such
submanifolds with hyperhorospheres in Hn+(−1) in a similar way than the height
functions do for submanifolds and hyperplanes in Rn. We define the hyper-
bolic canal hypersurface, CM , of M in Hn+(−1) and relate the singularities of
hyperbolic height functions on M with those on CM . In fact, we see that the
degenerate singularities of the hyperbolic height functions on M correspond to
the singularities of the hyperbolic Gauss map on CM under the natural projection
ν : CM → M (Proposition 3.3). This setting allows us to define the concepts
of horobinormals and osculating hyperhorospheres at the points of M , as well
as, horospherical ridges. The horospherical ridge points are the singularities of
type Ak≥3 of hyperbolic height functions on M . They correspond to degener-
ate singularities of corank one for the hyperbolic Gauss map on CM under ν.
We see that they are contained in the closure, cl(M∗), of an open submanifold,
M∗, of M and form regular submanifolds of codimension one when restricted
to M∗ (Proposition 3.9). In Section 4 we define the horoasymptotic directions
on submanifolds of codimension 2 of hyperbolic n-space that generalize those
defined in [4] for surfaces in H 4+(−1). We define horospherical flattenings of a
curve in hyperbolic n-space as those at which the curve has a contact of order
n+ 1 with some hyperhorosphere. Then the ridge points of M are characterized
as horospherical flattenings of the normal sections of M in horoasymptotic di-
rections (Theorem 4.2). The horoasymptotic directions determine some tangent
fields over the closure of M∗ whose integral curves are the horoasymptotic lines
of M .

The main result in this section consists in the characterization of the maximal
order horospherical ridges of a submanifold M of codimension 2 in hyperbolic
n-space as the horospherical flattenings of its horoasymptotic lines, considered
as curves in Hn+(−1) (Corollary 4.8).

We shall assume throughout the whole paper that all the maps and manifolds
are C∞ unless the contrary is explicitly stated.
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2 Basic notions and concepts

Let Rn+1 = {(x0, x1, . . . , xn)|xi ∈ R, i = 0, 1, . . . , n}be an (n+1)-dimensional
vector space. For any vectors x = (x0, . . . , xn), y = (y0, . . . , yn) in Rn+1, the
pseudo scalar product of x and y is defined by 〈x, y〉 = −x0y0 + ∑n

i=1 xiyi .
The space (Rn+1, 〈, 〉) is called Minkowski (n + 1)–space and written by Rn+1

1 .
We say that a vector x in Rn+1\{0} is spacelike, lightlike or timelike if 〈x, x〉 >

0, = 0 or < 0 respectively. The norm of the vector x ∈ Rn+1 is defined by
‖x‖ = √|〈x, x〉|. Given a vector n ∈ Rn+1

1 and a real number c, the hyperplane
with pseudo normal n is given by

HP(n, c) = {x ∈ Rn+1
1 |〈x, n〉 = c}.

We say that HP(n, c) is a spacelike, timelike or lightlike hyperplane if n is
timelike, spacelike or lightlike respectively.

The hyperbolic n-space is defined by

Hn
+(−1) = {x ∈ Rn+1

1 | 〈x, x〉 = −1, x0 ≥ 0}
and the de Sitter n-space by

Sn
1 = {x ∈ Rn+1

1 |〈x, x〉 = 1 }.
Given n vectors a1, a2, . . . , an ∈ Rn+1

1 , we can define another vector a1 ∧
a2 ∧ · · · ∧ an as follows:

a1 ∧ a2 ∧ · · · ∧ an =

∣∣∣∣∣∣∣∣∣∣∣

−e0 e1 · · · en

a1
0 a1

1 · · · a1
n

a2
0 a2

1 · · · a2
n

...
... · · · ...

an
0 an

1 · · · an
n

∣∣∣∣∣∣∣∣∣∣∣
,

where {e0, e1, . . . , en} is the canonical basis of Rn+1
1 and ai = (ai

0, a
i
1, . . . , a

i
n).

We can easily check that

〈a, a1 ∧ a2 ∧ · · · ∧ an〉 = det(a, a1, . . . , an),

so a1 ∧ a2 ∧ · · · ∧ an is pseudo orthogonal to ai for i = 1, . . . , n.

We also define a set LCa = {x ∈ Rn+1
1 | 〈x − a, x − a〉 = 0 }, which is called

a closed lightcone with the vertex a. We denote

LC∗
+ = {x = (x0, . . . xn) ∈ LC0 |x0 > 0 }
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and we call it the future lightcone at the origin. Given any lightlike vector
x = (x0, x1, . . . , xn), we have that x0 �= 0 and thus,

x̃ =
(

1,
x1

x0
, . . . ,

xn

x0

)
∈ Sn−1

+ = {x = (x0, x1, . . . , xn) ∈ LC∗
+ | x0 = 1 }.

The subset Sn−1
+ is known as the spacelike (n − 1)-sphere.

Let U ⊂ Rn−2 be an open subset and suppose that x : U → Hn+(−1) is an
embedding, so its image M = x(U) is a regular submanifold of codimension 2
in Hn+(−1). We shall identify M with U by the embedding x.

Given p = x(u) ∈ M ⊂ Hn+(−1), we have 〈x(u), x(u)〉 = −1, so that
〈xi(u), x(u)〉 = 0, where u = (u1, u2, . . . , un−2) and xi(u) = (∂x/∂ui)(u).
Hence the tangent space of M at p = x(u) is

TpM = 〈x1(u), x2(u), . . . , xn−2(u)〉R.

Let NpM be the pseudo normal space of M at p = x(u) in Rn+1
1 and choose

a pseudo normal vector n(u) ∈ S1(NpM ∩ TpHn+(−1)), where S1(NpM ∩
TpHn+(−1)) denotes the spacelike unit circle in NpM ∩ TpHn+(−1). We remark
that u ∈ U is not necessarily fixed, so that n(u) might be a pseudo normal vector
field along M . It follows that

e(u) = x(u) ∧ x1(u) ∧ · · · ∧ xn−2(u) ∧ n(u)

‖x(u) ∧ x1(u) ∧ · · · ∧ xn−2(u) ∧ n(u)‖ ∈ S1(NpM ∩ TpHn
+(−1)).

Then we have the following Proposition:

Proposition 2.1. Under the above notations, we have

NpM = 〈x(u), n(u), e(u)〉R.

Moreover,

ni(u) ∈ 〈x1(u), x2(u), . . . , xn−2(u), e(u)〉R

and

ei(u) ∈ 〈x1(u), x2(u), . . . , xn−2(u), n(u)〉R,

where ni(u) = (∂n/∂ui)(u), ei(u) = (∂e/∂ui)(u).
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Proof. By the above construction, {x, x1, . . . , xn−2, n, e} is a basis of the vec-
tor space TpRn+1

1 , and thus we can write ni = ∑n−2
j=1 λi

jxj + µi
1n + µi

2e + µi
3x,

for some λi
j , µi

k ∈ R, i, j = 1, 2, . . . , n− 2 and k = 1, 2, 3. Since 〈n, n〉 = 1,

〈ni , n〉 = 0, i = 1, . . . , n − 2. Thus we have µi
1 = 0, i = 1, . . . , n − 2. On

the other hand, 〈x, n〉 = 0 and hence 〈x, ni〉 = −〈xi , n〉 = 0, i = 1, . . . , n − 2.
Therefore µi

3 = 0, i = 1, . . . , n − 2. Consequently we get

ni(u) ∈ 〈x1(u), x2(u), . . . , xn−2(u), e(u)〉R.

The final assertion follows similarly. �
We shall consider a fixed unit pseudo normal vector field n on M ⊂ Hn+(−1)

by the above construction through the whole paper.

3 Hyperbolic height functions on submanifolds of codimension 2

In this section we introduce the notions of hyperbolic height functions, hyperbolic
canal hypersurfaces and hyperbolic Gauss maps on submanifolds of codimension
2 in Hn+(−1).

For a regular submanifold M(= x(U)) of codimension 2 in Hn+(−1), we define
a function

H : U × Sn−1
+ −→ R

by H(u, v) = 〈x(u), v〉, where v = (1, v1, . . . vn) ∈ Sn−1
+ . We call H the

hyperbolic height functions family on M . We shall denote hv0(u) = H(u, v0),
for any v0 ∈ Sn−1

+ . Then we have the following proposition:

Proposition 3.1. Let M be a regular submanifold of codimension 2 in Hn+(−1)

and H : U × Sn−1
+ −→ R the hyperbolic height function. Then (∂hv/∂ui)(u) =

0 (i = 1, . . . , n − 2) if and only if v = x̃ + w(u, ϕ), where w(u, ϕ) =
cos ϕn(u) + sin ϕe(u) and 0 ≤ ϕ < 2π .

Proof. We remark that (∂hv/∂ui)(u) = 0 if and only if 〈xi , v〉 = 0 for each
i = 1, . . . , n − 2 and v ∈ Sn−1

+ . This is equivalent to the condition that v ∈
〈x, n, e〉R ∩ Sn−1

+ . Therefore, v = λx + µn + ξe for some real numbers λ, µ, ξ .
Since 〈v, v〉 = 0, µ2 + ξ 2 = λ2. It follows that

λ

(
x + µ

λ
n + ξ

λ
e

)
= λ(x + cos ϕn + sin ϕe),
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where µ/λ = cos ϕ and ξ/λ = sin ϕ. This means that v = x̃ + w(u, ϕ), where
w(u, ϕ) = cos ϕn(u) + sin ϕe(u) and 0 ≤ ϕ < 2π . The converse follows from
straightforward calculations. �

The hyperbolic canal hypersurface of M in Hn+(−1) is defined by

CM = {
(x(u), v) ∈ M × Sn−1

+ |v = x̃ + w(u, ϕ),

w ∈ S1(Nx(u)M ∩ Tx(u)H
n
+(−1))

}
.

Let DH : M × Sn−1
+ −→ R × Sn−1

+ ; DH(x(u), v) = (H(u, v), v) be the
unfolding associated to the family H . The singular set of DH is given by∑

(DH) = {
(x(u), v) ∈ M × Sn−1

+ | 〈dx, v〉 = 0
}
.

It follows from Proposition 3.1 that
∑

(DH) = CM .
We can consider the hyperbolic canal hypersurface of M , as a hypersurface of

Hn+(−1) by means of an embedding, x̄ : Ū → Hn+(−1) defined by

x̄(x(u), ϕ) = cosh θx(u) + sinh θ(cos ϕn(u) + sin ϕe(u)),

where Ū = M × [0, 2π) and |θ | a sufficiently small positive real number.
We can define the hyperbolic height functions family on CM by

H̄ : CM × Sn−1
+ → R; H̄ ((x(u), ϕ), v′) = 〈x̄(x(u), ϕ), v′〉.

We denote that h̄v0(u, ϕ) = H̄ ((x(u), ϕ), v0), for v0 ∈ Sn−1
+ . The following

proposition characterizes the singular points of the hyperbolic height functions
over CM .

Proposition 3.2. Let CM be a hyperbolic canal hypersurface of M in Hn+(−1)

and H̄ : CM × Sn−1
+ −→ R the hyperbolic height function on CM . Then

(∂h̄v/∂ui)(u, ϕ) = (∂h̄v/∂ϕ)(u, ϕ) = 0 (i = 1, . . . , n − 2) if and only if
v = x̃ + w(u, ϕ), where w(u, ϕ) = cos ϕn(u) + sin ϕe(u) and 0 ≤ ϕ < 2π .

Proof. We have

x̄(u, ϕ) = cosh θx(u) + sinh θ(cos ϕn(u) + sin ϕe(u)) ∈ 〈x(u), n(u), e(u)〉R.

Hence,

x̄i(u, ϕ) = cosh θxi(u) + sinh θ(cos ϕni(u) + sin ϕei(u)),

x̄ϕ(u, ϕ) = sinh θ(− sin ϕn(u) + cos ϕe(u)).
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We denote

N(u, ϕ) = sinh θx(u) + cosh θw(u, ϕ) ∈ Sn
1 ,

where w(u, ϕ) = cos ϕn(u) + sin ϕe(u) ∈ S1(NpM ∩ TpHn+(−1)). It follows
that wi(u, ϕ) = cos ϕni(u) + sin ϕei(u) ∈ 〈x1(u), . . . , xn−2(u), n(u), e(u)〉R

and wϕ(u, ϕ) = − sin ϕn(u) + cos ϕe(u), where wi(u, ϕ) = (∂w/∂ui)(u, ϕ)

and wϕ(u, ϕ) = (∂w/∂ϕ)(u, ϕ). It is easy to calculate that 〈N(u, ϕ), x̄(u, , ϕ)〉
= 0. Moreover, we have

〈N(u, ϕ), x̄i(u, ϕ)〉 = 〈sinh θx(u) + cosh θw(u, ϕ),

cosh θxi(u, ϕ) + sinh θwi(u, ϕ)〉
= 〈cosh θw(u, ϕ), cosh θxi(u, ϕ)〉
= cosh2 θ〈(cos ϕn(u) + sin ϕe(u)), xi(u, ϕ)〉 = 0.

On the other hand, we have

〈N(u, ϕ), x̄ϕ(u, ϕ)〉 = 〈sinh θx(u) + cosh θw(u, ϕ), sinh θwϕ(u, ϕ)〉
= 〈sinh θx(u), sinh θwϕ(u, ϕ)〉
= sinh2 θ〈x(u), − sin ϕn(u) + cos ϕe(u)〉 = 0.

This means that N(u, ϕ) = sinh θx(u) + cosh θw(u, ϕ) ∈ Sn
1 ∩ Np̄CM , where

x̄(u, ϕ) = p̄. Thus {x̄, x̄1, . . . , x̄n−2, x̄ϕ, N} is a basis of the vector space
Tp̄Rn+1

1 . Hence there exist real numbers λ, λi, µ (i = 1, . . . , n − 2) and ρ,
such that

v =
(

λx̄ +
n−2∑
i=1

λi x̄i + µx̄ϕ + ρN

)
(u, ϕ).

Therefore (∂h̄v/∂ui)(u, ϕ) = (∂h̄v/∂ϕ)(u, ϕ) = 0 (i = 1, . . . , n − 2) if and
only if 〈x̄i(u, ϕ), v〉 = 〈x̄ϕ(u, ϕ), v〉 = 0 (i = 1, . . . , n−2) and v ∈ Sn−1

+ . This
is equivalent to the condition that λi = µ = 0, λ = ρ and

v = ˜λ(x̄ + N)(u, ϕ) = ¯̃x + N(u, ϕ) = x̃ + w(u, ϕ) ∈ Sn−1
+ ∩ Np̄CM. �

We now define the hyperbolic Gauss-Kronecker curvature of hypersurface in
Hn+(−1) (cf., [2]). Let x : V −→ Hn+(−1) be an embedding, where V ⊂ Rn−1

is an open subset. We denote that S = x(V ) and identify S and V through the
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embedding x. Since 〈x, x〉 ≡ −1, we have 〈xi , x〉 ≡ 0 (i = 1, . . . , n − 1),

where u = (u1, . . . un−1) ∈ V . Define a vector

e(u) = x(u) ∧ x1(u) ∧ · · · ∧ xn−1(u)

‖x(u) ∧ x1(u) ∧ · · · ∧ xn−1(u)‖ ,

then we have 〈e, xi〉 ≡ 〈e, x〉 ≡ 0 and 〈e, e〉 ≡ 1. Therefore the vector x + e is
lightlike. Since x(u) ∈ Hn+(−1) and e(u) ∈ Sn

1 , we can show that x(u)+e(u) ∈
LC∗+. We define the hyperbolic Gauss indicatrix (or the lightcone dual) of x as
the map

L : V −→ LC∗
+

given by L(u) = x(u) + e(u). We also define the hyperbolic Gauss map of x as
the map

L̃ : V −→ Sn−1
+

given by L̃(u) = x̃ + e(u). In [2] we have shown that Dve ∈ TpS for any p =
x(u0) ∈ S and v ∈ TpS. Here, Dv denotes the covariant derivative with respect
to the tangent vector v. Therefore, we have DvL ∈ TpS. Under the identification
of V and S, the derivative dx(u0) can be identified to the identity mapping idTpS

on the tangent space TpS, where p = x(u0). This means that dL(u0) = idTpS +
de(u0). Thus, dL(u0) can be regarded as a linear transformation on the tangent
space TpS. We call the linear transformation Sp = −dL(u0) : TpS −→ TpS the
hyperbolic shape operator of S = x(V ) at p = x(u0). An eigenvalue of Sp is
called a principal hyperbolic curvature of x(V ) = S at p = x(u0) and denoted
by κ̄p. The hyperbolic Gauss-Kronecker curvature of S = x(V ) at p = x(u0)

is defined to be

Kh(u0) = det Sp.

We also denote the hyperbolic Gauss map of CM as the map,

L̃ : CM −→ Sn−1
+ , L̃(u, ϕ) = x̃ + w(u, ϕ).

Let π : M × Sn−1
+ −→ Sn−1

+ ; (x(u), v) �→ v be the natural projection. Clearly,
π |CM = L̃ and the Boardman symbols of DH and L̃ satisfy the relation∑

n−2,r1,r2,...,rk (DH) =
∑

r1,r2,...,rk (L̃).

Since CM is a hypersurface in Hn+(−1), the Proposition 5.2 in [2] includes
the following result:
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Proposition 3.3. The set of singular points of the hyperbolic Gauss map L̃ of
the canal hypersurface CM coincides with the set of horospherical parabolic
points (that is, Kh(p̄) = 0 at p̄ ∈ CM ).

On the other hand, given (x(u), v) ∈ CM , we have h̄v0(u, v) = 〈cosh θx(u)+
sinh θw, v0〉, and it is possible to choose a coordinate system U × W for CM at
(x(u), v) in such a way that:

a) U is an orthogonal coordinate system for M at x(0) = (1, 0, . . . , 0), and

b) W is a coordinate system for Sn−1
+ at v = (1, 0, . . . , 0, 1). And

(1) x(u) = (f1(u), u1, u2, . . . , un−2, f2(u), f3(u));

(2) (∂fi/∂uj )(0) = (fi)j (0) = 0, for i = 2, 3; j = 1, 2, . . . , n − 2.

In this case, (∂f1/∂uj )(0) = (f1)j (0) = 0 for j = 1, . . . , n − 2, by x(u) ∈
Hn+(−1).

All the events are actually at a neighbourhood of a arbitrary fixed point of CM

which serves as the origin of the system. Then we have the following proposition:

Proposition 3.4. Under the above conditions, we have that the Hessian ma-
trices of hyperbolic height functions in the normal direction v on M (hv) at
x(u) and on CM (h̄v) at (x(u), v) respectively, satisfy λH (hv)(u) ⊕ µI1 =
H (h̄v)(u, v) = DL̃(u, v), where I1 denotes the identity over R, λ, µ are non-
zero scalars and DL̃(u, v) represents the Jacobian matrix of the hyperbolic
Gauss map L̃ at the point (x(u), v).

Proof. For (x(u), v) ∈ CM

hv(u) = −f1(u) +
n−2∑
i=1

viui + vn−1f2(u) + vnf3(u),

where u = (u1, . . . , un−2) and v = (1, v1, . . . , vn). Since v is a pseudo normal
vector of M (In fact, for fixed n, v is a normal vector of CM by Propositions 3.1
and 3.2),

vi = ∂f1

∂ui

(u) − ∂f2

∂ui

(u)vn−1(u) − ∂f3

∂ui

(u)vn(u) (i = 1, . . . , n − 2).
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Since v ∈ Sn−1
+ , we have

n∑
i=1

v2
i = 1, so that vi = vi(u, vn−1) (i = 1, . . . , n − 2)

and

vn =
−(cvn−1 − d) ±

√
(cvn−1 − d)2 − a(bv2

n−1 − 2evn−1 + f )

a
,

where

a =
n−2∑
i=1

((f3)i(u))2 + 1, b =
n−2∑
i=1

((f2)i(u))2 + 1,

c =
n−2∑
i=1

(f2)i(u) · (f3)i(u), d =
n−2∑
i=1

(f1)i(u) · (f3)i(u),

e =
n−2∑
i=1

(f1)i(u) · (f2)i(u), f =
n−2∑
i=1

((f1)i(u))2 − 1.

Now we choose w = (0, v1, . . . , vn) such that v = ˜x(u) + w. Then

h̄v̄(u, v) = 〈cosh θx(u) + sinh θw, v̄〉
= cosh θhv̄(u) + sinh θ〈w, v̄〉
= cosh θhv̄(u) + sinh θ

n∑
i=1

viv̄i,

where v̄ = (1, v̄1, . . . , v̄n) in Sn−1
+ . Therefore, under the conditions that v̄ = v =

(1, 0, . . . , 0, 1) and x(0) = (1, 0, . . . , 0), the Hessian matrix ofH (h̄v)(0, v) has
the following form:

H (h̄v)(0, v) =

⎛⎜⎜⎜⎝
cosh θ(−1 + f3(0))11 · · · cosh θ(f3(0))1 n−2 0

...
...

...
...

cosh θ(−1 + f3(0))1n−2 · · · cosh θ(f3(0))n−2 n−2 0
0 · · · 0 sinh θ

⎞⎟⎟⎟⎠
u=0

= cosh θH (hv)(0)⊕sinh θI1 = cosh θH (hv)(0)⊕sinh θI1 = H (h̄v)(0, v) =
DL̃(0, v). �

It follows that (x(u), v) ∈ ∑r
(L̃) if and only if x(u) is a singularity of corank

hv(u) = r . In particular, the condition (x(u), v) ∈ ∑1k,0(L̃) is equivalent
to the condition that x(u) is a singularity of type Ak for hv. As a corollary of
Propositions 3.3 and 3.4, we have the following proposition:
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Proposition 3.5. Let H : U × Sn−1
+ −→ R be a hyperbolic height function of

M , then x(u) ∈ M is a degenerate singularity of hv if and only if (x(u), v) is
a singular point of L̃ or equivalent to the condition that Kh(u, v) = 0, where
Kh(u, v) is the hyperbolic Gauss-Kronecker curvature of CM .

Throughout the remainder in this paper, we shall assume that all the singular-
ities are corank 1, that is Ak type unless the contrary is explicitly stated.

For a vector v ∈ Rn+1
1 and a real number c, we define the hyperhorosphere

with lightlike pseudo normal v by

HSn−1(v, c) = Hn
+(−1) ∩ HP(v, c).

If we choose a lightlike vector v0 = −(1/c)v ∈ LC∗+, then HSn−1(v, c) =
HSn−1(v0, −1). We call v0 the polar vector of HSn−1(v0, −1). We say that a
hyperhorosphere HSn−1

v : = HSn−1(v, −1) has higher order contact with M

at x(u) if it is tangent to M at x(u) and x(u) is a degenerate singular point of
the hyperbolic height function hv. In this case, we say that v is a horobinormal
vector and HSn−1

v is a osculating hyperhorosphere of M at x(u). Given a regular
submanifold M of Hn+(−1), a hyperhorosphere HSn−1

v0
, tangent to M at some

point p = x(u0), is said to be a locally supporting hyperhorosphere for M at
p provided there exist an open neighbourhood V of p in Hn+(−1) such that
M ∩ V ⊂ (HSn−1

v0
)−, where (HSn−1

v0
)− = {u ∈ Hn+(−1) | 〈u − x(u0), v〉 ≥ 0}.

The submanifold M is said to be a locally horoconvex at a point p = x(u) if
there exist some locally supporting hyperhorosphere for M at p. Then we have
the following assertions:

Theorem 3.6. Let M be an (n − 2)-submanifold of Hn+(−1).

(1) If n is odd, then M admits at least a horobinormal direction and at most
n − 2 at each one of its points.

(2) If n is even and M admits a locally supporting hyperhorosphere at some
point, then there is a non empty open submanifold in M , all of whose points
admit at least one horobinormal direction and at most n − 2 of them.

Proof. Let H : U ×Sn−1
+ −→ R; (u, v) �→ 〈x(u), v〉 = hv(u) be a hyperbolic

height function of M , where v = (1, v1, v2 . . . , vn) ∈ Sn−1
+ . Then we can locally

write

hv(u) = −f1(u) +
n−2∑
i=1

viui + vn−1f2(u) + vnf3(u).
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Consequently, we have that x(0) = p ∈ M is a singular point of hv if and only
if v = (1, 0, . . . , 0, vn−1, vn).

Denote the 2-jets of the components, fi, i = 1, 2, 3, of the embedding x by

j 2fi(0) =
n−2∑
k=1

ai
kku

2
k + 2

∑
k<l

ai
klukul.

Then the Hessian of hv at the point p is given by H (hv(0)) = 2n−2 Hn−2
p

(vn−1, vn), where Hn−2
p denotes a polynomial of degree n − 2 in the two vari-

ables vn−1, vn, whose coefficients depend on the coefficients ai
kl of the 2-jets

j 2fi(0), i = 1, 2, 3.
It then follows that p is a degenerate singularity of hv if and only if vn−1, vn

satisfy the equation Hn−2
p (vn−1, vn) = 0. So, the horobinormal directions of M

at the point p can be characterized as the roots of polynomial Hn−2
p .

Taking into account that v = (1, 0, . . . , 0, vn−1, vn) ∈ Sn−1
+ and thus v2

n−1 +
v2

n = 1, we can consider Hn−2
p (vn−1, vn) as a polynomial Hn−2

p (a) in one variable
a. Consider the decomposition of this polynomial over the field C,

Hn−2
p (a) = (α1a − β1)(α2a − β2) . . . (αn−2a − βn−2),

where αi, βi ∈ C; i = 1, 2, . . . , n − 2. Analising the possible real solutions
of Hn

p(a, b) = 0 for each p ∈ M leads to a subdivision of M into regions
M(i1, . . . , ir ) = {p ∈ M : Hn

p admits r distinct real roots with respective
multiplicities i1, . . . , ir}. We denote by Mk the subset of points of M whose
corresponding polynomial has only simple roots, exactly k of them being real,
k = 1, . . . , n − 2, and by Mk those for which Hn

p has k real roots counted with
their corresponding multiplicities, that is,

Mk = ∪ M(i1, . . . , ir ), i1 + . . . + ir = k.

We observe that Mk is open in M and that Mk ⊆ cl(Mk) (where cl(-) de-
notes the closure operator). If we put M∗ = ⋃n

k=1(Mk), it follows that M =
cl(M∗)

⋃
M0.

We now show that if n is even, M0 �= M and hence M∗ �= ∅. We do this by
contradiction. Suppose that M0 = M . In this case, we have that all the hyperbolic
height functions on M have non degenerate singularities and hence, so do the
hyperbolic height functions on CM . Now, the existence of a locally support
hyperhorosphere on M implies that there is at least some point (x(u), v) ∈ CM ,
such that the Hessian matrix of the hyperbolic height function h̄v at the point x(u)
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defines an elliptic quadratic form (that is, of zero signature). But this implies that
the Hessian matrices of all the height functions on M define elliptic quadratic
forms, for otherwise, there would be some degenerate height function on CM .
It follows that we can find locally support hyperhorospheres at every point of
CM . Denote by π1 : Hn+(−1) → Rn

0 the pseudo-orthogonal projection of the
hyperbolic n-space to the hyperplane, Rn

0, pseudo-perpendicular to the vector
(1, 0, . . . , 0) ∈ Rn+1

1 . Clearly, π1 defines a diffeomorphism of Hn+(−1) onto the
euclidean n-space Rn

0 that transforms hyperhorospheres into parabolic quadric
hypersurfaces. Since parabolic quadric hypersurfaces are convex, π1(CM) is a
hypersurface in Rn

0 that has a locally support hyperplane at every point. But this
implies that it is a strictly convex and thus diffeomorphic to a (n−1)-sphere (see
[10, Chapter 13]). Consequently CM is also diffeomorphic to a (n − 1)-sphere,
which contradicts the fact that it is a canal hypersurface over the submanifold M .

On the other hand, if n is odd, we have that Hn−2
p must admit at least one and

at most n real roots, for all p ∈ M . Hence M0 = ∅ and M = cl(M∗) and there is
at least a binormal direction at each point of M . Clearly, the maximum number
of binormal directions at each point is n − 2, for each one of them comes from
a real root of Hn−2

p (a) = 0. �
We say that a point p = x(u) ∈ M is a horospherical ridge point if there

is a vector w ∈ S1(NpM ∩ TpHn+(−1)) for M at p such that p is a singularity

of type Ak≥3 of hv where v = x̃ + w(u, ϕ). Moreover, we say that a point
p = x(u) ∈ M is a kth-order horospherical ridge point if there is some vector
w ∈ S1(NpM ∩ TpHn+(−1)) for M at p such that p is a singularity of type Ak

of hv where v = x̃ + w(u, ϕ) and k ≥ 3.

Proposition 3.7. Let M be an (n − 2)-submanifold of Hn+(−1). Then a point
x(u) is a horospherical ridge point of M if and only if (x(u), v) is a non stable
singularity of L̃(x(u), v).

Proof. By Proposition 3.3, the point x(u) is a degenerate singularity of hv if
and only if (x(u), v) is a singular point of the Gauss map L̃(x(u), v). It follows
from the definition of L̃ : CM → Sn−1

+ that (x(u), v) ∈ �1,1(L̃), (where �i

denotes the i-th Boardman symbol, i > 0) if and only if x(u) is a singularity of
type Ak≥3 of hv. �

For a generic M , the subset �1(L̃), being the regular part of the subset Kh
−1(0),

is an (n − 2)-submanifold of CM (c.f., [5]). Consider the natural projection
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ν : CM → M and its restriction ν̄ = ν|�1(L̃) : �1(L̃) → M . Let

M̄∗ = ν̄−1(M∗) =
n−2⋃
k=1

M̄k,

where M̄k = ν̄−1(Mk). Clearly, M̄∗ is an open submanifold of Kh
−1(0), and

thus has dimension n − 2.

Lemma 3.8. The map ν̄|M̄∗ : M̄∗ → M∗ is a local diffeomorphism. Moreover,
ν̄|M̄k

: M̄k → Mk is a k-fold covering map for each k = 1, . . . , n − 2.

Proof. Take coordinates on M and CM as in the proof of Proposition 3.4, so
that a degenerate singular point p ∈ M of a hyperbolic height function hv has
associated to the polynomial Hn−2

p (a), where v = (1, 0, . . . , 0, a, b) ∈ Sn−1
+

and a2 + b2 = 1. Observe that Kh(p, v) = Hn−2
p (a) = 0. Then a is a simple

root if and only if (∂Kh/∂a)(p, v) �= 0. Since M̄∗ is an open submanifold
of Kh

−1(0), the condition (∂Kh/∂a)(p, v) �= 0 is equivalent to ν̄|M̄∗ being a
diffeomorphism in a neighbourhood of (p, v) for any p ∈ M̄∗.

Suppose now that (p, v) ∈ M̄k, so p ∈ Mk. Then there exist v1, . . . , vk ∈
Sn−1

+ , such that (p, vi) ∈ M̄k ⊂ M̄∗, with v = vj for some j = 1, . . . , k.
Since ν̄ is a diffeomorphism in a neighbourhood of each (p, vi), we get that
ν̄|M̄k

: M̄k → Mk is a k-fold covering map over Mk. �

Proposition 3.9. Let M be a generic regular (n − 2)-submanifold of Hn+(−1).
Then the horospherical ridge points define a stratified subset L of M such that
L ∩ M∗ is an immersed submanifold of codimension one in M .

Proof. Given a point p = x(u) ∈ M , the condition (p, v) ∈ �1(L̃), or
equivalently Hn−2

p (v) = 0, determines locally the point (p, v) as a function
of u. Moreover, the condition (p, v) ∈ �1,1(L̃) defines a relation among the
coefficients of the 2-jet of the immersion x at u. This relation determines an
algebraic variety V of codimension one in the 2-jet space J 2(Rn−2, Rn). Clearly,
L = (j 2x)−1(u), and then Thom Transversality Theorem ([1]) ensures that,
for a generic embedding x, L is a stratified subset of codimension one in M .
Moreover, for a generic M , the subset �1,1(L̃) is a submanifold of codimension
one in �1(L̃) and since M̄∗ is open in �1(L̃), we have that �1,1(L̃) ∩ M̄∗ is an
(n − 3)-submanifold of M̄∗. It then follows from Lemma 3.8 that L ∩ M∗ =
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ν̄(�1,1(L̃) ∩ M̄∗) is a submanifold of codimension one of M . We observe that,
due to the fact that ν̄ is only a local diffeomorphism, the subset ν̄(�1,1(L̃)∩M̄∗)
may have (generically transverse) self-intersections. �

4 Horoasymptotic lines and horospherical ridges

Given p = x(u) ∈ M and a horobinormal vector v at p, we have that p is a
degenerate singularity of the height function hv, and thus, the Hessian matrix
H (hv)(u) determines a degenerate quadratic form on TpM . The directions
α ∈ TpM lying in the kernel of this quadratic form are called horoasymptotic
directions of M at p.

We observe that if v is a horobinormal vector at p, then we have Kh(p, v) = 0,
so that (p, v) is a horospherical parabolic point of CM . In this case, since
(p, v) is a singular point of L̃, there exists a vector ᾱ ∈ Ker DL̃ ⊆ T(p,v)CM .
Such a direction is a principal direction on CM whose corresponding principal
hyperbolic curvature vanishes at (p, v). Clearly, Dν(ᾱ) is a horoasymptotic
direction of M at p, for Dν : T(p,v)CM → TpM takes the kernel of DL̃(u, v)

to the kernel of the Hessian of the hyperbolic height function hv at u.
An immediate consequence of Theorem 3.6 is the following corollary:

Corollary 4.1. Let M be an (n − 2)-submanifold of Hn+(−1).

(1) If n is odd, then M admits at least a horoasymptotic direction and at most
n − 2 at each one of its points.

(2) If n is even and M admits a locally supporting hyperhorosphere at some
point, then there is a non empty open submanifold M∗ in M , all of whose
points admit at least one horoasymptotic direction and at most n − 2 of
them.

The horoasymptotic directions define line fields on the open subset M∗. We
observe that exactly k asymptotic lines pass through each point of the open
submanifold Mk, k = 1, . . . , n − 2.

For any p = x(u) ∈ M and any unit vector α ∈ TpM , we define the normal
section, γα, of M as the intersection

γα = M ∩ 〈NpM, α〉R ⊂ M ⊂ Hn
+(−1).

Clearly, γα can be regarded as a curve in hyperbolic 3-space H 3+(−1).
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The horospherical geometry of curves immersed in Hyperbolic 3-space has
been studied in [3]. We quote here some of the concepts introduced in [3] that
shall be used in this paper.

Given a curve γ : I → H 3(−1), that we can assume parametrised by arc-
length, we can define a pseudo-orthonormal frame {γ (s), t(s), n(s), e(s)} for
R4

1 along γ . This satisfies the following Frenet-Serre type formulae:⎧⎪⎪⎨⎪⎪⎩
γ ′(s) = t(s)

t ′(s) = kh(s)n(s) + γ (s)

n′(s) = −kh(s)t(s) + τh(s)e(s)

e′(s) = −τh(s)n(s)

where kh(s) = ||t ′(s) − γ (s)|| and τh(s) = − det(γ (s), γ ′(s), γ ′′(s), γ ′′′(s))/
(kh(s))

2.
We define the following function on the curve:

σh(s) = (
(k′

h)
2 − (kh)

2(τh)
2
)
((kh)

2 − 1)(s).

It was shown in [3] that σh(s) = 0 if and only if the curve γ has a higher order
contact with a horosphere at γ (s). Consequently, we call σh the horospherical
torsion function of γ .

Theorem 4.2. Let M be a regular (n − 2)-submanifold M of Hn+(−1). Take a
horoasymptotic direction α at a point x(u) ∈ M and let γα be the normal section
of M in the direction α at x(u0) = γα(0), parametrised by arclength. Suppose
that kh(0) �= 0 then we have that x(u0) = γα(0) is a 3rd-order horospherical
ridge point of M if and only if σh(0) = 0. Moreover, x(u0) = γα(0) is a kth-
order horospherical ridge point of M if and only if σh(0) = σ ′

h(0) = . . . =
σ

(k−3)
h (0) = 0.

Proof. Since γα is a normal section of M associated to the horoasymptotic
direction α and kh(0) �= 0, we have that α ∈ Ker (H (hv0(u0))). Moreover, the
function h

γα
v0 = hv0 |γα

: H 3+(−1) ⊃ γα → R is a hyperbolic height function on
γα, where v0 is a horobinormal vector of M at x(u0) associated to the direction α.
Hence x(u0) is a Ak≥3 singularity of hv0 if and only if x(u0) is a Ak≥3 singularity
of h

γα
v0 . But it follows from Proposition 3.1 in [3], that this is equivalent to the

vanishing of the horospherical torsion of γα at 0 and its derivatives up to order
(k − 3). �
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The horospherical surface of a curve γ : I → H 3(−1) was defined in [3] as
the image of the map HSγα

: I × [0, 2π) −→ LC∗+ ⊂ R4
1 given by (s, ϕ) �→

γα(s) + w(s, ϕ) = x(u(s))+w(s, ϕ), with w(s, ϕ) = cos ϕn(s)+sin ϕe(s). An
immediate consequence of Theorem 4.2 and Theorem 2.1 in [3] is the following:

Corollary 4.3. Given a horoasymptotic direction α at a point x(u) of a regular
(n − 2)-submanifold M in Hn+(−1). Let γα be the normal section of M in the
direction α at a point x(u) = γα(0), parametrised by arclength and suppose
that kh(0) �= 0. Then we have that x(u) a 3-order horospherical ridge point if
and only if the horospherical surface HSγα

of γα is locally diffeomorphic to the
swallow tail SW at the point (x(u(s0)), v0).

We shall see in what follows, how to characterize the horospherical ridges in
terms of the contacts of the osculating hyperhorosphere of M with its horoasymp-
totic lines.

Lemma 4.4. Let M be a regular (n − 2)-submanifold of Hn+(−1) and v a
horobinormal for M at noninflection point x(u) (i.e., x(u) is a Ak type singular
point of hv ). Then the osculating hyperhorosphere HSn−1

v at x(u) ∈ M has
contact of order at least 2 with the horoasymptotic line associated to v and
passing through x(u).

Proof. Let β = β(s) be a horoasymptotic line of M with β(0) = x(u) ∈
M . To prove the lemma we just need to verify that 〈β ′(s), v〉 = 〈β ′′(s), v〉 =
0 (i.e., (∂hv/∂ui)(u) = detH (hv)(u) = 0). We can locally write, β(s) =
(f1(s), u1(s), . . . , un−2(s), f2(s), f3(s)), where M is locally given in the Monge
form:

x(u) = (f1(u), u1, . . . , un−2, f2(u), f3(u));
where u = (u1, . . . , un−2), (∂fj/∂ui)(0) = (fj )i(0) = 0; i = 1, . . . , n − 2;
j = 2, 3 and f1(u) =

√
f 2

2 (u) + f 2
3 (u) +

n−2∑
i=1

u2
i + 1.

Then we have,

β ′(s) =
(n−2∑

i=1

(f2(f2)iu
′
i + f3(f3)iu

′
i + uiu

′
i)(f1)

−1, u′
1, . . . , u

′
n−2,

n−2∑
i=1

(f2)iu
′
i ,

n−2∑
i=1

(f3)iu
′
i

)
,
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β ′′(s) =
(n−2∑

i=1

(n−2∑
j=1

((f2)j (f2)iu
′
iu

′
j + f2(f2)iju

′
ju

′
i + (f3)j (f3)iu

′
iu

′
j

+ f3(f3)iju
′
ju

′
i) + f2(f2)iu

′′
i + f3(f3)iu

′′
i + (u

′
i)

2 + uiu
′′
i

)
(f1)

−1

−
(n−2∑

i=1

(f2(f2)iu
′
i + f3(f3)iu

′
i + uiu

′
i)

)2

(f1)
−3,

u
′′
1, . . . , u

′′
n−2,

n−2∑
i=1

(f2)iu
′′
i +

n−2∑
i,j=1

(f2)iju
′
iu

′
j ,

n−2∑
i=1

(f3)iu
′′
i

+
n−2∑
i,j=1

(f3)iju
′
iu

′
j

)
.

Let H (hv)(0) be the Hessian matrix of hyperbolic height function in the
normal direction v on M at x(0) and

H̄ (hv)(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0 0
0 0 0
... H (hv)(0)

... 0
0 0 0
0 0 · · · 0 1 0
0 0 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence 〈β ′(0), v〉 = 0 by β ′(0) ∈ Tx(0)M and v is horobinormal vector at x(0)

of M . Also

〈β ′′(0), v〉 =
n−2∑
i,j=1

(f2)ij (0)u
′
i(0)u

′
j (0)vn−1 +

n−2∑
i,j=1

(f3)ij (0)u
′
i(0)u

′
j (0)vn

−
n−2∑
i=1

u
′
i(0)u

′
i(0) = β ′(0)H̄ (hv)

tβ ′(0)

= H̄ (hv)(β
′(0), β ′(0)) = 0,

where x(0) is a degenerate point of hv, that is, v = (1, 0, . . . , 0, vn−1, vn). �
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Lemma 4.5 (Romero-Fuster and Sanabria-Codesal [8], Lemma 3.2). Let
h : Rn −→ R be a smooth function with a degenerate singularity at the ori-
gin and suppose that α ∈ Ker (H (h)(0)). Then we have that 0 is a singularity
of type Ak of h if and only if the vector α belongs to the kernel of the k-linear
form, Dkh(0), given by the k-th differential of h, k ≥ 2.

Theorem 4.6. Under the conditions of Lemma 4.4, x(u(0)) = β(0) is a horo-
spherical ridge point if and only if the osculating hyperhorosphere HSn−1

v at
x(u(0)) ∈ M has contact order at least 3 with the horoasymptotic line β.

Proof. It is enough to show that 〈β ′(0), v〉 = 〈β ′′(0), v〉 = 〈β ′′′(0), v〉 = 0.
Now in the above coordinates, we have

β ′′′(0) =
(

3
n−2∑
i=1

(u
′
iu

′′
i )(0), u

′′′
1 (0), . . . , u

′′′
n−2(0),

n−2∑
i,j,k=1

((f2)ijku
′
iu

′
ju

′
k)(0)

+ 3
n−2∑
i,j=1

((f2)iju
′′
i u

′
j )(0),

n−2∑
i,j,k=1

((f3)ijku
′
iu

′
ju

′
k)(0)

+ 3
n−2∑
i,j=1

((f3)iju
′′
i u

′
j )(0)

)
,

where ui(0) = 0, fj (0) = 0, (fj )i(0) = 0, i = 1, . . . , n − 2 and j = 2, 3. It
follows that

〈β ′′′(0), v〉 = 3D2hv(0)(β ′(0), β ′′(0)) + D3hv(0)(β ′(0), β ′(0), β ′(0)).

By Lemmas 4.4 and 4.5,

β ′(0) ∈ Ker D2hv(0) ∩ Ker D3hv(0) and 〈β ′(0), v〉 = 〈β ′′(0), v〉 = 0.

Hence 〈β ′(0), v〉 = 〈β ′′(0), v〉 = 〈β ′′′(0), v〉 = 0. Reversing the above argu-
ment yields the converse. �

For a generic regular (n − 2)-submanifold M of Hn+(−1), the submanifold
L can be decomposed into a union of (n − k)-submanifolds, L = ⋃n

k=3 Lk,
where Lk denotes the subset of horospherical ridges of order k. The highest
order horospherical ridges, Ln are isolated points on M . We see next how to
distinguish among the horospherical ridges of different orders.
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Theorem 4.7. Under the condition of Lemma 4.4, x(0) = β(0) ∈ M is a
horospherical ridge point of order k if and only if the osculating hyperhorosphere
HSn−1

v has contact of order at least k with the horoasymptotic line β.

Proof. The proof runs similarly to that of Theorem 4.6 and we omit the details
here. �

Finally, we give a characterization for horospherical ridges of maximal order in
terms of the horospherical geometry of the horoasymptotic lines of M considered
as curves in hyperbolic n-space. The study of the horospherical properties of
curves immersed in H 3+(−1), made in [3], can be naturally extended to the case
of curves immersed into higher dimensional hyperbolic spaces as follows:

Given a curve, γ : I → Hn(−1), that we can assume parametrised by
arc-length, we can define a pseudo-orthonormal frame {γ (s), t(s), n1(s), . . . ,

nn−1(s)} for Rn+1
1 along γ that satisfies the following Frenet-Serre type formulae.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ ′(s) = t(s)

t ′(s) = k1(s)n1(s) + γ (s)

n′
1(s) = −k1(s)t(s) + k2(s)n2(s)

· · · = · · ·
n′

i(s) = −ki(s)ni−1(s) + ki+1(s)ni+1(s)

· · · = · · ·
n′

n−2(s) = −kn−2(s)nn−3(s) + kn−1(s)nn(s)

n′
n−1(s) = −kn−1(s)nn−2(s)

where

k1(s) = ‖t ′(s) − γ (s)‖,
ki(s) = ‖n′

i−1(s) + ki−1ni−2(s)‖ (i = 2, . . . , n − 1, n0(s) = t(s)) and

kn−1(s) = − det(γ (s), γ ′(s), · · · , γ (n)(s))/kn−1
1 (s)kn−2

2 (s) · · · k2
n−2(s).

Consider the hyperbolic height function on γ ,

H : I × Sn−1
+ −→ R

(s, v) �−→ 〈γ (s), v〉 = hv(s).

It is a tedious but straightforward task to show that h′
v(s0) = · · · = h(n−1)

v (s0) =
0 if and only if v = ṽ0 ∈ Sn−1

+ , where

v0 = γ (s0) +
n−2∑
j=1

σjnj (s0) ±
√√√√1 −

n−2∑
j=1

σjnn−1(s0),
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σj , j = 1, · · · , n, are real-valued functions that depend on the functions {kj }n−1
j=1

and their derivatives. Moreover, h′
v(s0) = · · · = h(n)

v (s0) = 0 if and only if v

is as above and σn(s0) = 0. Again, the function σn gives a measure of how
far the curve γ is from being contained in a hyperhorosphere and will be called
horospherical hypertorsion of γ .

The horospherical flattenings of a curve γ immersed in Hn(−1) are the zeroes
of the horospherical hypertorsion of γ .

Now, as a corollary of Theorem 4.7 ,we have the following result.

Corollary 4.8. A point x(u) ∈ M∗ is a horospherical ridge of maximal order
(that is, of order ≥ n) of M if and only it is a horospherical flattening of some
horoasymptotic line of M .
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