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Solution of polyhedra

Idjad Sabitov*

Abstract. The paper is an exposition of the author’s talk on the Seminar on Differential
Geometry in IMPA in Rio de Janeiro. It presents a short survey of some recent results in
the metric theory of polyhedra in 3-space. Namely we emphasize on some applicatons
of the theorem which is a vast generalization of the Heron’s formule for the area of a
triangle to volumes of polyhedra.
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1 Introduction: a bit of history

The origin of results about which I am going to talk today is in the theory of
flexions of polyhedra. A flexion of a polyhedron P is a continuous deformation
during which each face of P remains congruent to itself (we mean that all consid-
erations are in three-dimensional euclidean space). A trivial flexion is a motion
of P in the space meanwhile a nontrivial flexion changes at least one dihedral
angle of P . If a polyhedron does not admit any nontrivial flexion it is called con-
tinuously rigid. The first remarkable result in this theory goes back to Cauchy
who proved in 1813 [1] that any convex polyhedron is continuously rigid. In
reality he affirmed that any convex polyhedron is globally rigid (this means that
if two convex polyhedra P1 and P2 have the same combinatorial structure and
congruent corresponding faces then they are congruent or symmetric). But the
Cauchy’s proof of both his famous lemmas contained gapes one of which was
corrected by Lebesgue [2] almost 100 years later and the second one was elimi-
nated still later in [4]1. During a long period of time there was no any example
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1Note that this theorem was conjectured by Legendre in 1794 in the first edition of his ‘‘Eléments
de géométrie’’ [3] and, moreover, in the same book he formulated and proved the lemma about
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of a flexible polyhedron. Only in 1897 [5] Bricard discovered the existence of
flexible octahedra and gave their complete classification. He proved that among
flexible octahedra there are three types distinguished one from other by some
relations between the lengths of edges and disposition in the space.

For example, a flexible octahedron of the 1-st type has the equator ABCD with
equal opposite edges AB = CD, AD = BC (Fig. 1); such a polygon always has
an axis of symmetry p; the vertices (poles) N and N ′ are located symmetricly
relatively to the axis p and the octahedron follows ‘‘in whole’’ the flexions
of the tetrahedral angle NABCD. But all Bricard’s flexible octahedra have
selfintersections. Again only after a long period of time, in 1977, R. Connelly
[6] constructed an embedded flexible polyhedron. It was not an easy success even
psychologically because just before it H. Gluck [12] proved that (in some sense)
almost all topologically sphere-type polyhedra are rigid. Immediately after the
Connelly’s flexible polyhedron some new examples were built, the simplest one
is due to K. Steffen (1978) development of which can be found in many works,
e.g., in [8], [7], and in [9] with a detailed description of this and other flexible
models.
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Figure 1: A flexible octahedron of the 1-st type.
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It turned out that all these polyhedra possess the same property: their vol-
umes remain invariant during the flexion! This observation gave a reason to R.
Connelly to formulate in his talk on Helsinki International Congress of Mathe-
maticians [10] a conjecture that this property is common for all flexible polyhedra
and, by obvious reasons, he called it ‘‘Bellows Conjecture’’ 2. In my talk I’ll
present a proof of ‘‘Bellows Conjecture’’. It turns out that it is an easy corollary
of a more fundamental result related to volumes of polyhedra which has other
interesting consequences too.

convex polygons with the same gap that appeared later in Cauchy’s proof too.
2In reality I don’t know who is the author of the conjecture; Connelly himself told me that he is
responsable only for the title ‘‘Bellows Conjecture’’. Also in 1978 N. Kuiper formulated the same
question in his talk on Bourbaki seminar [11].
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2 Two observations about the volume of a polyhedron

Let K be a given geometrical 2-dimensional symplicial complex (that is its
simplices are euclidean points, segments and triangles) which triangulates an
orientable manifold. We call a mapping P : K → R3 polyhedron with combi-
natorial structure K (of course, it is supposed that the mapping is continuous on
K and linear on its simplices); sometimes we call a polyhedron the image P(K);
images of 0-, 1- and 2-simplices of K are called respectively vertices, edges
and faces of the polyhedron P . Because the faces are triangles any mapping
P : K → R3 is defined by its values in the vertices of P .

This definition of a polyhedron can give very complicated shapes of its image
in three-space, e.g., any selfintersections and degeneracies of faces and edges
are admitted. So we need to introduce a specified definition of the volume of
such a polyhedron. Any considered polyhedron P is an image of an orientable
manifold M; we transfer a choosed orientation of M to P so that any face of P

has a suitable orientation. Let O be a point in R3. We consider now tetrahedra
with O as their common vertex and for which the bases are oriented faces of
P . The sum of oriented volumes of all such tetrahedra is called the generalized
oriented volume of P . It is easy to show that this definition is correct in the sense
that it does not depend on the choice of the point O. Further if the polyhedron
P is embedded then its oriented generalized volume coincides with its ordinary
oriented volume.

If n is the number of vertices of P in R3 then we can associate to P a point
M in R3n with the coordinates (x1, . . . , zn), where (xi, yi, zi), 1 ≤ i ≤ n,

are coordinates of vertices of P , numbered in some fixed order. Conversely
to any point M(x1, x2, x3; . . . ; x3n−1, x3n−2, x3n) ∈ R3n we can associate by the
evidently way a polyhedron if we know in advance its combinatorial structure K .
So we have a bijective mapping between all polyhedra with a given combinatorial
structure and all points in R3n.

The number of edges of P is e = 3n−6+6g where g is the topological genus
of K . Let the edges be enumerated by an index k = k(i, j), 1 ≤ k ≤ e, where
i, j are indices of vertices joined by the edge numbered k. The lengths l of edges
are given by equations

(xi − xj )
2 + (yi − yj )

2 + (zi − zj )
2 = l2

k , 1 ≤ k ≤ e. (1)

If we consider all solutions (x1, . . . , zn) of (1) under the condition that the right
sides, i.e., the lengths lk, are fixed, we obtain all polyhedra in R3 with rigid faces
isometric to P and having the same combinatorial structure K as P has. Now
we want to exclude polyhedra obtained by a parallel translation of P ; for this we

Bull Braz Math Soc, Vol. 35, N. 2, 2004
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add to system (1) three equations
∑

i

xi = 0,
∑

i

yi = 0,
∑

i

zi = 0. (2)

It is easy to show that solutions of (1)–(2) are situated in R3n in a ball B of some
finite radius that is x2

1 + · · · + z2
n < r2 where r depends on the combinatorial

structure K and the set l = (l2
1, . . . , l

2
e ). So the set P̃ of polyhedra in R3,

which have the same combinatorial structure K and isometric to P , is in a
homeomorphic correspondence with the algebraic variety Ã defined by system
(1)–(2). But Ã can have only a finite number of compact connected components
in the ball B. If we add to (1)–(2) three new equations excluding continuous
rotations3 of P then any one-point component of the correspondingly changed
Ã corresponds to a rigid polyhedron from P̃ and the others are composed by
flexible polyhedra from P̃ . Hence we have the first observation: if the Bellows
Conjecture is true then the generalized volumes of all polyhedra from P̃ can
have only a finite number of possible values.

Now we pass to the second observation. Let us remind a formule for the
volume of a tetrahedron as a function of the lengths of its edges:

V 2 = 1

144

[
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1 l

2
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2
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]
,

(3)

where l1, . . . , l6 are the lengths of the edges (Fig. 2).
Let’s consider now a polyhedron P with 5 vertices which has only triangular

faces. Then P is combinatorially equivalent to the model drawn in Fig. 3. For
the oriented volume V of P we have

V = V1 + εV2,

where V1 and V2 are respectively volumes of tetrahedra Ap1p2p3 and Ap1p3p4

and ε = ±1. In this equation we can eliminate ε and we obtain that V satisfies
the equation

V 4 − 2
(
V 2

1 + V 2
2

)
V 2 + (

V 2
1 − V 2

2

)2 = 0. (4)

3By the way it is not known how to write those equations in such a way that they are valid for all
polyhedra with a given combinatorial structure K as this was in the case of excluding parallel
translations by equations (2); for a discussion of this problem see [13].
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But V 2
1 and V 2

2 are expressed by (3) as functions on the lengths of the edges of
P and we can formulate our second observation:

In the simplest cases the volume of a polyhedron is a root of some
polynomial equation whose coefficients depend only on the lengths
of the edges of the polyhedron.
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Figure 2: A tetrahedron.
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Figure 3: A 5-vertices polyhedron.

3 A generalization of Heron’s formula to the volume of a polyhedron

These two observations lead us to an idea that for the validity of the Bellows
Conjecture it is sufficient to prove that for any polyhedron P there exists a poly-
nomial or even an analytic equation defined only by the combinatorial structure
and the metric of P such that the generalized volumes of P and of all isometric
to P polyhedra are roots of this equation. It turns out that this new conjecture is
true. Namely one can prove the following generalization of the Heron’s formula
to volumes of polyhedra.

Theorem 1. Let P̃ be the family of all polyhedra in R3 which have a fixed
combinatorial structure K and fixed values of the edge lengths lk, 1 ≤ k ≤ e,
where e is the number of edges (which is, of course, the same for all polyhedra
in P̃ ). Then there exists a volume polynomial for P̃ , that is, a polynomial

Q(l, V ) = V 2N + a1(l)V
2N−2 + · · · + aN−1(l)V

2 + aN(l), (5)

such that the generalized volume of any polyhedron in P̃ is one of its roots.
Furthermore, the coefficients ai are polynomials in l = (l2

1, . . . , l
2
e ) with rational

coefficients depending on K .

A sufficiently detailed proof of the theorem can be found in [13], [14] and [15],
a sketch of proof is in [16].

Bull Braz Math Soc, Vol. 35, N. 2, 2004
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Corollary 1. The Bellows Conjecture is true.

Indeed the volume of a flexible polyhedron has to be in a continuous depen-
dence on the flexion and simultaneously it can take only a finite number of values
as a root of a fixed polynomial equation; so it is a constant.

4 Some additional information about polynomial equations for the volume

1) An algebraic sense of Theorem 1. Equations (1) say that the squares of the
lengths of the edges of any polyhedron with n vertices are polynomials of the
second degree in coordinates (x1, . . . , zn). This fact we will represent by the
expression l = l(x). On the other hand the generalized volume can be presented
as a polynomial in coordinates (x1, . . . , zn) too. For this we have to use the
representation of the volume of a tetrahedron by the mixed product as a function
of coordinates of vectors composing this tetrahedron. Then the generalised
volume, as the sum of mixed products, will be a polynomial of degree 3, and
this fact we will represent by the formula V = V (x). Now, if we substitute the
polynomial expressions for the volume and lengths in the volume polynomial
Q(l, V ) in (5) then we will have Q(l(x), V (x)) ≡ 0 for all (x1, . . . , zn). In other
words the equation (5) means that the functions l(x) and V (x) are algebraically
dependent.

2) Besides proofs mentioned above there is an other proof of theorem 1, see
[17]. The formulation of the assertion proved in [17] is more general. Namely,
let L be a field (e.g., the field R), p1 = (x1, y1, z1), . . . , pn = (xn, yn, zn) be
images of 0-simplices of an abstract simplicial complexe K under an mapping
P : K → L3 (it is supposed that K triangulates an orientable manifold and n

is the number of 0-simplices of K). The mapping P defines a polyhedron or
a polyhedral surface P(K). Let the generalized volume V of the polyhedron
P(K) be defined as a polynomial in L by the following formula

V = vol (P ) = 1

6

∑

[pi,pj ,pk]∈F+

det [pi, pj , pk],

where the summation is taken over all positively oriented faces F+ of P . Further,
let R ⊂ L be a ring generated by elements (pi −pj)

2 = (xi −xj )
2 +(yi −yj )

2 +
(zi − zj )

2 ∈ L, where pi and pj are images of all those 0-simplices of K which
compose 1-simplices of K (in other words pi and pj are those vertices of P which
are joined by an edge). Then the theorem in [17] asserts that v = 12V , as an
element of L, is integer over the ring R; this means that v satisfies a polynomial
equation

vN + a1v
N−1 + · · · + aN−1v + aN = 0,

Bull Braz Math Soc, Vol. 35, N. 2, 2004
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where all coefficients ai belong to R.

3) The proof in [17] is shorter than other ones but it is not constructive. Con-
trarily, proofs in [14]–[15] are constructive and they permit to find a lot of such
polynomials which are annuled by the volumes of isometric polyhedra with the
same combinatorial structure. By this reason it is interesting to find a canonical
volume polynomial that is one having the smallest degree in V . This is made for
polyhedra homeomorphe to the sphera. In [18] the following theorem is proven:

Theorem 2. Let S be the set of all polynomials Q(l,V) for polyhedra with a
combinatorial structure K of genus g = 0, such that Q(l(x), V (x)) ≡ 0. Let
d be the smallest (non zero) degree in V of the polynomials in S. Then among
the polynomials of degree d in S there is a unique monic (that is whose leader
coefficient is 1) polynomial Q0 which divides all polynomials in S.

Theoretically the procedure of application of Theorem 2 is as follows: we
can construct at least one polynomial from the set S by the proof of Theorem
1, so we have to decompose it in factors with polynomial coefficients and one
of those factors has to be the canonical volume polynomial Q0. But in reality
this procedure is not applicable (at least for the present) because the demanded
quantity of calculations is too big. We found such a canonical volume polynomial
for octahedra by some other method. It is of degree 16 and contains many millions
of monoms! (Compare this with polynomial (1) for a tetrahedron containing 23
monoms and this one (4) for polyhedra with 5 vertices which has approximately
already 1000 terms.) In practice for finding the canonical volume polynomial
it is sufficient to replace lengths l by their given or known values and a special
programme writes the polynomial with numerical coefficients, see [14]. In the
case when some edges of a polyhedron have equal lengths (e.g. by reason of
a symmetry) the canonical volume polyhedron becomes more compact and one
can hope to have for it a sufficiently small expression, see [19] and [20].

In the case of polyhedra of an arbitrary genus g > 0, the problem of finding
and uniqueness of the canonical volume polynomial is an open question.

4) Volume polynomials have to reflect some geometrical properties of those
polyhedra for which they are constructed. For example one can show that if
a considered polyhedron is flexible then it has a volume which is a multiple
root of the volume polynomial constructed in the proof of Theorem 1, [21]. We
conjecture that this property is common for all volume polynomials including
canonical ones. Moreover the order of multiplicity of a root has to be related
with some characteristics of discrete isometric transformations of the polyhedron
under consideration.
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Further, the volume polynomial has to reflect some symmetry properties of
the polyhedron via some properties of Galois group of the polynomial.

5) A necessary condition for isometric realizability of a given polyhedral metric.
For any polyhedron a volume polynomial Q(V ) can be composed using only its
combinatorial structure K and the lengths of its edges, that is, we don’t need to
know the polyhedron itself. By this reason, if a development D of triangles is
given for which we know that topologically it is homeomorphic to an orientable
manifold then we can construct a volume polynomial Q(V ) for volumes of
polyhedra whose faces are congruent to corresponding triangles of D. Thus, we
did not yet find a polyhedron isometric to the development D in the indicated
sense but we know already that the volume of that polyhedron must be among
roots of the constructed polynomial Q(V ). From this we deduce: if all roots V 2

of Q(V ) are negative or complex then the given development is not isometrically
realizable in R3 as a polyhedron with given faces. So existence of at least one
nonnegative root of Q(V ) is a necessary condition for the isometric realizability
of the given development D.

6) Note that Theorem 1 is proven only in the 3-dimensioanal Euclidean space. In
the spherical space it is not true [22]. For other cases, namely in the hyperbolic
space as well as in multidimensional Euclidean spaces the question is still open.

7) Recently J.-M.Schlenker presented at the Bourbaki seminar a beautiful survey
on the topic [23].

5 Polyhedra with given volumes

Let Q(V ) be a volume polynomial constructed using only a given development
D of triangles. Let V 2

0 ≥ 0 be a root of this polynomial. The question is: can
we affirm that this root is the square of the volume of a polyhedron isometric
to D? If the answer is ‘‘yes’’ we will say that the root V0 is realisable as the
volume. This question is far to be solved and some first results obtained in
[24] show that the situation has to be very complicated. Now we can work
closely only with some special octahedra for which the polynomial Q(V ) can
be written explicitly. Namely let K be a metrical simplicial complex, that is, to
any 1-dimensional simplex of K a positive number is prescribed considered as
its length. We know that we can compose a polynomial equation

Q(V ) = V 2N + a1(l)V
2N−2 + · · · + aN(l) = 0,

such that the volume of any polyhedron P(K) isometric to K is a root of this
equation. In the general case even for an octahedron this equation is too com-
plicated to be written explicitly. But if an octahedron has a symmetry then some

Bull Braz Math Soc, Vol. 35, N. 2, 2004
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of its 12 edges have the same values of lengths and in this case the coefficients
ai(l) may be presented explicitly on the paper. Let an octahedron be modelled
as on the Fig. 4. Let’s denote K an octahedron with the following lengths of
edges

|A1B1|2 = |A2B2|2 = a, |A1B2|2 = |A2B1|2 = b, |B1C1|2 = |B2C2|2 = c,

|B1C2|2 = |B2C1|2 = d, |A1C1|2 = |A2C2|2 = e, |A1C2|2 = |A2C1|2 = f.

Then the polynomial equation for the volume is as follows

Q(V ) = V 16 − 4
[
ab(c + d + e + f − a − b)

+ cd(a + b + e + f − c − d) + ef (a + b + c + d − e − f )

− (ace + adf + bcf + bde)
]
V 14 = 0,

where V = 6v = 6 vol P(K).
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Figure 4: An octahedral model.

Theorem 3 ([24]). If the root

V 2 = 4
[
ab(c + d + e + f − a − b) + cd(a + b + e + f − c − d)

+ ef (a + b + c + d − e − f ) − (ace + adf + bcf + bde)
]

of the equation Q(V ) = 0 is positive then v(= V/6) can be realised as the
volume of an octahedron isometric to K with the given above lengths of the
edges.
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Let’s consider a model of K with the following lengths of the edges:

|A1B1|2 = |A2B2|2 = a, |A1B2|2 = |A2B1|2 = b, |B1C1|2 = |B2C1|2 = c,

|B1C2|2 = |B2C2|2 = d, |A1C1|2 = |A2C1|2 = e, |A1C2|2 = |A2C2|2 = f.

In this case the polynomial equation is of form

Q(V ) = V 16 + p(l)V 14 + q(l)V 12 = 0, V = 6v = 6 vol (P ).

After the reduction we have an equation Q1(V ) = V 4 + pV 2 + q = 0.

Theorem 4 ([24]). 1) If the equation Q1(V ) has only one positive root V 2

then v = V/6 is the volume of a really existing octahedron P(K) isometric to
K . 2) If the equation has two different positive roots V 2

1 and V 2
2 then the both

v1 = V1/6 and v2 = V2/6 are volumes of really existing octahedra isometric to
K . 3) If the positive root of the equation is multiple (that is V 2

1 = V 2
2 > 0) then

v1 = V1/6 is the volume of a really existing octahedron under the additional
condition −ab + cd − ed − cf + ef �= 0, otherwise the existence of such an
octahedron is not obligatory.

6 Algorithmic solution of the problem of isometric realization of a given
development of triangles

To construct a polyhedron from a given development of triangles as its
‘‘material’’ it is sufficient to find dihedral angles between its faces. or to know
the lengths of diagonals joining two not common vertices of two faces with a
common edge; we will refer these diagonals as small ones. It turns out that,
for any small diagonal of a polyhedron which is generic in some sense, one can
prove the following theorem [25]:

Theorem 5. For every small diagonal there is a polynomial equation whose
coefficients depend only on the metric and the combinatorial structure of the
polyhedron, and, for polyhedra in a general position, not all these coefficients
are zero.

Thus the set of possible values of lengths of small diagonals is finite and we
can test all possible isometric realizations in a finite number of steps.

Now we see that we can find any metric characteristic of a polyhedron if we
know its combinatorial structure and metric. We call this kind of calculus ‘‘so-
lution of polyhedra’’ by analogy with well known term ‘‘solution of triangles’’.
And we can say that the metric theory of polyhedra becomes a finite science at
least in the same sense as chess is a finite play.
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