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Foliations on 3-manifolds which are
the classifying space of themselves

Paulo Gusmão∗ and Alberto Sarmiento

Abstract. We classify the closed foliated 3-manifolds M, with codimension one folia-
tions of nonexponential growth and which are homotopy equivalent to their classifying
space B�. Then we construct arbitrarily “large” manifolds with foliations with of any
growth type and satisfying π1(M) = π1(B�).

Keywords: Foliations, classifying space.

Mathematical subject classification: 57R30, 57R32.

1 Introduction

Given a manifold M with a foliation F we associate to the holonomy pseu-
dogroup � of F the classifying space B� of Haefliger (see [Hae]). This space
is in general of infinite dimension and can be seen as a foliated space by a foli-
ation ϒ whose holonomy covering of each leaf is contractible. Moreover, there
exists a map f : M → B� such that f ∗ϒ = F which is unique up to homotopy
equivalence. The interest in understanding this space comes from the fact that
the homotopy, homology or cohomology groups of the classifying space B� are
invariants of the transverse structure. The characteristic classes of foliations F
(e.g. the Godbillon-Vey invariant) come from universal classes defined in the
cohomology of B�.

IfF is such that the holonomy covering of each leaf is contractible, then up to
homotopy equivalence,M is its classifying space. This is the case, for example,
when M is a 3-manifold and F is a foliation of M by surfaces other than the
sphere or the projective plane, and such that the holonomy of each leaf is an
injective representation of the fundamental group of this leaf. That will be one
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of the subjects of this paper. For all the assertions previously made, we refer to
[Hae].

The most accessible invariant associated to B� is its fundamental group
π1(B�), because it has an explicit definition: it is the quotient of π1(M) by the
normal sub-group L, generated by the free homotopy classes of loops contained
in leaves, and of trivial holonomy [Sal]. In [Gus] this group was characterized
whenMn is a closed manifold of dimension n andF is aCr (r ≥ 2) transversely
orientable codimension one foliation almost without holonomy. In this case, it
is isomorphic to the fundamental group of certain graph of groups (G,Y) where
the groups of edges and vertices are abelian. The graph Y is obtained starting
from the decomposition in models for codimension one foliations (see sec.2).

Another purpose of this work is to understand foliations which satisfyπ1(M) =
π1(B�). Let us note that in this case, any loop freely homotopic to a loop of
trivial holonomy is trivial in M . In particular, any leaf L without holonomy
is completely compressible, i.e., π1(L) is mapped to zero in π1(M). So this
situation when M has dimension 3 and F has codimension one is the opposite
of that of foliations without Reeb components, since in the latter case the fun-
damental groups of leaves are injectively mapped into the fundamental group of
the manifold.

Let M be a 3-manifold with a transversely orientable codimension one folia-
tion. We say that (M,F) satisfies properties P1, respectively P2 if:

[P1] M is its own classifying space, i.e., the covering of holonomy of each leaf
is contractible.

[P2] π1(M) = π1(B�).

Note that the second property says that any loop freely homotopic to a loop of
trivial holonomy in a leaf bounds a disc in M , and thus, P1 implies P2. Clearly
the converse is not true. On the other hand, if F is without holonomy, the two
properties are equivalent (indeed, since the trivial foliation of S2 × S1 is ruled
out, the leaves are planes and M is the torus T 3 [Ro]). Thus we conclude that,
in this case, these properties impose strong restrictions on the topology of the
leaves and also on the manifold, so it is natural to expect the same thing for
foliations with more complicated transverse structure. Nevertheless, we will see
that this is not the case, at least if property P2 holds.

We shall consider these properties in the following cases:

1) Foliations with nonexponential growth satisfying property P1

2) Foliations satisfying property P2.
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Concerning the first problem, we prove the following:

Theorem 1. Let M3 be an orientable closed manifold, and F a codimension
one foliation, transversely orientable with nonexponential growth. IfF satisfies
P1, then the depth k of F is finite, and it is equal to 0 or 1. If k=0, thenM = T 3

foliated by planes. If k=1 (thus almost without holonomy) and F does not have
Reeb components, thenM3 is a fibration over S1 with fiber T 2, and the foliation is
(up to conjugation) as in Example 1 (see section 3). IfF has a Reeb component,
then (M,F) is (up to smash a product T 2 × [0, 1] foliated as in Example 1)
obtained by gluing two copies ofD2 × S1 by a diffeomorphism of the boundary,
each one with a Reeb foliation.

Then, starting from a certain number of examples (Section 3), we show that
property P2 does not impose any restriction on the growth of the leaves. More
precisely, we prove:

Theorem 2. Given n, g ∈ N, there exists a manifold M3 with a transversely
orientable codimension one foliation F of class Cr (r ≥ 2) satisfying π1(M) =
π1(B�) with any number of compact surfaces �g of genus g, and such that
the fundamental group of the associated graph Y is the free group Fn, which is
injected into π1(M). Moreover, for each k ∈ N, there exist saturated open sets
U1, . . . , Uk such that F |Ui has one of the following growth types:

a) polynomial growth;

b) quasipolynomial but nonpolynomial growth;

c) nonexponential but not quasipolynomial growth, or

d) exponential growth.

This paper is structured as follows. In Section 2, we recall what models of
codimension one foliations are. We devote Section 3 to present several examples
of foliated manifolds satisfying property P2. We prove Theorem 1 in Section 4
and Theorem 2 is proved in Section 5.

2 The models of codimension one foliations and the graph Y

In this section F is a C2 transversely orientable codimension one foliation on
a closed manifold M of dimension n. If the set of compact leaves C(F) is
nonempty, then C(F) is a saturated compact subset of M .

Following [F.S], two compact leaves F and F ′ are equivalent if there exists an
immersion h : F × [a, b] → M satisfying the following conditions:
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1. For every t ∈ [a, b] the restriction of the map h to F ×{t} is an embedding
of F in M ,

2. h(F × {a}) = F and h(F × {b}) = F ′,

3. For each x ∈ F , the path hx : (a, b) → M is transverse to F .

We observe that the condition 3 implies that the foliation h∗(F) is defined by
a suspension. The following results are proved in [F.S]:

a) F has finitely many equivalence classes of compact leaves;
b) Let � be the set of all immersions which realize some equivalence of

compact leaves equivalent to F . Then

⋃

h∈�
h(F × [a, b])

is a compact subset of M , saturated by F and contains all the compact leaves
equivalent to F . This compact set will be referred as the support of F and it will
be denoted by supp[F ];

c) There exist h0 ∈ � such that supp[F ] = h0(F × [a, b]);
d) IfF andL are not equivalent compact leaves ofF , then supp[F ]∩supp[L] =

∅.
If we denote

A =
⋃

F∈C(F)
supp[F],

then by a) and c) above A has finitely many number of connected components.
We see that the complement M − A is a finite union of connected saturated
open sets U1, . . . , Uk each one without compact leaves. Moreover, for each
i ∈ {1, 2, . . . , k} we can find a compact manifold with boundary, Vi , and a
differentiable immersion hi of Vi in M with the following properties:

i) hi is a diffeomorphism of the interior of Vi to Ui ;

ii) hi is a diffeomorphism of each connected component of the boundary of
Vi to a compact leaf of F contained in the closure Ui of Ui ;

Definition 1. We call a model of type 1 each one of the connected components
of A; and each connected components of M −A is called model of type 2.
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FOLIATIONS ON 3-MANIFOLDS 257

Now, we define a graphY associated to (M,F) as follows: its vertices are the
models of type 2; its edges are the models of type 1. Observe that if F ∈ C(F) is
such that supp[F ] = F , then F is a common boundary of two models of type 2,
all attached to the vertices in an obvious way or, alternatively, two components of
the boundary of one of these models can be identified in M, which gives a cycle
in Y with only one vertex and one edge. This situation is depicted in Figure 1
below.

� �

�

� � �

� 


� �

Figure 1:

3 Examples

In this section, we give some examples of closed 3-manifolds with foliations
which satisfy property P2. In what follows, “make Reeb surgery along a closed
transversal curve γ ” means to remove a tubular neighbourhood of γ and then
spiral the leaves along to the boundary.

Example 1. Consider T 2 ×[0, 1] with a foliation transverse to the [0, 1] factor
and tangent to the boundary, such that the holonomy of compact leaves (tori) has
rank 2. So the open leaves are planes. Now, let us identify the two components
of the boundary by a diffeomorphism. We thus obtain a fibration over S1 with
fiber T 2 with foliations satisfying P2.

Example 2. Given T 3 with a foliation by planes, choose a finite number of
disjoint closed transversals and do Reeb surgery. Then we obtain a compact
manifold M with boundary, where each open leaf is homeomorphic to a plane
with countable disjointed open discs removed, and gluing a half-cylinder S1 ×
[0,∞) along each boundary component. These cylindrical ends are proper and
accumulate each one over a component of the boundary, while the end of the
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plane is dense in
◦
M . Now, gluing a Reeb component along each boundary

component of M , in order to eliminate the generator of the fundamental group
of the proper ends which adhere to the respective boundary component of M ,
one obtains a closed manifold with an almost without holonomy foliation which
satisfies P2. The associated graph Y is as in Figure 2.

Figure 2:

Example 3. This example is a modification of an example in [C.C2] in a dif-
ferent context. Consider onD2 ×S1 the foliation obtained in the following way:
On T 2 × [0, 1] let us take the dense foliation by planes whose holonomy of
each boundary component has rank two. Then, glue a Reeb component to the
boundary T 2 × {1}.

We denote by α and β the generators (of the fundamental group) of T 2 × {0},
null homotopic inD2 × S1 and non null homotopic respectively. Now, we make
the Reeb surgery along a closed transversal curve γ freely homotopic to α. So
we obtain a compact manifold V with two boundary components, T1 = T 2 ×{0}
and T2, obtained by Reeb surgery (see Figure 3).

� � � � �	




Figure 3:

We denote by δ and the same γ the generators of the fundamental group of the
boundary component T2 (see Fig. 3). Now let us glue the two components of the
boundary of V by identifying α and β of T1 respectively with δ and γ of T2 to
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obtain a closed manifoldM . If the direction of Reeb surgery is well chosen, the
loop ω (see Fig. 3) is transverse to the foliation and again the open leaves are as
in Example 2. Also let us note that the loops of trivial holonomy are all freely
homotopic to the loop δ (or to some power of δ) of the compact leaf T2, which
coincides with T1 after identification. Then they are all trivial in π1(M) and so
(M,F) satisfies P2. Observe that the manifoldM is homeomorphic to S1 × S2,
where the factor S1 is represented by the transverse curve ω (see [C.C2]). The
graph Y is depicted in Figure 4.

� � �� �

Figure 4:

Also note that, instead of taking dense foliations by planes of T 2 × [0, 1] we
could have taken foliations by cylinders, where the ends of the cylinder spiral in
opposed directions around each boundary component. By doing so, we would
obtained a manifold M with a proper foliation.

In the examples above, the associated graphs have at most one cycle. Now we
will give an example where the graph Y has two cycles and one Reeb component.

Example 4. Let us fix initially the manifold with boundaryV1 = V of Example
3 with boundary components T1 and T2 and of another side, consider a copy
of T 2 × [0, 1] with dense foliations by planes tangent to the boundary. Let
us make the Reeb surgery along a closed transverse curve λ homotopic to the
parallel β of T3 = T 2 × {0}. The manifold obtained V2 has three boundary
components, namely, T3, the torus T4, boundary of the tubular neighbourhood,
and T5 = T 2 × {1} (see Figure 5). If we denote by θ and λ respectively the
meridian and the parallel of T4, let V be the manifold obtained gluing V1 and V2

by their boundaries in the following way: we glue T1 ∈ ∂V1 with T3 ∈ ∂V2 by
identifying the meridian α of T1 with the parallel β of T3 and the parallel β of
T1 with the meridian α of T3; in the same way, we glue T2 ∈ ∂V1 with T4 ∈ ∂V2

identifying the meridian δ of T2 with the parallel λ of T4 and the parallel λ of T2

with the meridian θ of T4.
The manifold V , with the foliation F ′ obtained, has only one boundary com-

ponent T5. It satisfies P2 because in V1 the loops of trivial holonomy (except
those in the Reeb component, which are trivial in π1(V )) are all homotopic to
δ or to some power of δ. Furthermore δ has been identified with λ, which is
homotopic to β (the parallel of T3). Let us note that in V , β is identified with
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Figure 5:

α (meridian of T1), therefore it is trivial in π1(V ). In the same way, in V2 the
loops of trivial holonomy are all homotopic to θ or to some power of θ , and θ in
V is identified with γ (parallel of T2), which is trivial in π1(V ). The associated
graph with (V ,F ′) is as in Figure 6a.

Now, if we denote by θ1 and θ2 respectively the meridian and the parallel
of T5, let N be the manifold obtained from V2 above, by gluing T3 with T5

an identifying their meridians and parallels. Now let us glue V and N by their
boundaries identifying the meridian θ1 ofT5 = ∂V with the parallelλ ofT4 = ∂N

and the parallel θ2 of T5 = ∂V with the meridian θ of T4 = ∂N . But in V , θ2 is
homotopic to β = α 
 0. Again, the foliated manifold (M,F) obtained satisfies
P2 and is such that all noncompact leaves are planar surfaces, each one of them
with countable proper ends, and only one end is locally dense. The associated
graph is as in Figure 6b.

�

� � �
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� 	


 �

�

(a) (b)

Figure 6:

In the examples above, the noncompact leaves are planar surfaces and the
compact leaves are tori. In the next example the compacts leaves are tori and
compacts surfaces of genus g ≥ 2. The noncompact leaves which adhere to

Bull Braz Math Soc, Vol. 35, N. 2, 2004



FOLIATIONS ON 3-MANIFOLDS 261

those surfaces have infinite genus.

Example 5. In Example 3, instead of taking the foliation of T 2 × [0, 1] by
dense planes, let us take the foliation by proper cylinders which accumulate on
each boundary component. Let us make then the same operations to obtain the
manifoldM of the Example 3. Let us note that we can take the transverse curve γ
so that it meets each leaf in a single point. Thus, inM ≈ S1×S2, the noncompact
leaves which are not contained in the Reeb component have three ends ε1, ε2, ε3,
and the foliation contains only two compact leaves: T1 = T2 and the boundary
of the Reeb component.

Now let us remove the interior of a small tubular neighbourhood of the trans-
verse curve ω and make the double along the boundary. By this operation the
toric leaf T1 becomes a surface of genus 2. Let us note that, before making the
double, each open leaf (out of the Reeb component) has two ends, say ε1 (which
adhere to T1 along γ ), ε2 (which adhere to T1 along α) which intercepts ω in an
infinite discrete set {p1n}n∈N, respectively {p2n}n∈N. Thus, by making the dou-
ble we are gluing the leaves L, L′ (in each copy used in the double ) along the
circles Cin Cin′ which are the boundary of L− {pin}, respectively L′ − {pin}. In
particular, the leaves have infinite genus (see Figure 8). The manifold obtained
is still homeomorphic to S1 × S2 because we remove the interior of a solid torus
and glue another solid torus. Let us note that the compact leaf �2 is completely
compressible in M , i.e., if i : �2 → M is inclusion, then i∗(π1(�2)) = 0.

Let us indicate α, β, α′, β ′ the generators of π1(�2) and θ as in Figure 7.

�
�

Figure 7:

If (ε1n, ε′
1n), (ε2n, ε′

2n) are the loops indicated in Figure 8, then they are freely
homotopic to (α, α′), respectively (β, β ′), hence they are trivial in π1(M). The
generators of the fundamental group of the ends ε3, ε′

3 spinning asymptotically
along to each Reeb component are also homotopic to β, respectively β ′, so they
are trivial as well. It is easy to see that the loopsC1n andC2n are freely homotopic
to θ for all n ∈ N.
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It remains to see that the loops indicated in Figure 8 below are also trivial.
One can see in fact that the loop which passes from a “tube” C1i to the “tube”
C1(i+k) is freely homotopic to βk.β ′k, while that which passes from a “tube” C2i

to the “tube” C2(i+k) is freely homotopic to αk.α′k, hence trivial in M .
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Figure 8:

We note that if we make this surgery along g closed transversal curves, homo-
topic to the factor S1 of S1 × S2, we obtain a foliation of S1 × S2 which satisfies
P2 and has as leaf a compact surface �g of genus g, and g Reeb components.
Denote this foliation by F , and for an integer n ≥ 1, let us take a closed simple
transversal curve which makes n turns along the factor S1. The associated finite
cyclic covering gives us a foliation of S1 × S2, which still satisfies P2 and con-
tains n compact surfaces �g as leaves. If one would have taken dense foliations
by planes of T 2 × [0, 1] at the beginning, this construction would have given a
foliation of S1 × S2 with locally dense leaves of infinite genus.

To close this section, we note that, in all examples above, the fundamental
group of the graph Y is injectively mapped into the fundamental group of the
manifold.

4 Property P1 and foliations with nonexponential growth

In this Section, M3 is a closed orientable manifold and F is a transversely
orientable codimension one foliation of class at least C2, with nonexponential
growth. The goal here is to prove Theorem 1. We recall some definitions and
results about foliations with nonexponential growth ([C.C3]).
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Any compact leaf L ofF will be called of level zero ; a leaf L ofF is of level
k > 0 if L−L contains only leaves of level at most k− 1 and at least one leaf of
level k − 1. The substructure S(L) of L is the union of all leaves of L of level
strictly lower than the level of L. If each leaf of S(L) is proper, we say that L
has a totally proper substructure . If, in addition, L is proper, we say that L is a
totally proper leaf . If L has nonexponential growth then the substructure S(L)
of L is totally proper.

Proof of the Theorem 1. First of all we shall prove the assertion about the
depth of F . If F does not have a compact leaf, then it follows by Plante’s
result that F is without holonomy [P]. Therefore, by property P1, the leaves
are planes and M = T 3 [R.R]. Suppose that the set C of compact leaves is not
empty and let L′ be a non compact leaf of F and L ⊂ S(L′). We claim that
L is compact. Indeed, let us suppose that this is not the case, and let T be a
compact leaf in L. Fix x0 in T and let γ : (−ε, ε) → M with γ (0) = x0

be an arc transverse to the foliation. Property P1 implies that the holonomy
representation φ : π1(T ) → Diff((−ε, ε), 0) of T is injective. By Reeb’s
Theorem, its genus g(T ) ≥ 1. If g(T ) > 1 then the holonomy group of T
has exponential growth. Thus we have g(T ) = 1. Since L is totally proper, the
lateral holonomy of T in the side whichL approaches is cyclic. Then there exists
ψ : T 2 × [0, 1] → M such that ψ(T 2 × {0}) = T , ψ(T 2 × {1}) is transverse
to F and the leaves of F |ψ(T 2×(0,1)) are half-cylinders which spiral around T .
These half-cylinders are ends of open leaves of F . Since for each one of these
ends the generator of the fundamental group of the end has trivial holonomy,
the property P1 implies that they are trivial in the fundamental group of the leaf.
Therefore these leaves, in particular L and L′, are proper planes that accumalate
in T , which is a contradiction with the fact that L ⊂ S(L′). So, our claim is
proved.

Since the substructure S(L) for any leaf is a union of compact leaves, every
noncompact leaf has trivial holonomy; by property P1, they are planes and the
compact leaves are torus, each one with holonomy of rank two. However, each
model is a manifold with boundary, foliated by planes and tori tangent to the
boundary. According to the classification in [R.R.], each model is homeomorphic
either toT 2×[0, 1] with a transverse foliation to the factor [0, 1], as in Example 1,
or toD2 ×S1 with a Reeb foliation. Thus, ifF does not have a Reeb component,
all models are of type 1 and, sinceM is closed, it is a fibration over S1 with fiber
T 2 foliated as in Example 1.

Let us note that, in the other case, the single models of type 2 are the Reeb
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components; thus each vertex of the associated graph Y is attached to a single
edge; as a consequenceY consists of two vertices and one edge. This edge corre-
sponds either to a common boundary of two models of type 2, or a submanifold
ofM homeomorphic to T 2 ×[0, 1] with a transverse foliation to the factor [0, 1],
as in Example 1. In the first case, since the holonomy of the compact leaf is
abelian of rank two, (M,F) is obtained by gluing two copies of D2 × S1 with
Reeb foliations, by a diffeomorphism of T 2 which keeps this property. In the
second case, since each boundary component of T 2 × [0, 1] has abelian lateral
holonomy of rank two, the two Reeb components can be glued to each one of
these components by any diffeomorphism of T 2. �

We note that if F has exponential growth and satisfies property P1, then the
problem becomes nontrivial. We do not even know if the surfaces �2 can be
leaves of such foliations. The following question has been posed by Etienne
Ghys and Takashi Tsuboi:

Question 1. Does exist an injective representation of π1(�2) in the group of
diffeomorphisms Diffr (R, 0) (r ≥ 1) of R which fix zero?

5 Foliations satisfying π1(B�) = π1(M)

We will show Theorem 2 which indicates that is not probable that exists a clas-
sification of the foliated manifolds satisfying P2.

Proof of Theorem 2. Let (V ,F ′) be the foliated manifold of Example 4, such
that the associated graph is as in figure 6a. Let us consider S1 × S2 with the
foliation with k surfaces �g as leaves, as in the Example 5.

We see that the associated graph is as in figure 9a below. Let us remove the
interior of one of the Reeb components. The manifold N obtained has a toric
boundary component and the graph is as in figure 9b.

� � � � � 	 
 � 	 � � � � �

(a) (b)

Figure 9:
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Now we glue V and N by their boundaries changing meridian by parallels
where the meridian of ∂N is the nul homotopic curve in the Reeb component
removed. To see that the obtained foliated manifold W satisfies P2 it is enough
to show that any loop in N which is trivial in the Reeb component removed is
also trivial in W . These loops are freely homotopic to the meridian (or powers
of the meridian) of ∂N which, after gluing, corresponds to the parallel of ∂V ,
and hence it is trivial in W .

The graph Y associated toW is as in figure 10a, and we can repeat the surgery
along each Reeb component to obtain the foliated manifold W ′ which satisfies
P2, and whose graph is as in figure 10b.

(a) (b)

Figure 10:

Now, for each new Reeb component, we can repeat the operation until we
obtain the desired manifold M , whose graph Y has n cycles. It is clear, by
construction, that π1(Y ) = Fn is injected into π1(M). By construction, this
foliation is almost without holonomy, and thus with polynomial growth [Hec].
In [C.C4] the authors build on �2 × [0, 1] foliations with each types of growth
a), b), c) or d). These constructions are valid for �g × [0, 1] and thus we can
replace in M the compact leaves �g by a product �g × [0, 1] provided with
foliations with each one of types of growth a), b), c), or d). Since the leaves
�g are totally compressible in M , it is clear that the obtained foliated manifold
satisfies property P2. �

Corollary 1. Let (M3,F) be a foliated manifold which satisfies property P2 and
let Y be the associated graph, with π1(Y ) = Fn (where for n=0, Y is a tree and
for n=1, F1 = Z). Then, for all k ∈ N, one can modify (M3,F) by a surgery
in order to obtain a manifold (M ′,F ′) which still satisfies P2, and such that the
associated graph Y ′ has as its fundamental group the free group Fn+k.

Proof. IfF has no Reeb component, we saw that M is a fibration over S1 with
fiber T 2 foliated as in Example 1. Let γ be a transversal loop in the interior of one
of the connected components of the complement of the compact leaves, andN the
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manifold with boundary obtained by Reeb surgery along γ . Now glueN with the
manifold V of Example 4 by their boundaries, changing meridians by parallels.
In the same way as in the proof of Theorem 2, the foliated manifold (M1,F1)

obtained satisfies propertyP2, and the associated graph has as fundamental group
the free group with two generators F2. Now let us remove the interior of the Reeb
component of F1 and by the same way let us glue its border with ∂V . We thus
obtain a manifold (M2,F2) which satisfies P2, and its associated graph has as
fundamental group the free group with three generators F3. By repeating this
operation k− 2 times, we obtain (M ′,F ′), which satisfies P2 and the associated
graph has as fundamental group the free group Fk+1.

Now, ifF has Reeb components, we makes this operation k times, on the basis
of one of the Reeb components to obtain the desired manifold (M ′,F ′). �

If F has nonexponential growth we ask the following questions:

Question 3. What is the fundamental group of the foliated 3-manifolds satisfy-
ing property P2 ?

Question 4. If F is a C2 transversely orientable codimension one foliation of
a closed manifold of dimension n, what is the fundamental group of B�?

The first author thanks The École Normale Supérieur de Lyon for its hospitality
during the begining of this work, and would like to thank all members of its
Laboratory of Pure Mathematics and the support of CNRS. We also thank Thierry
Barbot, Damien Gaboriau and Etienne Ghys for interesting discussions.

References

[C.C1] J. Cantwell and L. Conlon, Leaves with isolated ends in foliated 3-manifolds.
Topology 16 (1977), 311–322.

[C.C2] J. Cantwell and L. Conlon, Leaf prescriptions for closed 3-manifolds. Trans.
Amer. Math. Soc., 236 (1978), 239–261.

[C.C3] J. Cantwell and L. Conlon, Growth of leaves. Comm. Math. Helv., 53 (1978),
93–111.

[C.C4] J. Cantwell and L. Conlon, Nonexponential leaves at finite level. Trans. Amer.
Math. Soc., 269 (1982), 637–661.

[F.S] S. Firmo and A. Sarmiento, Codimension one foliations without unstable com-
pact leaves. Topology and its applications, 20 (1997), 1–21.

[G] C. Godbillon, Feuilletages -Études Géométriques. Birkhaüser, 1991.

Bull Braz Math Soc, Vol. 35, N. 2, 2004



FOLIATIONS ON 3-MANIFOLDS 267

[Gus] P. Gusmão, Groupes fondamentales des feuilletages de codimension un mesurés.
J. Math. Science the Univ. of Tokyo, 2 (1994), 393–422.

[Hae] A. Haefliger, Structure transverse des feuilletages. Astérisque, 116 (1984),
70–97.

[Hec] G. Hector, Croissance des feuilletages presque sans holonomie. Lect. Notes,
School of Topology PUC, 1976.

[P] J. F. Plante, Foliations with measure preserving holonomy. Ann. of Math., 102
(1975), 327–361.

[Ro] H. Rosenberg, Foliations by planes. Topology, 7 (1968), 131-138.

[R.R] H. Rosenberg and R. Roussarie, Reeb foliations. Ann. of Math., 91(2) (1970),
1–24.

[Sal] E. Salem, Riemannian foliations and pseudogroups of isometries, appendix D.
in P. Molino, Riemannian foliations. Progress in Mathematics, 73 Birkhaüser,
1988.

Paulo Gusmão
Universidade Federal Fluminense
Instituto de Matemática
Departamento de Análise
Rua Mário Santos Braga s/n Valonguinho
24020-005 Niterói, RJ
BRASIL
E-mail: gusmao@mat.uff.br

Alberto Sarmiento
Universidade Federal de Minas Gerais
Departamento de Matemática
ICEX Caixa Postal 702,
30123-970 Belo Horizonte, MG
BRASIL
E-mail: sarmiento@.mat.ufmg.br

Bull Braz Math Soc, Vol. 35, N. 2, 2004


