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Markov subshifts and partial representation of Fn

Danilo Royer∗

Abstract. In this paper we fix a set �∗ of positive elements of the free group Fn (e.g.
the set of finite words occurring in a Markov subshift) as well as n partial isometries on
a Hilbert space H . Based on these we define a map S : Fn → L(H) which we prove to
be a partial representation of Fn on H under certain conditions studied by Matsumoto.

Keywords: Markov subshift, partial representation.

Mathematical subject classification: 47D99, 37B10.

1 Introduction

Considering a Markov subshift on an alphabet {g1, . . . , gn}, R. Exel proved in
[3] that n partial isometries on a Hilbert space H , satisfying the corresponding
Cuntz–Krieger relations, give rise to a partial representation of the free group
Fn on H , that is, a map S : Fn −→ L(H), satisfing S(t−1) = S(t)∗ and
S(tr)S(r−1) = S(t)S(r)S(r−1) for all r, t in Fn.

In this work we fix a set �∗ of positive elements of Fn which, among other re-
quirements is assumed to be closed under sub-words, and we take a set
{S1, . . . , Sn} of partial isometries on H . We define a map S : Fn −→ L(H)

by S(r1 . . . rk) = S(r1) . . . S(rk), where S(ri) = Sj if ri = gj , S(ri) = S∗
j if

ri = g−1
j and r = r1 . . . rk is in reduced form.

Under certain conditions studied by Matsumoto in [1], we prove that the map
S is a partial representation of Fn on H . Since Matsumoto’s conditions gener-
alize the Cuntz-Krieger relations our result is a generalization of Exel’s result
mentioned above.

This paper is based on the author’s Masters thesis at the Federal University of
Santa Catarina under the supervision of Ruy Exel.
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2 Partial Representations of Fn

Let us consider the Free Group Fn generated by a set of n elements, G =
{g1, . . . , gn}. The elements of Fn can be written in the form r = r1 . . . rk where
each ri ∈ G ∪ G−1. We say that r is in reduced form if ri �= r−1

i+1, for each
i. Two elements r = r1 . . . rk and s = s1 . . . sl of Fn, in reduced form, are
equal if and only if l = k and ri = si , for all i. In this way, each element, in
reduced form, have unique representation and we define its lenght by the number
of components, that is, if r = r1 . . . rk is in reduced form then r have lenght k,
wich will be denoted by |r| = k. A element r = r1 . . . rk of Fn, in reduced form,
is called a positive element if ri ∈ G, for all i, and the set of all positive elements
will be called P . We consider e a element of P .

Let us fix a set �∗ ⊆ P with the following properties:

• e ∈ �∗,

• G = {g1, . . . , gn} ⊆ �∗,

• �∗ is closed under sub-words, that is, if ν = ν1 . . . νk ∈ �∗ then each
element of the form νi . . . νi+j with i = 1 . . . k, j ∈ N is a element of �∗.

For all µ ∈ �∗ we define the following sets:

L1
µ = {gj ∈ G|j = 1, . . . , n, µgj /∈ �∗},

Lk
µ = {ν = ν1 . . . νk ∈ �∗|µν1 . . . νk−1 ∈ �∗, µν /∈ �∗}, ∀k ∈ N.

Lemma 1. Let µ ∈ �∗ and r, s ∈ P . If vr = v′s, where v ∈ Lk
µ and v′ ∈ Ll

µ,
then v = v′.

Proof. Suppose by contradiction that v �= v′. Then |v| �= |v′|, because other-
wise, v1 . . . vkr = v′

1 . . . v′
ks, from where it follows that v = v′. Without loss of

generality suppose |v| > l, write v = v1 . . . vl . . . vk and v′ = v′
1 . . . v′

l . Since
v1 . . . vl . . . vkr = vr = v′s = v′

1 . . . v′
ls, then v1 . . . vl = v′

1 . . . v′
l , and therefore

v = v′vl+1 . . . vk. Since v′ ∈ Ll
µ, by definition of Ll

µ, µv′ /∈ �∗, hence
µv1 . . . vk−1 = µv′vl+1 . . . vk−1 /∈ �∗. That is a contradiction, because v ∈ Lk

µ

and so v = v′. �
Let us consider a Hilbert space H and a set of partial isometries

{S1, . . . , Sn} ⊆ L(H). Recall that Si is a partial isometry if SiS
∗
i Si = Si .
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Define a map

S : Fn −→ L(H)

r = r1 . . . rk 	→ S(r1) . . . S(rk)

where r is in reduced form, S(ri) = Sj if ri = gj and S(ri) = S∗
j if ri = g−1

j .
By convention, S(e) = I , where I is the identity operator on H . In this way, for
all r ∈ Fn we have an operator S(r) ∈ L(H).This operator will also be called
Sr . We will suppose that our set of partial isometries {S1, . . . , Sn} ⊆ L(H)

generated a map S which satisfies:

(M1)
n∑

i=1
SiS

∗
i = I ;

(M2) For all µ and ν in �∗ the operators SµS∗
µ and S∗

ν Sν commute;

(M3) I − S∗
i Si =

∞∑
k=1

∑
ν∈Lk

i

SνS
∗
ν , i = 1, . . . , n.

Note that for all i, SiS
∗
i is idempotent and self-adjoint, and so a projection. By

(M1),
n∑

i=1
SiS

∗
i is a projection and therefore SiS

∗
i and SjS

∗
j are orthogonal, for all

i �= j . So

S∗
i Sj = (S∗

i SiS
∗
i )(SjS

∗
j Sj ) = S∗

i (SiS
∗
i SjS

∗
j )Sj = 0

whenever i �= j .

Lemma 2. For all µ ∈ �∗, Sµ = SµS∗
µSµ.

Proof. The proof will be by induction on |µ|. For |µ| = 1, Sµ = SµS∗
µSµ by

hypothesis. Suppose Sµ = SµS∗
µSµ for all µ ∈ �∗ with |µ| = k, and consider

ν ∈ �∗, with |ν| = k + 1. Then ν = αgj , with |α| = k, and

SνS
∗
ν Sν = Sαgj

S∗
αgj

Sαgj
= SαSgj

S∗
gj

S∗
αSαSgj

=
= SαS

∗
αSαSgj

S∗
gj

Sgj
= SαSgj

= Sν. �

Lemma 3. Let α ∈ P and ν ∈ �∗.

a) If |α| ≥ |ν| then SνS
∗
ν Sα =

{
Sα if α = νr for some r ∈ P

0 otherwise

b) If |α| < |ν| then SνS
∗
ν Sα =

{
SνS

∗
r if ν = αr for some r ∈ P

0 otherwise
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Proof.

a) Supposing that there exists r in P such that α = νr , we have

SνS
∗
ν Sα = SνS

∗
ν Sνr = SνS

∗
ν SνSr = SνSr = Sα.

On the other hand, if α �= νr for all r ∈ P , write α = α1 . . . αl . . . αk,
ν = ν1 . . . νl and take the smallest index i such that αi �= νi . Then we
have α1 . . . αi−1 = ν1 . . . νi−1, and so

SνS
∗
ν Sα = Sν1...νi−1νi ...νl

S∗
ν1...νi−1νi ...νl

Sα1...αi−1αi ...αk
=

= Sν1...νi−1Sνi ...νl
S∗

νi ...νl
S∗

ν1...νi−1
Sν1...νi−1Sαi ...αk

=
= Sν1...νi−1S

∗
ν1...νi−1

Sν1...νi−1Sνi ...νl
S∗

νi ...νl
Sαi ...αk

= 0

because S∗
νi
Sαi

= 0.

b) Suppose ν = αr for some r ∈ P . Then

SνS
∗
ν Sα = SαrS

∗
αrSα = SαSrS

∗
r S

∗
αSα =

= SαS
∗
αSαSrS

∗
r = SαSrS

∗
r = SαrS

∗
r = SνS

∗
r .

If ν �= αr , for all r ∈ P as in (a), take the smallest index i such that
νi �= αi . Then ν1 . . . νi−1 = α1 . . . αi−1 and

SνS
∗
ν Sα = Sν1...νi−1νi ...νk

S∗
ν1...νi−1νi ...νk

Sα1...αi−1αi ...αl
=

= Sν1...νi−1Sνi ...νk
S∗

νi ...νk
S∗

ν1...νi−1
Sν1...νi−1Sαi ...αl

=
= Sν1...νi−1S

∗
ν1...νi−1

Sν1...νi−1Sνi ...νk
S∗

νi ...νk
Sαi ...αl

= 0

because S∗
νi
Sαi

= 0. �

Theorem 1. If ν ∈ P \�∗ then Sν = 0.

Proof. Write ν = gjα, and in this way,

S∗
ν Sν = S∗

αS
∗
gj

Sgj
Sα = S∗

αSα −
∞∑

k=1

∑
µ∈Lk

gj

S∗
αSµS∗

µSα.

We will analyse the summands of
∞∑

k=1

∑
µ∈Lk

gj

S∗
αSµS∗

µSα in the following way:
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Case 1: |µ| > |α|
By Lemma 3, SµS∗

µSα �= 0 only if µ = αr , for some r ∈ P . We will show
that there exists no such r . Suppose µ ∈ Lk

gj
is such that µ = αr , with

|r| = l. By definition of Lk
gj

, gjµ1 . . . µk−1 ∈ �∗, but gjµ1 . . . µk−1 =
gjαr1 . . . rl−1, and so ν = gjα ∈ �∗. This is a contradiction, because
we are supposing ν /∈ �∗. Therefore µ �= αr , for all r ∈ P , and so, by
Lemma 3, S∗

αSµS∗
µSα = S∗

α(SµS∗
µSα) = 0 for all µ with |µ| > |α|.

Case 2: |µ| ≤ |α|
By Lemma 3, SµS∗

µSα �= 0, only if α = µr , for some r em P , and by
Lemma 1 if there exists such µ ∈ ∪Lk

gj
, it is unique. In this case we have

by Lemma 3 that S∗
αSµS∗

µSα = S∗
α(SµS∗

µSα) = S∗
αSα.

In this way, S∗
ν Sν = zS∗

αSα, where z = 0 if there exists µ ∈ ⋃
k∈N

Lk
gj

such that

α = µr for some r ∈ P , and z = 1 otherwise.
Write ν = ν1 . . . νk and take the smallest index i such that νi+1 . . . νk ∈ �∗. So,

S∗
ν Sν = z1S

∗
ν2...νk

Sν2...νk
= . . . = z1 . . . zi−1S

∗
νi ...νk

Sνi ...νk
,

where zi are 0 or 1. We will show that S∗
νi ...νk

Sνi ...νk
= 0. Since νi . . . νk /∈ �∗,

by case 1 and case 2 above, we need to show that there exist some µ ∈ ⋃
k∈N

Lk
νi

such that νi+1 . . . νk = µr for some r ∈ P .
Take the index j such that νi . . . νj ∈ �∗ but νi . . . νj νj+1 /∈ �∗. Such index
exists because νi ∈ �∗ and νi . . . νk /∈ �∗. Moreover, νi+1 . . . νj+1 ∈ �∗ because
νi+1 . . . νk ∈ �∗, and so, νi+1 . . . νj+1 ∈ Lj+1−i

νi
. Thereby S∗

νi ...νk
Sνi ...νk

= 0, and
so S∗

ν Sν = 0, in other words, Sν = 0. �

Observe that if r = r1 . . . rk is in reduced form, with ri ∈ G−1 and ri+1 ∈ G,
then S(riri+1) = S(ri)S(ri+1) = 0, from where S(r) = 0. Also, if r = r1 . . . rk

and s = s1 . . . sl are elements of Fn in reduced form and rk �= s−1
1 , then the

reduced form of rs is r1 . . . rks1 . . . sl , and so S(rs) = S(r)S(s) by definition
of S.

Definition 1. Given a group G and a Hilbert space H , a map S : G → L(H) is
a partial representation of the group G on H if:

P1) S(e) = I , where e is the neutral element of G and I is the identity operator
on H ,

P2) S(t−1) = S(t)∗, ∀t ∈ G,
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P3) S(t)S(r)S(r−1) = S(tr)S(r−1), ∀t, r ∈ G,

Theorem 2. If the map S : Fn → L(H) defined before satisfies M1,M2 and M3,
then S is a partial representation of the group Fn on H .

Proof. Property P1 is trivial. The proof of P2 will be by induction on |t |.
If |t | = 1, the equality between S(t−1) and S(t∗) is obviously true. Suppose
S(t−1) = S(t∗) for all t ∈ Fn with |t | = k. Take t ∈ Fn with |t | = k + 1 and
write t = t̃x, where |t̃ | = k. Using the induction hypothesis and the fact that the
equality is true for |x| = 1,

S(t−1) = S((t̃x)−1) = S(x−1 t̃−1) = S(x−1)S(t̃−1)

= S(x)∗S(t̃)∗ = (S(t̃)S(x))∗ = S(t̃x)∗ = S(t)∗.

To verify property P3 we will prove the following:

Claim. For all r in Fn and t in G ∪ G−1, E(r) = S(r)S(r)∗ and E(t) =
S(t)S(t)∗ commute.

If r = r1 . . . rk where r is in its reduced form, with ri ∈ G−1 and ri+1 ∈ G for
some i, then S(r) = 0 and so the claim is trivial. Therefore let r = αβ−1, where
r is in reduced form and α, β ∈ P . If β /∈ �∗, by Theorem 1, Sβ = 0 from
where we again see that the claim follows. Thus let us consider β ∈ �∗.

Case 1: If t ∈ G, that is, t = gj , for some j .

a) |α| �= 0.
Write α = α1 . . . αl . If α1 �= gj , then S(gj )

∗S(α) = 0 and so
E(t)E(r) = 0 = E(r)E(t). If α1 = gj we have

S(α)∗S(gj )S(gj )
∗ = S(α2 . . . αl)

∗S(α1)
∗S(gj )S(gj )

∗

= S(α2 . . . αl)
∗S(α1)

∗S(α1)S(α1)
∗ = S(α2 . . . αl)

∗S(α1)
∗

= (S(α1)S(α2 . . . αk))
∗ = S(α)∗

and similarly S(gj )S(gj )
∗S(α) = S(α). It follows that E(t) and E(r)

commute.

b) |α| = 0.
We have r = β−1. Since β ∈ �∗, using M2,

E(r)E(t) = S(r)S(r)∗S(t)S(t)∗ = S(β)∗S(β)S(gj )S(gj )
∗

= S(gj )S(gj )
∗S(β)∗S(β) = S(t)S(t)∗S(r)S(r)∗ = E(t)E(r).
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Case 2: If t ∈ G−1, namely, t = g−1
j , with gj ∈ G.

Note that

E(r)E(t) = E(r)StS
∗
t = E(r)S∗

gj
Sgj

= E(r)

⎛
⎜⎝I −

∞∑
k=1

∑
µ∈Lk

gj

SµS∗
µ

⎞
⎟⎠ =

= E(r) − E(r)

⎛
⎜⎝

∞∑
k=1

∑
µ∈Lk

gj

SµS∗
µ

⎞
⎟⎠

and similarly,

E(t)E(r) = S∗
gj

Sgj
E(r) = E(r) −

⎛
⎜⎝

∞∑
k=1

∑
µ∈Lk

gj

SµS∗
µ

⎞
⎟⎠ E(r).

To prove that E(t) and E(r) commute, it is enough to show that

E(r)SµS∗
µ = SµS∗

µE(r) ∀µ ∈ Lk
gj

, ∀k ∈ N.

a) |α| �= 0.

i) |α| ≥ |µ|.
By Lemma 3, if α = µs for some s in P then S∗

αSµS∗
µ = S∗

α.

Therefore,

E(r)SµS∗
µ = SαS

∗
βSβS∗

αSµS∗
µ = SαS

∗
βSβS∗

α = E(r),

and similarly SµS∗
µE(r) = E(r), and this proves that E(r)SµS∗

µ =
SµS∗

µE(r). Also by Lemma 3, if α �= µs for all s ∈ P , then
S∗

αSµS∗
µ = 0 = SµS∗

µSα and also in this case E(r) and SµS∗
µ com-

mute.

ii) |α| < |µ|.
By Lemma 3, if µ �= αs ∀s ∈ P , then S∗

αSµS∗
µ = 0 = SµS∗

µSα,
from where the equallity follows. If µ = αs for some s ∈ P , also
by Lemma 3, S∗

αSµS∗
µ = SsS

∗
µ and SµS∗

µSα = SµS∗
s , from where

E(r)SµS∗
µ = SαS

∗
βSβS∗

αSµS∗
µ = SαS

∗
βSβSsS

∗
µ = SαS

∗
βSβSsS

∗
s S

∗
α,
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and

SµS∗
µE(r) = SµS∗

µSαS
∗
βSβS∗

α = SµS∗
s S

∗
βSβS∗

α = SαSsS
∗
s S

∗
βSβS∗

α.

Since β ∈ �∗, by M2,

SsS
∗
s S

∗
βSβ = S∗

βSβSsS
∗
s ,

and this shows that E(r)SµS∗
µ = SµS∗

µE(r).

b) |α| = 0
Since β ∈ �∗, the equality between E(r)SµS∗

µ and SµS∗
µE(r) follows

from M2.

This proves our claim. Let us now return to the proof of P3, that is,

S(t)S(r)S(r−1) = S(tr)S(r−1), ∀t, r ∈ Fn.

To do this we use induction on |t | + |r|. The equality is obvious if |t | + |r| = 1.
Suppose the equality true for all t, r ∈ Fn such that |t |+ |r| < k. Take t, r ∈ Fn,
with |t | + |r| = k, write t = t̃x, r = yr̃ , with x, y ∈ G ∪ G−1. If y �= x−1,
we have S(tr) = S(t)S(r), from where S(tr)S(r−1) = S(t)S(r)S(r−1). Let us
consider the case x = y−1.

S(t)S(r)S(r−1) = S(t̃x)S(yr̃)S((yr̃)−1) =
= S(t̃)S(x)S(y)S(r̃)S(r̃−1)S(y−1) =
= S(t̃)S(x)S(x−1)S(r̃)S(r̃−1)S(x).

Using the claim and the fact that S(x) is a partial isometry,

S(t̃)S(x)S(x−1)S(r̃)S(r̃−1)S(x) = S(t̃)S(r̃)S(r̃−1)S(x)S(x−1)S(x) =
= S(t̃)S(r̃)S(r̃−1)S(x)

and by the induction hypothesis,

S(t̃)S(r̃)S(r̃−1)S(x) = S(t̃ r̃)S(r̃−1)S(x).

On the other hand,

S(tr)S(r−1) = S(t̃xyr̃)S((yr̃)−1) =
= S(t̃ r̃)S(r̃−1y−1) = S(t̃ r̃)S(r̃−1)S(x).

This concludes the proof of P3, and also of the theorem. �
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