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Abstract. We consider quasisymmetric reparametrizations of the parameter space of
the quadratic family. We prove that the set of quadratic maps which are either regular
or Collet-Eckmann with polynomial recurrence of the critical orbit has full Lebesgue
measure, for any such reparametrization.
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1 Introduction

Here we consider the quadratic family, fa = a − x2, where −1/4 ≤ a ≤ 2 is
the parameter. In [L3], Lyubich showed that a typical (with respect to Lebesgue
measure) quadratic map is either regular (with a periodic attractor) or stochastic
(with an absolutely continuous invariant measure). More precisely, typical non-
regular maps were shown to satisfy the Martens-Nowicki criterion [MN] for the
existence of an absolutely continuous invariant measure.

Following this fundamental work, the Regular or Stochastic dichotomy was
refined in [AM1]: a typical quadratic map is either regular or Collet-Eckmann
(positive Lyapunov exponent of the critical value) with polynomial recurrence
of the critical orbit. This stronger dichotomy leads to a particularly satisfactory
description of the dynamics of typical quadratic maps from the statistical point
of view. The first possibility corresponds to a hyperbolic deterministic setting,
with the well known good properties of hyperbolic systems. The second is a
particularly well studied case of non-uniformly hyperbolic chaotic dynamics:
in the 90’s such maps were shown to possess many hyperbolic-like properties
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like stochastic stability, exponential decay of correlations and others ([KN], [Y],
[BV] and [BBM]). In particular it was possible to answer affirmatively Palis
Conjecture [Pa] for the quadratic family.

It was shown in [ALM] that the parameter space of general analytic families
of unimodal maps (with negative Schwarzian derivative) can be related to the
parameter space of quadratic maps through a quasisymmetric ‘holonomy map’.
It becomes then feasible to transfer results from the quadratic family to other
families, but there is one obstruction: quasisymmetric maps are not absolutely
continuous.

Here we show that the set of ‘‘good’’ parameters has not only full Lebesgue
measure, but is resistent to a quasisymmetric reparametrization:

Theorem A. Consider a quasisymmetric reparametrization of the parameter
space of the quadratic family. The set of parameters which are either regular or
Collet-Eckmann:

lim inf
n→∞

ln(|Df n(f (0))|)
n

> 0 (1.1)

has full Lebesgue measure.

Theorem B. Consider a quasisymmetric reparametrization of the parameter
space of the quadratic family. The set of parameters which are either regular or
have polynomial recurrence of the critical orbit

0 < lim inf
n→∞

− ln(f n(0))

ln(n)
≤ lim sup

n→∞
− ln(f n(0))

ln(n)
< ∞ (1.2)

has full Lebesgue measure.

In [AM2] those results are used to obtain a proof of the Palis Conjecture for
unimodal maps with negative Schwarzian derivative. Here we give a detailed
proof of those results following essentially the sketch provided in [AM2] (we
simplified a couple of arguments), with all estimates worked out. We refer the
reader to [AM2] and [AM3] for discussions on the heuristics of the approaches
in this paper, as well as in the original argument of [AM1].

2 Basic background

This section will introduce the basic language of this paper, and corresponds
essentially (with minor modifications) to sections §1 and §2 and parts of §3
of [AM1].
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2.1 General definitions

2.1.1 Maps of the interval

Let f : I → I be aC1 map defined on some interval I ⊂ R. The orbit of a point
p ∈ I is the sequence {f k(p)}∞k=0. We say that p is recurrent if there exists a
subsequence nk → ∞ such that lim f nk (p) = p.

We say that p is a periodic point of period n of f if f n(p) = p, and n ≥ 1 is
minimal with this property. In this case we say that p is hyperbolic if |Df n(p)|
is not 0 or 1. Hyperbolic periodic orbits are attracting or repelling according to
|Df n(p)| < 1 or |Df n(p)| > 1.

We will often consider the restriction of iterates f n to intervals T ⊂ I , such
that f n|T is a diffeomorphism. In this case we will be interested on the distortion
of f n|T ,

dist(f n|T ) = supT |Df n|
infT |Df n| . (2.1)

This is always a number bigger than or equal to 1, we will say that it is small if
it is close to 1.

2.1.2 Trees

We let � denote the set of finite sequences of non-zero integers (including the
empty sequence). Let �0 denote � without the empty sequence. For d ∈ �,
d = (j1, . . . , jm), we let |d| = m denote its length.

We denote σ+ : �0 → � by σ+(j1, . . . , jm) = (j1, . . . , jm−1) and
σ− : �0 → � by σ−(j1, . . . , jm) = (j2, . . . , jm).

For the purposes of this paper, one should view � as a (directed) tree with
root d = ∅ and edges connecting σ+(d) to d for each d ∈ �0. We will use � to
label objects which are organized in a similar tree structure (for instance, certain
families of intervals ordered by inclusion).

2.2 Borel-Cantelli

We will repeatedly use the following version of the Borel-Cantelli Lemma
(Lemma 4.1 of [AM1]).

Lemma 2.1. Let X ⊂ R be a measurable set such that for each x ∈ X is
defined a sequence Dn(x) of nested intervals converging to x such that for all
x1, x2 ∈ X and any n, Dn(x1) is either equal or disjoint to Dn(x2). Let Qn be
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measurable subsets of R and qn(x) = |Qn ∩Dn(x)|/|Dn(x)|. Let Y be the set
of all x ∈ X which belong to at most finitely many Qn. If

∑
qn(x) is finite for

almost any x ∈ X then |Y | = |X|.
The following reformulation will be often convenient (Lemma 4.2 of [AM1]).

Lemma 2.2. In the same context as above, assume that we are given sequences
Qn,m, m ≥ n of measurable sets and let Yn be the set of x belonging to at
most finitely many Qn,m. Let qn,m(x) = |Qn,m ∩Dm(x)|/|Dm(x)|. Let n0(x) ∈
N ∪ {∞} be such that

∑∞
m=n qn,m(x) < ∞ for n ≥ n0(x). Then for almost every

x ∈ X, x ∈ Yn for n ≥ n0(x).

2.3 Quasisymmetric maps

Let k ≥ 1 be given. We say that a homeomorphismf : R → R is quasisymmetric
with constant k if for all x and all h > 0

1

k
≤ f (x + h)− f (x)

f (x)− f (x − h)
≤ k. (2.2)

The space of quasisymmetric maps is a group under composition, and the set of
quasisymmetric maps with constant k preserving a given interval is compact in the
uniform topology of compact subsets of R. It also follows that quasisymmetric
maps are Hölder.

To describe further the properties of quasisymmetric maps, we need the concept
of quasiconformal maps and dilatation so we just mention a result of Ahlfors-
Beurling which connects both concepts: any quasisymmetric map extends to a
quasiconformal real-symmetric map of C and, conversely, the restriction of a
quasiconformal real-symmetric map of C to R is quasisymmetric. Furthermore,
it is possible to work out upper bounds on the dilatation (of an optimal extension)
depending only on k and conversely.

The constant k is awkward to work with: the inverse of a quasisymmetric map
with constant k may have a larger constant. We will therefore work with a less
standard constant: we will say that h is γ -quasisymmetric (γ -qs) if h admits a
quasiconformal symmetric extension to C with dilatation bounded by γ . This
definition behaves much better: if h1 is γ1-qs and h2 is γ2-qs then h2 ◦ h1 is
γ2γ1-qs.

IfX ⊂ R and h : X → R has a γ -quasisymmetric extension to R we will also
say that h is γ -qs.

Let QS(γ ) be the set of γ -qs maps of R.
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2.3.1 Capacities

If X ⊂ R is measurable, let us denote |X| its Lebesgue measure. Let us explicit
the metric properties of γ -qs maps we will use.

To each γ , there exists a constant k ≥ 1 such that for all f ∈ QS(γ ), for all
J ⊂ I intervals,

1

k

( |J |
|I |
)k

≤ |f (J )|
|f (I)| ≤

(
k|J |
|I |

)1/k

. (2.3)

Furthermore limγ→1 k(γ ) = 1. So for each ε > 0 there exists γ > 1 such
that k(2γ − 1) < 1 + ε/5. From now on, once a given γ close to 1 is chosen, ε
will always denote a small number with this property.

2.3.2 Capacities and trees

The γ -capacity of a set X in an interval I is defined as follows:

pγ (X|I ) = sup
h∈QS(γ )

|h(X ∩ I )|
|h(I)| . (2.4)

This geometric quantity is well adapted to our context, since it is well behaved
under tree decompositions of sets. In other words, if I j are disjoint subintervals
of I and X ⊂ ∪I j then

pγ (X|I ) ≤ pγ (∪j Ij |I ) sup
j

pγ (X|I j ). (2.5)

2.4 The combinatorics of real quadratic maps

2.4.1 Real quadratic maps

If a ∈ R we let fa : R → R denote the quadratic map a− x2. If −1/4 ≤ a ≤ 2,
there exists an interval

Ia = [β,−β] with β = −1 − √
1 + 4a

2

such that fa(Ia) ⊂ Ia and fa(∂Ia) ⊂ ∂Ia . For such values of the parameter
a, the map f = fa|Ia is unimodal, that is, it is a self map of Ia with a unique
turning point. To simplify the notation, we will usually drop the dependence on
the parameter and let I = Ia .

We will now introduce objects related to the dynamics of a fixed quadratic
map f .
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2.4.2 Return maps

Given an interval T ⊂ I we define the first return map RT : X → T where
X ⊂ T is the set of points x such that there exists n > 0 with f n(x) ∈ T , and
RT (x) = f n(x) for the minimal n with this property.

2.4.3 Nice intervals

An interval T is nice if it is symmetric around 0 and the iterates of ∂T never
intersect int T . Given a nice intervalT we notice that the domain of the first return
map RT decomposes in a union of intervals T j , indexed by integer numbers (if
there are only finitely many intervals, some indexes will be corresponded to the
empty set). If 0 belongs to the domain ofRT , we say that T is proper. In this case
we reserve the index 0 to denote the component of the critical point: 0 ∈ T 0.

If T is nice, it follows that for all j ∈ Z, RT (∂T j ) ⊂ ∂T . In particular, RT |T j
is a diffeomorphism onto T unless 0 ∈ T j (and in particular j = 0 and T is
proper). If T is proper, RT |T 0 is symmetric (even) with a unique critical point 0.
As a consequence, T 0 is also a nice interval. If RT (0) ∈ T 0, we say that RT is
central. If T is a proper interval then both RT and RT 0 are defined, and we say
that RT 0 is the generalized renormalization of RT .

2.4.4 Landing maps

Given a proper interval T we define the landing map LT : X → T 0 where
X ⊂ T is the set of points x such that there exists n ≥ 0 with f n(x) ∈ T 0, and
LT (x) = f n(x) for the minimal nwith this property. We notice thatLT |T 0 = id.

2.4.5 Trees

We will use � to label iterations of non-central branches of RT , as well as their
domains. If d ∈ �, we define T d inductively in the following way. We let
T d = T if d is empty and if d = (j1, . . . , jm) we let T d = (RT |T j1 )−1(T σ

−(d)).
We denote RdT = R

|d|
T |T d which is always a diffeomorphism onto T .

Notice that the family of intervals T d is organized by inclusion in the same
way as � is organized by (right side) truncation (the previously introduced tree
structure).

If T is a proper interval, the first return map to T naturally relates to the
first landing to T 0. Indeed, denoting Cd = (R

d

T )
−1(T 0), the domain of the

first landing map LT is easily seen to coincide with the union of the Cd , and
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furthermore LT |Cd = R
d

T . Notice that this allows us to relate RT and RT 0 since
RT 0 = LT ◦ RT .

2.4.6 Renormalization

We say that f is renormalizable if there is an interval 0 ∈ T and m > 1 such
that

f m(T ) ⊂ T and f j (int T ) ∩ int T = ∅ for 1 ≤ j < m.

The maximal such interval is called the renormalization interval of period m, it
has the property that f m(∂T ) ⊂ ∂T .

The set of renormalization periods of f gives an increasing (possibly empty)
sequence of numbersmi , i = 1, 2, . . . , each related to a unique renormalization
interval T (i) which form a nested sequence of intervals. We include m0 = 1,
T (0) = I in the sequence to simplify the notation.

We say that f is finitely renormalizable if there is a smallest renormalization
interval T (k). We say that f ∈ F if f is finitely renormalizable and 0 is recurrent
but not periodic. We let Fk denote the set of maps f in F which are exactly k
times renormalizable.

2.4.7 Principal nest

Let �k denote the set of all maps f which have (at least) k renormalizations
and which have an orientation reversing non-attracting periodic point of period
mk which we denote pk (that is, pk is the fixed point of f mk |T (k) with Dfmk(pk)
≤ −1). For f ∈ �k, we denote T (k)0 = [−pk, pk]. We define by induction a
(possibly finite) sequence T (k)i , such that T (k)i+1 is the component of the domain of
R
T
(k)
i

containing 0. If this sequence is infinite, then either it converges to a point
or to an interval.

If ∩iT (k)i is a point, then f has a recurrent critical point which is not periodic,
and it is possible to show that f is not k+ 1 times renormalizable. Obviously in
this case we have f ∈ Fk, and all maps inFk are obtained in this way: if ∩iT (k)i

is an interval, it is possible to show that f is k + 1 times renormalizable.
We can of course write F as a disjoint union ∪∞

i=0Fi . For a map f ∈ Fk we
refer to the sequence {T (k)i }∞i=1 as the principal nest.

It is important to notice that the domain of the first return map to T (k)i is always
dense in T (k)i . Moreover, the next result shows that, outside a very special case,
the return map has a hyperbolic structure.
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Lemma 2.3. Assume T (k)i does not have a non-hyperbolic periodic orbit in its
boundary. For all T (k)i there exists C > 0, λ > 1 such that if x, f (x), . . . ,
f n−1(x) do not belong to T (k)i then |Df n(x)| > Cλn.

This lemma is a simple consequence of a general theorem of Guckenheimer on
hyperbolicity of maps of the interval without critical points and non-hyperbolic
periodic orbits (Guckenheimer considers unimodal maps with negative Schwar-
zian derivative, so this applies directly to the case of quadratic maps, the general
case is also true by Mañé’s Theorem, see [MvS]). Notice that the existence of a
non-hyperbolic periodic orbit in the boundary of T (k)i depends on a very special
combinatorial setting, in particular, all T (k)j must coincide (with [−pk, pk]), and
the k-th renormalization of f is in fact renormalizable of period 2.

By Lemma 2.4.7, the maximal invariant of f |
I\T (k)i

is an expanding set, which

admits a Markov partition (since ∂T (k)i is preperiodic, see also the proof of
Lemma 6.1): it is easy to see that it is indeed a Cantor set1 (except if i = 0
or in the special period 2 renormalization case just described). It follows that
the geometry of this Cantor set is well behaved: for instance, its image by any
quasisymmetric map has zero Lebesgue measure.

In particular, one sees that the domain of the first return map to T (k)i has
infinitely many components (except in the special case above or if i = 0) and
that its complement has well behaved geometry.

2.4.8 Simple maps

A map f ∈ Fk is called simple if the principal nest has only finitely many central
returns, that is, there are only finitely many i such that R|

T
(k)
i

is central.

2.5 Parameter partition

Part of our work is to transfer information from the phase space of some map
f ∈ F to a neighborhood of f in the parameter space. This is done in the
following way. We consider the first landing map Li : the complement of the
domain of Li is a hyperbolic Cantor set Ki = Ii \ ∪Cdi . This Cantor set persists
in a small parameter neighborhood Ji of f , changing in a continuous way. Thus,
loosely speaking, the domain ofLi induces a persistent partition of the interval Ii .

Along Ji , the first landing map is topologically the same (in a way that will be
clear soon). However the critical value Ri[g](0) moves relative to the partition

1Dynamically defined Cantor sets with such properties are usually called regular Cantor sets.
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(when g moves in Ji). This allows us to partition the parameter piece Ji in
smaller pieces, each corresponding to a region where Ri(0) belongs to some
fixed component of the domain of the first landing map.

The relation between the partitions on the phase space and on the parameter
space can be described, topologically, as follows.

Theorem 2.4 [Topological Phase-Parameter relation]. Let f ∈ Fκ . There is
a sequence {Ji}i∈N of nested parameter intervals (the principal parapuzzle nest
of f ) with the following properties.

(1) Ji is the maximal interval containing f such that for all g ∈ Ji the interval
Ii+1[g] = T

(κ)
i+1[g] is defined and changes in a continuous way. (Since the

first return map to Ri[g] has a central domain, the landing map Li[g] : ∪
C
d

i [g] → Ii[g] is defined.)

(2) Li[g] is topologically the same along Ji: there exists homeomorphisms
Hi[g] : Ii → Ii[g], such that Hi[g](Cdi ) = C

d

i [g]. The maps Hi[g] may
be chosen to change continuously.

(3) There exists a homeomorphism
i : Ii → Ji such that
i(C
d

i ) is the set of

g such that Ri[g](0) belongs to Cdi [g].

The formulation above is the same as Theorem 2.2 of [AM1] (the result itself
was known much before).

The homeomorphisms Hi and 
i are not uniquely defined, it is easy to see
that we can modify them inside each Cdi window keeping the above properties.
However, Hi and 
i are well defined maps if restricted to Ki .

With this result we can define for any f ∈ Fκ intervals J ji = 
i(I
j

i ) and
J
d

i = 
i(I
d

i ). From the description we gave it immediately follows that two
intervals Ji1[f ] and Ji2[g] associated to mapsf and g are either disjoint or nested,
and the same happens for intervals J ji or J di . Notice that if g ∈ 
i(C

d

i ) ∩ Fκ
then 
i(C

d

i ) = Ji+1[g].
We will concentrate on the analysis of the regularity of
i for the special class of

simple maps f : one of the good properties of the class of simple maps is better
control of the phase-parameter relation. Even for simple maps, however, the
regularity of
i is not great: there is too much dynamical information contained
in it. A solution to this problem is to forget some dynamical information.
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2.5.1 Gape interval

If i > 1, we define the gape interval Ĩi+1 as follows.
We have that Ri |Ii+1 = Li−1 ◦ Ri−1 = R

d

i−1 ◦ Ri−1 for some d, so that Ii+1 =
(Ri−1|Ii )−1(C

d

i−1). We define the gape interval Ĩi+1 = (Ri−1|Ii )−1(I
d

i−1).

Notice that Ii+1 ⊂ Ĩi+1 ⊂ Ii . Furthermore, for each I ji , the gape interval Ĩi+1

either contains or is disjoint from I
j

i .

2.5.2 The Phase-Parameter relation

As we discussed before, the dynamical information contained in 
i is entirely
given by 
i |Ki : a map obtained by 
i by modification inside a Cdi window has
still the same properties. Therefore it makes sense to ask about the regularity of

i |Ki . As we anticipated before we must erase some information to obtain good
results.

Let f ∈ Fκ and let τi be such that Ri(0) ∈ I
τi
i . We define two Cantor sets,

Kτ
i = Ki ∩ I τii which contains refined information restricted to the I τii window

and K̃i = Ii \ (∪I ji ∪ Ĩi+1), which contains global information, at the cost of
erasing information inside each I ji window and in Ĩi+1.

Theorem 2.5 [Phase-Parameter relation]. Let f be a simple map. For all
δ > 0 there exists i0 such that for all i > i0 we have

PhPa1: 
i |Kτi is 1 + δ-qs,

PhPa2: 
i |K̃i is 1 + δ-qs,

PhPh1: Hi[g]|Ki is 1 + δ-qs if g ∈ J τii ,

PhPh2: the map Hi[g]|K̃i is 1 + δ-qs if g ∈ Ji .
This result is stated as Theorem 2.3 of [AM1], where a proof is sketched in

the Appendix. A full proof is given in a more general context in [AM4].

3 Preliminary reductions and basic scheme

3.1 Reduction to the study of simple maps

In [L2] Lyubich has shown that almost every finitely renormalizable map is
simple, and in [L3] he showed that infinitely renormalizable maps have zero
Lebesgue measure. In [ALM], it is remarked that the proofs of those results
actually imply the following:
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Theorem 3.1. Consider a quasisymmetric reparametrization of the parameter
space of the quadratic family. The set of parameters which are either regular or
simple has full Lebesgue measure.

Thus we can concentrate on the study of simple maps.

3.2 Language

We will now fix, once and for all, an arbitrary quasisymmetric reparametrization
of the parameter space of the quadratic family. From now on, all mentions to the
parameter space will take into account this reparametrization (unless specified
otherwise). For instance, the previous theorem would now be stated ‘‘The set
of parameters which are either regular or simple has full Lebesgue measure’’,
without any mention to the reparametrization. Our aim is to replace ‘‘simple’’
by ‘‘Collet-Eckmann with polynomial recurrence of the critical orbit’’ in this
formulation.

The quasisymmetric constant of the fixed reparametrization will be denoted
γ̂ . We will fix an arbitrary γ > γ̂ . We let a be a small positive constant only
depending on γ (it should be smaller than 1/20 of the Hölder constant of 2γ -qs
maps), and b = a−1.

We must change the statement of properties PhPa1 and PhPa2 of the Phase-
Parameter relation (which was stated with respect to the unreparametrized pa-
rameter space). Taking into account the reparametrization we replace PhPa1 and
PhPa2 by

PhPa1’: 
i |Kτi is γ -qs,

PhPa2’: 
i |K̃i is γ -qs.

We shall fix also the renormalization level κ , and consider only maps in �κ .
Whenever we say that some property is valid ‘‘with total probability’’, it will
mean that it is satisfied for a set of maps in Fκ of full Lebesgue measure. Since
there are countably many levels, we can reformulate our aim as showing that the
properties ‘‘Collet-Eckmann’’ and ‘‘polynomial recurrence of the critical orbit’’
hold with total probability.

This will not be done at once: we will show in a sequence of steps that more and
more properties are valid with total probability. Sometimes when proving that a
new property has total probability, we will only need to use that this property is
implied by properties that had previously been shown to have total probability.
Sometimes, we will need to use the previous ‘‘total probability’’ properties and
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still exclude some zero Lebesgue measure set of parameters. This will be done
always via a Borel-Cantelli argument (either of Lemmas 2.2 or 2.2) coupled
with the Phase-Parameter relation. The best way to introduce the argument is by
going through an explicit application.

3.2.1 Example: torrential decay of geometry

We will illustrate the use of Lemma 2.2 and the phase-parameter relation with an
estimate on the decay of geometry. More precisely, we will consider the scaling
factor.

cn = |In+1|
|In| . (3.1)

The scaling factor is a particularly important parameter in the subsequent anal-
ysis: all statistical estimates that follow will be related to cn. This variable of
course changes inside each J τnn window, however, not by much. From PhPh1,
for instance, we get that with total probability

lim
n→∞ sup

g1,g2∈J τnn

ln(cn[g1])
ln(cn[g2]) = 1. (3.2)

One initial information on the scaling factors is provided by the following
result of Lyubich:

Theorem 3.2 [see [L1]]. If f is simple then there exists C > 0, λ < 1 such
that cn < Cλn.

We will now show that, with total probability, the decay of cn is much faster
than exponential. To express this decay, let us consider the tower function defined
by the recursion T (1) = 2, T (n + 1) = 2T (n). We will show that, with total
probability, the cn decrease torrentially to 0, that is, there exists k > 0 such that
c−1
n > T (n − k) for n big enough. More precisely, we will show that c−1

n+1 is
bounded from below by an exponential of a (bounded) power of c−1

n .
We start with an estimate in phase space. For x ∈ In, let d(n)(x) ∈ � be

defined by x ∈ Cd(n)(x)n .

Lemma 3.3. With total probability, for all n sufficiently big we have

p2γ (|d(n)(x)| ≤ k|In) < (k + 1)c8a
n , (3.3)

p2γ (|d(n)(x)| ≥ k|In) < e−kc
b/8
n . (3.4)
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We also have

p2γ (|d(n)(x)| ≤ k|I τnn ) < kc8a
n , (3.5)

p2γ (|d(n)(x)| ≥ k|I τnn ) < e−kc
b/8
n . (3.6)

Proof. Let us compute the first two estimates.
Since I 0

n is in the middle of In, we have as a simple consequence of the Real
Schwarz Lemma (see [L1] and (4.3) in Lemma 4.1 below) that

cn

4
<

|Cdn |
|I dn | < 4cn. (3.7)

As a consequence

p2γ (|d(n)(x)| = m|x ∈ In) < (4cn)
10a. (3.8)

We get the estimate (3.3) summing up on 0 ≤ m ≤ k.
For the same reason, we get that

p2γ (|d(n)(x)| > m|x ∈ In)
<

(
1 −

(cn
4

)b/10
)
p2γ (|d(n)(x)| ≥ m|x ∈ In).

(3.9)

This implies

p2γ (|d(n)(x)| ≥ k|x ∈ In) ≤
(

1 −
(cn

4

)b/10
)k
. (3.10)

Estimate (3.4) follows from(
1 −

(cn
4

)b/10
)k
< (1 − cb/9n )k < ((1 − cb/9n )c

−b/9
n )kc

b/9
n < e−kc

b/9
n . (3.11)

The two remaining estimates are analogous. �
Let us now transfer this result to the parameter. Let sn = |d(n)(Rn(0))|, so that

Rn+1(0) = Rsn+1
n (0).

Lemma 3.4. With total probability, for n sufficiently big we have

c−an < sn < c−bn . (3.12)
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Proof. For the moment we only know that simple maps have total probability.
Thus, fix a simple map and consider its principal nest Jn. By the previous lemma,
we have

pγ (|d(n)(x)| < c−3a/2
n |I τnn ) ≤ ca/2n , (3.13)

By PhPa1’, the Lebesgue measure of the set of parameters in Jn such that
sn < c

−3a/2
n is at most ca/2n . But

∑
c
a/2
n < ∞ (cn decays exponentially by

Theorem 3.2.1), so we can apply Lemma 2.2 to get that for almost every simple
map we have sn ≥ c−an (in the notation of Lemma 2.2, we have takenX as the set
of simple maps,Dn = J τnn , andQn as the set of parameters such that sn < c−an )2.
This implies one of the estimates, the other being analogous. �

From now on, whenever we need the parameter exclusion argument described
above we will only say by PhPa1’ or by PhPa2’, and be done with it.

We can now show torrential decay of geometry without any further parameter
exclusion:

Lemma 3.5. With total probability, for n large we have

c−1
n+1 > ec

−a/2
n . (3.14)

Proof. It is easy to see (using for instance the Real Schwarz Lemma, see [L1],
see also item (4.4) in Lemma 4.1 below) that there exists a constant K > 0
(independent of n) such that for each d ∈ �, both components of I σ

+(d)
n \ I dn

have size at least (eK−1)|I dn |. In particular, by induction, ifRn(0) ∈ Cdn we have
that both gaps of In \Cdn have size at least (eKsn − 1)|Cdn |. Taking the preimage
by Rn, and using the Real Schwarz Lemma again, we see that cn+1 < CeKsn/2

for some constant C > 0 independent of n. We conclude that

lim inf
ln(c−1

n+1)

sn
≥ K

2
, (3.15)

and since cn → 0 as n → ∞, the result follows from the previous lemma. �

2We used implicitly the fact that for n large we have cn[g]−a < c
−3a/2
n , see (3.2).
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4 Initial estimates

4.1 Fine partitions

We use Cantor setsKn and K̃n to partition the phase space. In many circumstances
we are directly concerned with intervals of this partition. However, sometimes
we just want to exclude an interval of given size (usually a neighborhood of 0).
This size does not usually correspond to a union of gaps, so we instead should
consider in applications an interval which is union of gaps, with approximately
the given size. The degree of relative approximation will always be torrentially
good (in n), so we usually won’t elaborate on this. In this section we just give
some results which will imply that the partition induced by the Cantor sets are
fine enough to allow torrentially good approximations.

The following lemma summarizes the situation. The proof is based on es-
timates of distortion using the Real Schwarz Lemma and the Koebe Principle
(see [L1]) and is very simple, so we just sketch the proof.

Lemma 4.1. The following estimates hold:

|I jn |
|In| = O(

√
cn−1), (4.1)

|I dn |
|I σ+(d)
n |

= O(
√
cn−1), (4.2)

cn

4
<

|Cdn |
|I dn | < 4cn, (4.3)

|Ĩn+1|
|In| = O(e−sn−1). (4.4)

Proof. (Sketch.) Since Rdn has negative Schwarzian derivative, it immediately
follows that the Koebe space3 of Cdn inside I dn has at least order c−1

n .
It is easy to see that Rn−1|In can be written as φ ◦ f where φ extends to a

diffeomorphism onto In−2 with negative Schwarzian derivative and thus with

3The Koebe space of an interval T ′ inside an interval T ⊃ T ′ is the minimum of |L|/|T ′| and
|R|/|T ′| where L and R are the components of T \ T ′. If the Koebe space of T ′ inside T is
big, then the Koebe Principle states that a diffeomorphism onto T ′ which has an extension with
negative Schwarzian derivative onto T has small distortion. In this case, it follows that the Koebe
space of the preimage of T ′ inside the preimage of T is also big.
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very small distortion. Since Rn−1(I
j
n ) is contained on some Cdn−1, we see that

the Koebe space of I jn in In is at least of order c−1/2
n−1 which implies (4.1).

Let us now consider an interval I dn . Let I jn be such that Rσ
+(d)

n (I
d
n ) = I

j
n . We

can pullback the Koebe space of I jn inside In by Rσ
+(d)

n , so (4.1) implies (4.2).
Moreover, this shows by induction that the Koebe space of I dn inside In is at least
of order c−|d|/2

n−1 . Since Rn−1(Ĩn+1) ⊂ I
d

n−1 with |d| = sn−1, the Koebe space of

Ĩn+1 in In is at least c−|d|/4
n−2 , which implies (4.4).

It is easy to see that Rdn |Idn can be written as φ ◦ f ◦ Rσ+(d)
n , where φ has

small distortion. Due to (4.1), Rσ
+(d)

n |
I
d
n

also has small distortion, so a direct
computation with f (which is purely quadratic) gives (4.3). �

In other words, distances in In can be measured with precision
√
cn−1|In| in

the partition induced by K̃n, due to (4.1) and (4.4) (since e−sn−1 � cn−1).
Distances can be measured much more precisely with respect to the partition

induced by Kn, in fact we have good precision in each I dn scale. In other words,
inside I dn , the central gap Cdn is of size O(cn|I dn |) (by (4.3)) and the other gaps
have size O(

√
cn−1|Cdn |) (by (4.2) and (4.3)).

4.2 Initial estimates on distortion

To deal with the distortion control we need some preliminary known results.
Those estimates are based on the Koebe Principle and the estimates of Lemma
4.1. All needed arguments are already contained in the proof of Lemma 4.1, so
we won’t get into details.

Proposition 4.2. The following estimates hold:

(1) For any j , if Rn|I jn = f k, dist(f k−1|
f (I

j
n )
) = 1 +O(cn−1),

(2) For any d, dist(Rσ
+(d)

n |
I
d
n
) = 1 +O(

√
cn−1).

We will use the following immediate consequence for the decomposition of
certain branches.

Lemma 4.3. With total probability,

(1) Rn|I 0
n

= φ ◦ f where φ has torrentially small distortion,

(2) R
d
n = φ2 ◦ f ◦ φ1 where φ2 and φ1 have torrentially small distortion and

φ1 = R
σ+(d)
n .
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4.3 Estimating derivatives

Lemma 4.5. With total probability, the distance between Rn(0) and ∂In ∪ {0}
is at least |In|n−b/2. In particular Rn(0) /∈ Ĩn+1 for all n large enough.

Proof. This is a simple consequence of PhPa2’, using summability of n−2 (use
(4.4) to get the last conclusion). �

Lemma 4.6. With total probability, for n big enough and j �= 0

dist(f |
I
j
n
) < nb/2. (4.5)

Proof. Denote by P dn a |Cdn |/nb/2 neighborhood of Cdn . Notice that the gaps
of the Cantor setKn inside I dn which are different from C

d
n are torrentially (in n)

smaller then Cdn , so we can take P dn as a union of gaps of Kn up to torrentially
small error.

It is clear that if h is a γ -qs homeomorphism then

|h(P dn \ Cdn )| ≤ n−2|h(Cdn )| (4.6)

Notice that if Cdn is contained in I jn with j �= τn, then P dn does not intersect I τnn .
Since the Cdn are disjoint,

pγ (I
τn
n ∩ ∪(P dn \ Cdn )|I τnn ) ≤ n−2 (4.7)

which is summable.
Transferring this estimate to the parameter using PhPa1’ we see that with total

probability, if n is sufficiently big, if Rn(0) does not belong to Cdn then Rn(0)
does not belong to P dn as well. In particular, if n is sufficiently big, the critical
point 0 will never be in a n−b/2|I jn+1| neighborhood of any I jn+1 with j �= 0 (just
take the inverse image by Rn|In+1 ). �

Lemma 4.6. With total probability, for all n sufficiently big and for all d ,

dist(Rdn) < nb ≤ 2n. (4.8)

In particular, for n big enough, |DRn(x)| > 2, x ∈ ∪j �=0I
j
n .
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Proof. Lemmas 4.2 and Lemma 4.3 imply (4.8). If j �= 0, by (4.1) of Lemma
4.1 we get that |Rn(I jn )|/|I jn | = |In|/|I jn | > c

−1/3
n−1 , so dist(Rn|I jn ) ≤ 2n implies

that for all x ∈ I jn , |DRn(x)| > c
−1/3
n−1 2−n > 2. �

Lemma 4.7. With total probability, if n is sufficiently big and if x ∈ I jn , j �= 0,
and Rn|I jn = f K , then for 1 ≤ k ≤ K , |(Df k(x))| > |x|c3

n−1.

Proof. First notice that by Lemma 4.3 and Lemma 4.2, Rn|I 0
n

= φ ◦ f with
|Dφ| > 1, provided n is big enough (since φ has small distortion and there is a
big macroscopic expansion from f (I 0

n ) to Rn(I 0
n )). Also, by Lemma 3.2.1, |In|

decays so fast that
∏n
r=1 |In| > c

3/2
n−1 for n big enough. Finally, by Lemma 4.3,

for n big enough, |DRn(x)| > 1 for x ∈ I
j
n , j �= 0. Let n0 be so big that if

n ≥ n0, all the above properties hold.
From hyperbolicity of f restricted to the complement of In0 (from Lemma

2.4.7), there exists a constant C > 0 such that if s0 is such that f s(x) /∈ I 0
n0

for
every s0 ≤ s < k then |Df k−s0(f s0(x))| > C.

Let us now consider some n ≥ n0. If k = K , we have a full return and the
result follows from Lemma 4.3.

Assume now k < K . Let us define d(s), 0 ≤ s ≤ k such that f s(x) ∈
Id(s) \ I 0

d(s) (if f s(x) /∈ I0 we set d(s) = −1). Letm(s) = maxs≤t≤k d(t). Let us
define a finite sequence {kr}lr=0 as follows. We let k0 = 0 and supposing kr < k

we let kr+1 = max{kr < s ≤ k|d(s) = m(s)}. Notice that d(ki) < n if i ≥ 1,
since otherwise f ki (x) ∈ In so k = ki = K which contradicts our assumption.

The sequence 0 = k0 < k1 < . . . < kl = k satisfies n = d(k0) > d(k1)

> . . . > d(kl). Let θ be maximal with d(kθ ) ≥ n0. We have of course

|Df k−kθ (f kθ (x))| > C|Df (f kθ (x))|, (4.9)

so if θ = 0 then Df k(x) > |2Cx| and we are done.
Assume now θ > 0. We have of course

|Df k−kθ (f kθ (x))| > C|Df (f kθ (x))| > C|Id(kθ )+1| (4.10)

For 1 ≤ r ≤ θ , the action of f kr−kr−1 near f kr−1(x) is obtained by applying
the central component of Rd(kr ) followed by several non-central components of
Rd(kr ). Since d(kr) ≥ n0, we can estimate

|Df kr−kr−1(f kr−1(x))| > |DRd(kr )(f kr−1(x))| > |Df (f kr−1(x))|. (4.11)
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For r = 1, this argument gives |Df k1(x)| ≥ |Df (x)|, while for r > 1 we can
estimate

|Df kr−kr−1(f kr−1(x))| > |Df (f kr−1(x))| > |Id(kr−1)+1|. (4.12)

Combining it all we get

|Df k(x)| = |Df k1(x)| · |Df k−kθ (f kθ (x))|
θ∏
r=2

|Df kr−kr−1(f kr−1(x))|

> |2x| · C · |Id(kθ )+1|
θ∏
r=2

|Id(kr−1)+1| = |2Cx|
θ∏
r=1

|Id(kr )+1| (4.13)

≥ |2Cx|
n∏
r=0

|Ir | > |x|c3
n−1. �

5 Sequence of quasisymmetric constants and trees

5.1 Preliminary estimates

From now on, we will need to consider not only γ ′-capacities with some γ ′ ≥ γ

fixed, but different constants for different levels of the principal nest. To do so,
we will make use of sequences of constants converging (decreasing) to γ . Let

γn = n+ 1

n
γ, γ̃n = 2n+ 3

2n+ 1
γ.

Notice that γn > γ̃n > γn+1 and lim γn = lim γ̃n = γ .
The generalized renormalization process relating Rn to Rn+1 has two phases,

first we go fromRn toLn and then we go fromLn toRn+1. The following remarks
shows why it is useful to consider the sequence of quasisymmetric constants due
to losses related to distortion.

Remark 5.1. Let S be an interval contained in I dn . Using Lemma 4.2 we have
R
d
n |S = ψ2 ◦f ◦ψ1, where the distortion of ψ2 and ψ1 are torrentially small and
ψ1(S) is contained in some I jn , j �= 0. If S is contained in I 0

n we may as well
write Rn|S = φ ◦ f , and the distortion of φ is also torrentially small.

In either case, if we decompose S in 2km intervals Si of equal length, where k
is the distortion of eitherRdn |S orRn|S andm is subtorrentially big (say,m < 2n),
the distortion obtained restricting to any interval Si will be bounded by 1 +m−1.
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Indeed, in the case S ⊂ I 0
n , we have dist(Rn|Si ) ≤ dist(φ) dist(f |Si ). Now

k = dist(Rn|S) ≥ dist(φ)−1 dist(f |S). Since f is quadratic,

dist(f |Si )− 1 ≤ |Si |
|S| (dist(f |S)− 1) ≤ 1

2km
(k dist(φ)− 1) ≤ dist(φ)

2m
. (5.1)

Since dist(φ)−1 is torrentially small, dist(f |Si ) ≤ 1+(2/3)m−1 and dist(Rn|Si )
≤ 1 + m−1. The case S ⊂ I

d
n is entirely analogous, considering dist(Rdn |Si ) ≤

dist(ψ2) dist(f |ψ1(Si )) dist(ψ1), and using torrentially small distortion of ψ1 and
ψ2. The estimate now becomes

dist(f |ψ1(Si ))− 1 ≤ |ψ1(Si)|
|ψ1(S)| (dist(f |ψ1(S))− 1)

≤ dist(ψ1)

2km
(k dist(ψ1) dist(ψ2)− 1)

≤ dist(ψ1)
2 dist(ψ2)

2m

(5.2)

and we conclude again that dist(Rdn |Si ) ≤ 1 +m−1.

Remark 5.2. We have the following estimate for the effect of the pullback
of a subset of In by the central branch Rn|I 0

n
. With total probability, for all n

sufficiently big, if X ⊂ In satisfies

pγ̃n(X|In) < δ < n−b2
(5.3)

then

pγn+1((Rn|In+1)
−1(X)|In) < δ5a2

. (5.4)

Indeed, let V be a δ10a|In+1| neighborhood of 0. Then Rn|In+1\V has distortion
bounded by 2δ−10a .

Let W ⊂ In be an interval of size λ|In|. Of course

pγ̃n(X ∩W |W) < δλ−b/15. (5.5)

Let us decompose each side of In+1 \ V as a union of nb/10δ−5a/2 intervals of
equal length. Let W be such an interval. From Lemma 4.3, it is clear that the
image of W covers at least δ5an−2b|In|. It is clear then that

pγ̃n(X ∩ Rn(W)|Rn(W)) < δ(δ5an−2b)−b/15 < δ1/2 (5.6)
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(using that δ < n−b2
). So we conclude that (since the distortion of Rn|W is

bounded by 1 + n−3 by Remark 5.1)

pγn+1((Rn|In+1)
−1(X) ∩W |W) < δ1/2 (5.7)

(we use the fact that the composition of a γn+1-qs map with a map with small
distortion in γ̃n-qs). Since

pγn+1(V |In+1) < δ10a2
, (5.8)

we get the required estimate.

5.2 More on trees

Let us see an application of the above remarks.

Lemma 5.1. With total probability, for all n sufficiently big

pγ̃n((R
d
n)

−1(X)|I dn ) < 2npγn(X|In). (5.9)

Proof. Decompose I dn in nln(n) intervals of equal length, say, {Wi}nln(n)

i=1 . Then
by Lemma 4.3, |Rdn(Wi)| > n−2 ln n|In|, so we get

pγn(R
d
n(Wi) ∩X|Rdn(Wi)) < n4 ln(n)pγn(X|In). (5.10)

Applying Remark5.1, we see that

pγ̃n((R
d
n)

−1(X) ∩Wi |Wi) < n4 ln(n)pγn(X|In), (5.11)

(we use the fact that the composition of a γ̃n-qs map with a map with small
distortion is γn-qs) which implies the desired estimate. �

By induction we get:

Lemma 5.3. With total probability, forn is big enough, ifX1, . . . , Xm ⊂ Z\{0}
pγ̃n(d

(n)(x) = (j1, . . . , jm, . . . , j|d(n)(x)|), ji ∈ Xi,

1 ≤ i ≤ m|In) ≤ 2mn
m∏
i=1

pγn(j
(n)(x) ∈ Xi |In).

(5.12)

The following is an obvious variation of the previous lemma fixing the start of
the sequence.
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Lemma 5.3. With total probability, for n is big enough, if X1, . . . , Xm ⊂
Z \ {0}, and if d = (j1, . . . , jk) we have

pγ̃n(d
(n)(x) = (j1, . . . , jk, . . . , jk+m, . . . , j|d(n)(x)|), ji+k ∈ Xi,

1 ≤ i ≤ m|I dn ) ≤ 2mn
m∏
i=1

pγn(j
(n)(x) ∈ Xi |In).

(5.13)

In particular, with d = (τn),

pγ̃n(d
(n)(x) = (τn, j1, . . . , jm, . . . , j|d(n)(x)|), ji ∈ Xi,

1 ≤ i ≤ m|I τnn ) ≤ 2mn
m∏
i=1

pγn(j
(n)(x) ∈ Xi |In).

(5.14)

The last part of the above lemma will be often necessary in order to apply
PhPa1’.

Lemma 5.4. LetQ ⊂ Z \ {0}. LetQ(m, k) denote the set of d = (j1, . . . , jm)

such that #{1 ≤ i ≤ m, ji ∈ Q} ≥ k. Define qn(m, k) = pγ̃n(∪d∈Q(m,k)I dn |In).
Let qn = pγn(∪j∈QIjn |In).

With total probability, for n large enough,

qn(m, k) ≤
(
m

k

)
(2nqn)

k. (5.15)

Proof. We have the following recursive estimates for qn(m, k):

(1) qn(1, 0) = 1, qn(1, 1) ≤ qn ≤ 2nqn, and qn(m+ 1, 0) ≤ 1 for m ≥ 1,

(2) qn(m+ 1, k + 1) ≤ qn(m, k + 1)+ 2nqnqn(m, k).

Indeed, (1) is completely obvious and if (j1, . . . , jm+1) ∈ Q(m + 1, k + 1)
then either (j1, . . . , jm) ∈ Q(m, k + 1) or (j1, . . . , jm) ∈ Q(m, k) and jm+1 ∈
Q, so (2) follows from Lemma 5.2. It is clear that (1) and (2) imply by induc-
tion (5.15). �

We recall that by Stirling Formula,(
m

qm

)
<

mqm

(qm)! <
(

3

q

)qm
. (5.16)

So we can get the following estimate. For q ≥ qn,

qn(m, (6 · 2n)qm) <

(
1

2

)(6·2n)qm
. (5.17)
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6 Estimates on time

Our aim in this section is to estimate the distribution of return times to In: they
are concentrated around c−1

n−1 up to an exponent in a bounded range.
The basic estimate is a large deviation estimate and is proven in the next

subsection (Corollary 6.1) and states that for k ≥ 1 the set of branches with time
larger then kc−2b

n has capacity less then e−k.

6.1 A Large Deviation lemma for times

Let rn(j) be such that Rn|I jn = f rn(j). We will also use the notation rn(x) =
rn(j

(n)(x)), the n-th return time of x (there should be no confusion for the reader,
since we consistently use j for an integer index and x for a point in the phase
space).

Let

An(k) = pγn(rn(x) ≥ k|x ∈ In) (6.1)

Since f restricted to the complement of In+1 is hyperbolic, from Lemma 2.4.7,
it is clear that An(k) decays exponentially with k:

Lemma 6.1. With total probability, for all n > 0, there exists C > 0, λ > 1
such that An(k) < Cλk.

Proof. Consider a Markov partition for f |I\In+1 , that is, a finite union of inter-
vals M1, . . . ,Mm such that ∪mi=1Mi = I \ In+1, f |Mi

is a diffeomorphism for
1 ≤ i ≤ m, and f (∪mi=1∂Mi) ⊂ ∪mi=1∂Mi . It is easy to see that such a Markov
partition also satisfies: For every 1 ≤ i ≤ m, either

f (Mi) =
⋃

Mj⊂f (Mi)

Mj or f (Mi) = In+1 ∪
⋃

Mj⊂f (Mi)

Mj . (6.2)

(To construct such Markov partition, notice first that the boundary of In+1 is
preperiodic to a periodic orbit q (of periodp). In particular we have f s(∂In+1) =
q for some integer s > p. Let K be the (finite) set of all x which never enter
int In+1 and such that f j (x) = q for some j ≤ s. Since In+1 is nice, ∂In+1 ⊂ K ,
and since s > p, the orbit of q is contained in K . In particular K is forward
invariant. It is easy to see that the connected components of I \ (K ∪ In+1) form
a Markov partition of I \ In+1.)
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It follows that if f j (x) ∈ ∪mi=1 intMi , 0 ≤ j ≤ k then there exists a unique
interval x ∈ Mk(x) such thatf k|Mk(x) is a diffeomorphism onto someMj . Notice
that if k ≥ 1, f (Mk(x)) = Mk−1(f (x)).

By Lemma 2.4.7, if y ∈ Mk(x), |Df k(y)| is exponentially big in k. In partic-
ular,

∑k−1
j=0 |f j (Mk(x))| < C ′ for some constant C ′ > 0 independent ofMk(x).

Since f is C2, dist(f |Mk(x)) is uniformly bounded in k. Notice that the bounds
on distortion depend on n. (An alternative to this classical argument is to obtain
the bounded distortion from the negative Schwarzian derivative).

By Lemma 2.4.7 again, the set of points x ∈ I which never enter In+1 has
empty interior: for every T ⊂ I there is an iterate f r(T ) which intersects In+1

(otherwise the exponentially growing intervals f r(T ) ⊂ I would eventually
become bigger than I ). So there exists r > 0 such that, for every Mj , there
exists x ∈ Mj and tj < r with f tj (x) ∈ int In+1. It follows that there exists an
interval Ej ⊂ Mj such that f tj (Ej ) ⊂ int In+1.

Fixing some Mk(x) with f k(Mk(x)) = Mj , let Ek(x) = (f k|Mk(x))
−1(Ej ).

By bounded distortion, it follows that |Ek(x)|
|Mk(x)| is uniformly bounded from below

independently of Mk(x). In particular, p2γ (M
k(x) \ Ek(x)|Mk(x)) < λ for

some constant λ < 1.
Let Mk be the union of the Mk(x) and Ek be the union of the Ek(x). Then

Mk+r ∩ Ek = ∅. In particular, p2γ (M
(k+1)r |I ) < λp2γ (M

kr |I ).
We conclude thatp2γ (M

k|In) < Cλk/r for some constantC > 0. If k > rn(0),
then Mk ∩ In contains the set of points x ∈ In such that f j (x) /∈ In, 1 ≤ j ≤ k,
that is, all points x ∈ In with rn(x) > k. Adjusting C and λ if necessary, we
have An(k) < Cλk. �

Let ζn be the maximum ζ ≤ cn−1 such that for all k ≥ ζ−1 we have

An(k) ≤ e−ζk (6.3)

and finally let αn = min1≤m≤n ζm.
Let ln(d) be such that Ln|Idn = f ln(d). We will also use the notation ln(x) =

ln(d
(n)(x)). Let us define

Bn(k) = pγ̃n(ln(x) > k|In). (6.4)

Bτnn (k) = pγ̃n(ln(x) > k + rn(τn)|I τnn ). (6.5)

Lemma 6.2. If k > c
−b/2
n α

−b/2
n then

Bn(k) < e−c
b/2
n α

b/2
n k, (6.6)

Bτnn (k) < e−c
b/2
n α

b/2
n k. (6.7)
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Proof. Let us first show (6.6), the proof of estimate (6.7) being analogous.
Let k > c

−b/2
n α

−b/2
n be fixed. Let m0 = α

b/2
n k.

Notice that by Lemma 3.2.1

pγ̃n(|d(n)(x)| ≥ m0|x ∈ In) ≤ e−c
b/4
n α

b/2
n k. (6.8)

Fix now m < m0. Let us estimate

pγ̃n(|d(n)(x)| = m, ln(x) > k|x ∈ In). (6.9)

For each d = (j1, . . . , jm) associated to a point in this set, we can associate
a sequence of m positive integers ri such that ri ≤ rn(ji) and

∑
ri = k. The

average value of ri is at least k/m so we conclude that∑
ri≥k/2m

ri > k/2. (6.10)

Recall also that

k

2m
>

1

(2αb/2n )
> α−1

n . (6.11)

Given a sequence of m positive integers ri as above we can do the following
estimate using Lemma 5.2

pγ̃n(d
(n)(x) = (j1, . . . , jm), rn(ji) ≥ ri |In)

≤ 2mn
m∏
j=1

pγn(rn(x) ≥ rj |In)

≤ 2mn
∏

rj≥α−1
n

pγn(rn(x) ≥ rj |In)

≤ 2mn
∏

rj≥k/2m
e−αnrj ≤ 2mne−αnk/2.

(6.12)

The number of sequences of m positive integers ri with sum k is(
k +m− 1

m− 1

)
≤ 1

(m− 1)!(k +m− 1)m−1

≤ 1

m!(k +m)m ≤
(

2ek

m

)m
.

(6.13)
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Notice that (since x1/x is decreasing for x > e)

2mn
(

2ek

m

)m
≤

(
2n+3k

m

) m

k2n+3 k2n+3

≤
(

2n+3k

m0

) m0
k2n+3 k2n+3

=
(

2n+3

α
b/2
n

)m0

≤ eα
b/4
n k.

(6.14)

So we can finally estimate

pγ̃n(|d(n)(x)| = m, ln(x) ≥ k|x ∈ In)
≤ 2mn

(
2ek

m

)m
e−αnk/2 < e(α

(b/4)−1
n − 1

2 )αnk.
(6.15)

Summing up on m we get (since ln(m0)

k
≤ ln(k)

k
≤ α

b/4
n )

pγ̃n(|d(n)(x)| < m0, ln(x) ≥ k|x ∈ In) ≤ m0e
(α
(b/4)−1
n − 1

2 )αnk

< e(α
(b/2)−1
n +α(b/4)−1

n − 1
2 )αnk ≤ e−αnk/3.

(6.16)

As a direct consequence we get

Bn(k) < e−αnk/3 + e−c
b/4
n α

b/2
n k < e−c

b/2
n α

b/2
n k. (6.17)

concluding the proof of (6.6). �
Let vn = rn(0) be the return time of the critical point.

Lemma 6.3. With total probability, for n large enough,

vn+1 < c−3b/4
n α−3b/4

n . (6.18)

Proof. By the definition of αn and PhPa2’, it follows that with total probability,
for n large enough,

rn(τn) < c−1
n−1α

−1
n . (6.19)

Recall that d(n)(0) is such that Rn(0) ∈ C
d(n)(0)
n . Using Lemma 6.1, more

precisely estimate (6.7), together with PhPa1’, we get with total probability, for
n large enough,

ln(d
(n)(0))− rn(τn) < nα−b/2

n c−3b/4
n , (6.20)
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and thus

vn+1 < vn + c−1
n−1α

−1
n + nα−b/2

n c−3b/4
n < vn + α−3b/4

n c−3b/4
n /4. (6.21)

Notice that αn decreases monotonically, thus for n0 big enough and for n > n0,

vn < vn0 +
n−1∑
k=n0

α
−3b/4
k c

−3b/4
k /4 < vn0 + α−3b/4

n c−3b/4
n /3. (6.22)

which for n big enough implies vn+1 < c
−3b/4
n α

−3b/4
n . �

Lemma 6.4. With total probability, for n large enough,

αn+1 ≥ min{α2b
n , c

2b
n }. (6.23)

Proof. Let k ≥ max{α−2b
n , c−2b

n }. From Lemma 6.1 one immediately sees that
if rn+1(j) ≥ k then Rn(I

j

n+1) is contained on some Cdn with ln(d) ≥ k/2 ≥
α

−b/2
n c

−b/2
n .

Applying Lemma 6.1 we have Bn(k/2) < e−α
b/2
n c

b/2
n k/2.

Applying Remark 5.1 we get An+1(k) < e−kα
b/2
n c

b/2
n a2/2 < e−kmin{α2b

n ,c
2b
n }. �

Since cn decreases torrentially, we get

Corollary 6.5. With total probability, for n large enough αn+1 ≥ c2b
n .

6.2 Consequences

The lemma below contains the basic estimates on return times that we will need
(and also contains estimates already proved).

Lemma 6.6. With total probability, for all n sufficiently large we have

pγ̃n(ln(x) < c−sn |x ∈ In) < c
a
2 −s
n , with s > 0, (6.24)

pγ̃n(ln(x) < c−sn |x ∈ I τnn ) < c
a
2 −s
n , with s > 0, (6.25)

pγ̃n(ln(x) > c−sn |x ∈ In) < e−c
b−s
n , with s > b, (6.26)

pγ̃n(ln(x) > c−sn |x ∈ I τnn ) < e−c
b−s
n , with s > b, (6.27)

pγn(rn(x) > c−sn−1|x ∈ In) < e−c
2b−s
n−1 , with s > 2b. (6.28)
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Moreover we also have

rn(τn) < c−3b
n−1, (6.29)

c−an−1 < vn < c
−4b/5
n−1 , (6.30)

c
−a/2
n−1 < ln(c−1

n ) < c−bn−1. (6.31)

Proof. The estimate from above in (6.30) is given by Corollary 6.1 together
with Lemma 6.1, while the estimate from below is contained in Lemma 3.2.1
(since vn > sn−1). Estimate (6.28) is Corollary 6.1.

Estimates (6.24) and (6.25) are contained in Lemma 3.2.1 (it is enough to use
that ln(x) ≥ |d(n)(x)|).

Estimate (6.26) follow from Lemma 6.1 and Corollary 6.1.
Estimate (6.28) implies (6.29) by application of PhPa1’. Using also the esti-

mate from above in (6.29) one also gets estimate (6.27).
The estimate from below on (6.31) is given by Lemma 3.2.1. Notice that

|Rn(In+1)| > 2−n|In|
(by Lemma 4.3), and since |Df | is bounded (by 4) this implies 4vn |In+1| >
2−n|In| which gives cn > 2−n4−vn . So the estimate from above in (6.31) follows
from the estimate from above in (6.30). �

7 Some kinds of branches and landings

7.1 Standard and fast landings

Let us define the set of standard landings at time n, LS(n) ⊂ � as the set of all
d = (j1, . . . , jm) satisfying the following:

LS1: c
−a4/2
n < m < c−2b4

n ,

LS2: rn(ji) < c−3b4

n−1 for all i.

We also define the set of fast landings at time n, LF(n) ⊂ � by the following
conditions

LF1: m ≤ c
−a4/2
n .

LF2: (=LS2): rn(ji) < c−3b4

n−1 for all i.
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Lemma 7.1. With total probability, for all n sufficiently big,

pγ̃n(d
(n)(x) /∈ LS(n)|x ∈ In) < ca

4/3
n /2, (7.1)

pγ̃n(d
(n)(x) /∈ LS(n) ∪ LF(n)|x ∈ In) < cn

2

n /2, (7.2)

pγ̃n(d
(n)(x) /∈ LS(n)|x ∈ I τnn ) < ca

4/3
n /2, (7.3)

pγ̃n(d
(n)(x) /∈ LS(n) ∪ LF(n)|x ∈ I τnn ) < cn

2

n /2. (7.4)

Proof. Let us start with the first two estimates.

(LS1) A simple application of (6.24) and (6.26) allows to estimate pγ̃n(|d(n)(x)|
≥ c2b4

n or |d(n)(x)| ≤ c
a4/2
n |In) and shows that the set of landings violating LS1

has γ̃n-capacity bounded by c2a4/5
n−1 .

(LS1+LF1) An application of (6.26) allows to estimate pγ̃n(|d(n)(x)| ≥ c2b4

n |In)
and shows that the set of landings violating both LS1 and LF1 has γ̃n-capacity
bounded by cn

2

n /10.

(LS2=LF2) An application of (6.28) gives pγ̃n(rn(x) ≥ c−3b4

n−1 |In) ≤ e−c
−2b4
n−1 .

Using Lemma 5.2, this implies that the set of landings violating LS2 and sat-
isfying either LS1 or LF1 (so that |d| < c−2b4

n ) has γ̃n-capacity bounded by

2nc−2b4

n pγ̃n(rn(x) ≥ c−3b4

n−1 |In) ≤ cn
2

n /10.

Putting those estimates together gives the first two estimates. To get the last
two estimates, we proceed in the same way for estimating LS1 and LS1+LF1.
The estimate of LS2=LF2 follows the same lines with one extra ingredient: we
have to be careful since if rn(τn) is very large then automatically LS2 is violated
for every d which starts by τn. But this was taken care by estimate (6.29), and
with this observation the estimates are the same. �

7.2 Very good returns, bad returns and excellent landings

For n0, n ∈ N such that n ≥ n0, define the set of very good returns, VG(n0, n) ⊂
Z\{0} and the set of bad returns,B(n0, n) ⊂ Z\{0}, by induction as follows. We
let VG(n0, n0) = Z\ {0},B(n0, n0) = ∅ and supposing VG(n0, n) and B(n0, n)

defined, we then define the set of excellent landings LE(n0, n) ⊂ LS(n) as
the set of all standard landings d = (j1, . . . , jm) satisfying the following extra
assumptions

LE1: For all c−2b4

n−1 < k ≤ m, #{1 ≤ i ≤ k, ji /∈ VG(n0, n)} < (6 · 2n)ca
8

n−1k,
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LE2: For all c−1/n
n < k ≤ m, #{1 ≤ i ≤ k, ji ∈ B(n0, n)} < (6 · 2n)cnn−1k.

We then defineVG(n0, n+1) as the set of j ∈ Z\{0} such thatRn(I
j

n+1) = C
d
n

with d ∈ LE(n0, n) and such that:

VG: The distance of I jn+1 to 0 is bigger than cn
2

n |In+1|.
And we define B(n0, n + 1) as the set of j /∈ VG(n0, n + 1) such that

Rn(I
j

n+1) = C
d
n with d /∈ LF(n).

Lemma 7.2. With total probability, for all n0 sufficiently big,

pγn(j
(n)(x) /∈ VG(n0, n)|x ∈ In) < ca

8

n−1, (7.5)

pγn(j
(n)(x) ∈ B(n0, n)|x ∈ In) < c2n

n−1, (7.6)

pγ̃n(d
(n)(x) /∈ LE(n0, n)|x ∈ In) < c2a4/5

n , (7.7)

pγ̃n(d
(n)(x) /∈ LE(n0, n) ∪ LF(n)|x ∈ In) < cn

2

n , (7.8)

pγ̃n(d
(n)(x) /∈ LE(n0, n)|x ∈ I τnn ) < c2a4/5

n . (7.9)

Proof. The argument is by induction: if for a given value of n we have (7.5)
and (7.6) (this holds trivially for n = n0), we will show that we also have (7.7),
(7.8) and (7.9), and this in turn implies that (7.5) and (7.6) hold for n+ 1.

Assuming the validity for a given value of n of (7.5) and (7.6) we can estimate
the γ̃n-capacity of the set of landings which fail LE1 or LE2 using the techniques
of §5.2 as follows:

(LE1) We use estimate (5.17). Setting q = ca
8

n−1 we see that the set of landings

which fail LE1 for a specific value of k ≥ c2b4

n−1 is bounded by 2−(6·2n)qk. Summing

up on k ≥ c2b4

n−1 we get the upper bound cn
2

n /10.

(LE2) We use estimate (5.17) again, setting this time q = cnn−1. The upper bound

we get using the same argument as before is
∑

k>c
−1/n
n

2−(6·2n)qk ≤ cn
2

n /10.

Those estimates imply (7.7) and (7.8) (it is enough to use (7.1) and (7.2)). An
analogous argument shows that (7.5) and (7.6) imply (7.9).

To see that the validity of (7.7) and (7.8) for n implies the validity of (7.5) and
(7.6) for n+ 1 is just a matter of applying Remark 5.1 (notice that condition VG

is quite weak: it excludes a set of branches of γn+1-capacity at most cn
2/a
n ). �

This translates immediately (using the measure-theoretical argument of
Lemma 2.2) to a parameter estimate using PhPa2’:
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Lemma 7.3. With total probability, for all n0 big enough, for all n big enough,
τn ∈ VG(n0, n).

Lemma 7.4. With total probability, for all n0 big enough and for all n ≥ n0, if
j ∈ VG(n0, n+ 1) then

c−a
4/2

n ≤ m < rn+1(j) < mc−4b4

n−1 ≤ c−2b4

n c−4b4

n−1 , (7.10)

where as usual, m is such that Rn(I
j

n+1) = C
d
n and d = (j1, . . . , jm).

Proof. We have c−a
4/2

n ≤ m ≤ c−2b4

n by LS1, while m < rn+1(j) is obvious.

We get rn+1(j) < mc−4b4

n−1 from LS2 and (6.30). �

Lemma 7.5. With total probability for all n0 sufficiently big, if n > n0, and if

j /∈ VG(n0, n) ∪ B(n0, n) then rn(j) < c
−a4/2
n−1 c−4b4

n−2 .

Proof. Indeed, if j /∈ VG(n0, n) ∪ B(n0, n) then Rn−1(I
j
n ) ∈ LF(n0, n− 1).

The estimate follows since a branch in LF(n0, n − 1) has time bounded by

c
−a4/2
n−1 c−3b4

n−2 (using LF1 and LF2) and vn−1 < c−b
4

n−2 (using (6.30)). �

Lemma 7.6. With total probability, for all n0 big enough and for all n ≥ n0,
the following holds.

Let j ∈ VG(n0, n + 1), as usual let Rn(I
j

n+1) ⊂ C
d
n and d = (j1, . . . , jm).

Let mk be biggest possible with

vn +
mk∑
i=1

rn(ji) ≤ k (7.11)

(the amount of full returns to level n before time k) and let

βk =
∑

1≤i≤mk,
ji∈VG(n0,n)

rn(ji). (7.12)

(the total time spent in full returns to level n which are very good before time k).

Then 1 − βk
k
< c

a8/3
n−1 if k > c

−2/n
n .
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Proof. Let us estimate first the time ik which is not spent on non-critical full
returns:

ik = k −
mk∑
j=1

rn(ji). (7.13)

This corresponds exactly to vn plus some incomplete part of the return jmk+1 .

This part can be bounded by c−b
4

n−1 + c−3b4

n−1 (use (6.30) to estimate vn and LS2 to
estimate the incomplete part).

Using LS2 we conclude now that

mk > (k − c−b
5

n−1)c
3b4

n−1 > c−1/n
n (7.14)

so mk is not too small.
Let us now estimate the contribution hk from bad full returns ji . The number

of such returns must be less than cn/2n−1mk by LE2 and the estimate on mk. By

LS2 their total time is at most c(n/2)−3b4

n−1 mk < mk.
The non very good full returns on the other hand can be estimated by LE1 (using

(7.14)): they are at most c2a8/3
n−1 mk. So we can estimate the total time lk of non

very good or bad full returns (with time less then c−a
4/2

n−1 c−4b4

n−2 by Lemma 7.2) by

c
2a8/3
n−1 c

−a4/2
n−1 c−4b4

n−2 mk, (7.15)

while βk can be estimated from below by

(1 − c
2a8/3
n−1 )c

−a4/2
n−1 mk. (7.16)

It is easy to see then that ik/βk � c
a4/5
n−1 , hk/βk � c

a4/5
n−1 . We also have

lk
βk
< 2ca

8/2
n−1 . So ik+hk+lk

βk
is less then ca

8/3
n−1 . Since ik + hk + lk + βk = k we have

1 − βk

k
<
ik + hk + lk

βk
< c

a8/3
n−1 . �

7.3 Cool landings

Let us define the set of cool landings

LC(n0, n) ⊂ LE(n0, n), n0, n ∈ N, n ≥ n0

as the set of all excellent landings d = (j1, . . . , jm) satisfying
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LC1: ji ∈ VG(n0, n), 1 ≤ i ≤ c
−a8/2
n−1 .

LC2: For all c−a
8/2

n−1 < k ≤ m, #{1 ≤ i ≤ k, ji /∈ VG(n0, n)} < (6 ·2n)ca8/3
n−1 k,

LC3: For c−n/3n−1 ≤ k ≤ m, #{1 ≤ i ≤ k, ji ∈ B(n0, n)} < (6 · 2n)cn/6n−1k,

LC4: ji /∈ B(n0, n), 1 ≤ i ≤ c
−n/2
n−1 .

As usual we obtain:

Lemma 7.7. With total probability, for all n0 sufficiently big and all n ≥ n0,

pγ̃n(d
(n)(x) /∈ LC(n0, n)|x ∈ In) < c

a8/3
n−1 (7.17)

and for all n big enough

pγ̃n(d
(n)(x) /∈ LC(n0, n)|x ∈ I τnn ) < c

a8/3
n−1 . (7.18)

Proof. We follow the ideas of the proof of Lemma 7.1. Let us start with the
first estimate. Notice that by Lemma 7.2 we can estimate the γ̃n-capacity of the

complement of excellent landings by c2a4/5
n . The computations below indicate

what is lost going from excellent to cool due to each item of the definition:

(LC1) This is a direct estimate analogous to LS2. By Lemma 7.2, the γn-capacity
of the complement of very good branches is bounded by ca

8

n−1, so an upper bound

for the γ̃n-capacity of the set of landings which do not start with c−a
8/2

n−1 very good

branches is given by 2nca
8

n−1c
−a8/2
n−1 � c

a8/3
n−1 .

(LC2) In order to estimate the set of landings violating LC2, we use the ideas

of §5.2. The relevant estimate is (5.17): setting q = c
a8/3
n−1 and using Lemma 7.2,

we see that the γ̃n-capacity of the set of landings violating LC2 for a specific

value of k > c
−a8/2
n−1 is bounded by 2−(6·2n)qk, and summing up on k we get the

upper bound
∑

k>c
−a8/2
n−1

2−(6·2n)qk � c
a8/3
n−1 .

(LC3) The same argument of LC2 (setting q = c
n/6
n−1) gives the upper bound∑

k>c
−n/3
n−1

2−(6·2n)qk � cn
2

n−1,

(LC4) An argument analogous to LC1 gives the upper bound 2nc−n/2n−1 c
2n
n−1 �

cnn−1.
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Those imply the first estimate. To get the second estimate we argue in the
same way: we only need to use Lemma 7.2 to guarantee that τn ∈ VG(n0, n)

(this avoid problems with LC1 and LC4). �
Using PhPa1’ we get

Lemma 7.8. With total probability, for all n0 big enough, for all n big enough
we have Rn(0) ∈ LC(n0, n).

Lemma 7.9. With total probability, for all n0 big enough, for all n ≥ n0,
d = (j1, . . . , jm) ∈ LC(n0, n), and 1 ≤ s ≤ m we have

∑
1≤i≤s,

ji∈VG(n0,n)

rn(ji) ≥ (1 − 2−2n)

s∑
i=1

rn(ji). (7.19)

Proof. From LC1, LC2 and Lemma 7.2 we have∑
1≤i≤s,

ji /∈VG(n0,n)∪B(n0,n)

rn(ji) ≤ (6 · 2n)ca
8/3
n−1 sc

−a4/2
n−1 c−4b4

n−2 ≤ ca
9

n−1c
−a4/2
n−1 s, (7.20)

and from LC3, LC4 and LS2 we have∑
1≤i≤s,

ji∈B(n0,n)

rn(ji) ≤ (6 · 2n)cn/6n−1sc
−3b4

n−1 ≤ s, (7.21)

while from LC1, LC2 and Lemma 7.2 we have

∑
1≤i≤s,

ji∈VG(n0,n)

rn(ji) ≥ (1 − (6 · 2n)ca
8/3
n−1 )sc

−a4/2
n−1 ≥ 1

2
c

−a4/2
n−1 s, (7.22)

and the result follows from (7.20), (7.21) and (7.22). �

8 Proof of Theorem B

We must obtain, with total probability, upper and lower (polynomial) bounds for
the recurrence of the critical orbit. It will be easier to first study the recurrence
with respect to iterates of return branches, and then estimate the total time of
those iterates.
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Lemma 8.1. With total probability, for n big enough and for 1 ≤ i ≤ sn,

ln |Rin(0)|
ln(cn−1)

< b8

(
1 + ln(i)

ln(c−1
n−1)

)
. (8.1)

Proof. From Lemma 4.3, we have

ln |Rn(0)|
ln cn−1

<
ln(2−n|In|)

ln cn−1
< 2 (8.2)

and the result follows for i = 1. Let X ⊂ In be a cb
8

n−1 neighborhood of 0. For n

big, we can estimate |X|
|In| < cb

8−2
n−1 . Let us show that Rin(0) /∈ X for 2 ≤ i ≤ c−2

n−1.
This requirement can be translated onRn(0) not belonging to a certain set Y ⊂ In
such that

Y =
⋃

1≤|d|<c−2
n−1

(Rdn)
−1(X). (8.3)

It is clear that

pγ (Y |I τnn ) ≤ c−2
n−1c

(b8−2)/b4

n−1 < cb
4−3
n−1 . (8.4)

Applying PhPa1’, the probability that for some 2 ≤ i ≤ c−2
n−1 we have |Rin(0)| <

cb
8

n−1 is at most cb
4−3
n−1 , which is summable. This implies the result in the range

2 ≤ i ≤ c−2
n−1.

For j ≥ 0, let Xj ⊂ In be a cb
4(j+2)

n−1 neighborhood of 0. Let K be maximal
with XK ⊃ In+1. Let Yj ⊂ In be such that

Yj =
⋃

c−b4j
n−1 ≤|d|<c−b4(j+1)

n−1

(Rdn)
−1(Xj ). (8.5)

By Lemma 4.3, it is clear that no Xj intersects I τnn . Thus we can estimate

pγ (Yj |I τnn ) ≤ c−b
4(j+1)

n−1 cb
4(j+2)−2b
n−1 < cb

4(j+1)

n−1 (8.6)

and

pγ (

K⋃
j=0

Yj |I τnn ) <
∞∑
j=0

cb
4j

n−1 < 2cn−1. (8.7)
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Applying PhPa1’, with total probability, the critical point does not belong to
∪Kj=0Yj . This means that for 0 ≤ j ≤ K and for c−b

4j

n−1 < i ≤ c−b
4(j+1)

n−1 ,

Rin(0) /∈ Xj , which implies |Rin(0)| > cb
4(j+2)

n−1 . This concludes the proof of

the result in the range c−2
n−1 < i ≤ c−b

4(K+1)

n−1 .

To conclude the result in the remaining case c−b
4(K+1)

n−1 < i ≤ sn, we notice that
|Rin(0)| > |In|/2 > |XK+1|/2, so

ln |Rin(0)|
ln(cn−1)

<
ln |XK+1|/2

ln cn−1
≤ b4(K+3) ≤ b8 ln(i)

ln(c−1
n−1)

(8.8)

which gives the required estimate. �
For 1 ≤ i ≤ sn, let ki such that Rin|In+2 = f ki .

Lemma 8.2. With total probability, for n big enough and for 1 ≤ i ≤ sn,

ln(ki)

ln(c−1
n−1)

>
a4

3

(
1 + ln(i)

ln(c−1
n−1)

)
. (8.9)

Proof. Let us first assume that c−1
n−1 ≤ i ≤ sn. By Lemma 7.3, Rn(0) belongs

to a cool landing, and by LC2 we get

ki

i − 1
> c

−a4/3
n−1 , (8.10)

which clearly implies the required estimate.
Using (6.30), we see that ki ≥ vn ≥ c−an−1. Thus for 1 ≤ i < c−1

n−1 we have

ln ki
ln c−1

n−1

≥ a >
a4

3

(
1 + ln i

ln c−1
n−1

)
, (8.11)

which gives the result. �
Considering |Rn(0)| = |f vn(0)| < cn−1 and using vn < c−bn−1 we get

lim inf
n→∞

− ln |f n(0)|
ln(n)

≥ a. (8.12)

Let now vn ≤ k < vn+1. If |f k(0)| < k−3b12
we have f k(0) ∈ In and so

k = ki for some i. It follows from Lemmas 8 and 8 that |f k(0)| > k−3b12
. Thus

lim sup
n→∞

− ln |f n(0)|
ln(n)

≤ 3b12. (8.13)
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9 Hyperbolicity

For j �= 0, we define

λn(j) = inf
x∈I jn

ln(|R′
n(x)|)

rn(j)
, λn = inf

j �=0
λn(j). (9.1)

Lemma 9.1. With total probability, for all n sufficiently big, λn > 0.

Proof. By Lemma 2.4.7, there exists a constant λ̃n > 0 such that each peridic
orbit p of f whose orbit is entirely contained in the complement of In+1 must
satisfy ln |Dfm(p)| > λ̃nm, wherem is the period of p. On the other hand, each
non-central branchRn|I jn has a fixed point. By Lemma 4.3, dist(Rn|I jn ) ≤ 2n and

of course limj→∞ rn(j) = ∞, so we have lim infj→∞ λn(j) ≥ λ̃n. On the other
hand, for any j �= 0, λn(j) > 0 by Lemma 4.3, so λn > 0. �

Lemma 9.2. With total probability, for n0 big enough, we have:

If n ≥ n0 and j ∈ VG(n0, n) then λn(j) ≥ λn0

1 + 2n0−n

2
, (9.2)

If n > n0, j ∈ VG(n0, n) and c
−3
(n−1)
n−1 ≤ k ≤ rn(j)

then inf
I
j
n

ln(|Df k|)
k

≥ λn0

1 + 2n0−n+ 1
2

2
− c

2
(n−1)
n−1 .

(9.3)

Proof. Let us prove that if (9.2) holds for a certain value of n ≥ n0 then (9.3)
and (9.2) hold for n+1. This implies the result by induction, since the definition
of λn0 implies that (9.2) holds for n0. Fix j ∈ VG(n0, n+ 1) and define

ak = inf
x∈I jn+1

ln |Df k(x)|
k

, (9.4)

and let us consider values of k in the range c−3/n
n ≤ k ≤ rn+1(j) (notice that

rn+1(j) > c
−3/n
n by Lemma 7.2).

We let Rn(I
j

n+1) ⊂ C
d
n , d = (j1, . . . , jm). Notice that by (6.30), vn < c−b

4

n−1 <

k. Let us say that ji was completed before k if vn + rn(j1) + · · · + rn(ji) ≤ k.
Define

qk = inf
x∈Cdn

ln |Df k−r ◦ f r(x)| (9.5)
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where r = vn + rn(j1) + · · · + rn(jmk ) with jmk the last complete return. By
Lemma 4.3 we have

−qk
k

≤ − ln cnc5
n−1

c
−3/n
n

� c2/n
n . (9.6)

Let us show that |DRn(x)| > cn
2

n if x ∈ I
j

n+1. Indeed, by Lemma 4.2,
DRn|In+1 = φ ◦ f , where φ has small distortion, so by Lemma 4.3,

|Dφ(f (x))| > |Rn(In+1)|
2|f (In+1)| >

2−n|In|
|In+1|2 , (9.7)

while by VG, |Df (x)| = |2x| > cn
2

n |In+1|, so |DRn(x)| > cn
2

n .
Notice also that using Lemma 4.3, for any m0 ≤ m, the derivative of Rm0

n in

C
d
n is at least 2m0 . So for m0 = c−2b4

n−1 we have that the derivative of Rm0+1
n in

I
j

n+1 is at least 1. Moreover, still by Lemma 4.3 any complete return (even if not
very good) brings in some expansion.

Notice that from LS2

k0 =
m0∑
i=1

rn(ji) < c−2b4

n−1 c
−3b4

n−1 � k, (9.8)

so we can use Lemma 7.2 and get

ak >
βk − k0

k

λn0(1 + 2n0−n)
2

− −qk
k

≥ λn0(1 + 2n0−n−1/2)

2
− −qk

k
. (9.9)

This and (9.6) give (9.3) for n+ 1. If k = rn+1(j), qk = 0 which gives (9.2) for
n+ 1. �

10 Proof of Theorem A

We must show that with total probability, f is Collet-Eckmann. The argument
given here is slightly different from the one in [AM1] and the one sketched in
[AM2] (here we use Theorem B to get some estimates, which makes the argument
slightly shorter). Let

ak = ln |Df k(f (0))|
k

. (10.1)

Let d(n)(Rn(0)) = (j1, . . . , jsn). By Lemma 9, each very good return has a
definite hyperbolicity by (9.2), while, by Lemma 4.3, each return which is not
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very good brings some (possibly weak) expansion. Thus, for 1 ≤ s ≤ sn and for
n large, Lemma 7.3 implies

ln |DRsn(Rn(0))|∑s
i=1 rn(ji)

≥ (1 − 2−2n)λn0

1 + 2n0−n

2
≥ λn0

1 + 2n0−n−1

2
. (10.2)

In particular,

avn+1−1 ≥ avn−1
vn − 1

vn+1 − 1
+ λn0

1 + 2n0−n−1

2

vn+1 − vn

vn+1 − 1
. (10.3)

Iterating (10.3) implies that for n large we have

avn−1 ≥ λn0

1 + 2n0−n−1

2
. (10.4)

If vn − 1 ≤ k < vn+1 − 1, let 0 ≤ mk < sn be maximal such that

tk = vn − 1 +
mk∑
i=1

rn(ji) ≤ k. (10.5)

By (10.2) and (10.4) we have

|Df tk (f (0))|
tk

= vn − 1

tk
avn−1 + ln |DRmkn (Rn(0))|∑mk

i=1 rn(ji)

∑mk
i=1 rn(ji)

tk

≥ λn0

1 + 2n0−n−1

2
.

(10.6)

Notice that if k−tk
k

≥ 2−2n then k− tk ≥ c
−a/2
n−1 (since k ≥ vn − 1 > c−an−1 − 1),

so rn(jmk+1) ≥ k − tk > c−a
4

n−1c
−4b4

n−2 , and we have jmk+1 ∈ VG(n0, n) ∪B(n0, n)

by Lemma 7.2. This in turn implies that jmk+1 ∈ VG(n0, n): since k − tk ≤
rn(jmk+1) ≤ c−3b4

n−1 (by LS2), if jmk+1 ∈ B(n0, n) then by LC4, k ≥ mk + 1 >
c

−n/2
n−1 , so

k − tk

k
≤ rn(jmk+1)

k
≤ c

n/3
n−1 < 2−2n,

a contradiction.
Define qk = ln |Df k−tk (f tk+1(0))|. By Lemma 4.3 and by Theorem B, we

have

−qk
k

≤ − ln(|f tk+1(0)|c3
n−1)

k
≤ ca

2

n−1, (10.7)
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since |f tk+1(0)| > k−C for some C > 0. Thus, if k−tk
k

≤ 2−2n we have by (10.6)

ak ≥ tk

k
λn0

1 + 2n0−n−1

2
− −qk

k
≥ λn0

2
. (10.8)

If k−tk
k

≥ 2−2n, we have jmk+1 ∈ VG(n0, n), so we can apply (9.3) and conclude
that

qk

k − tk
≥ λn0

1 + 2n0−n+ 1
2

2
− c

2/(n−1)
n−1 ≥ λn0

2
, (10.9)

which implies, using (10.6) again,

ak ≥ tk

k
λn0

1 + 2n0−n−1

2
+ k − tk

k

qk

k − tk
≥ λn0

2
. (10.10)

Thus ak ≥ λn0
2 for vn − 1 ≤ k < vn+1 − 1, for all n sufficiently large, which

implies that f is Collet-Eckmann.

References

[ALM] A. Avila, M. Lyubich and W. de Melo, Regular or stochastic dynamics in real
analytic families of unimodal maps. Invent. Math., 154 (2003), 451–550.

[AM1] A. Avila and C.G. Moreira, Statistical properties of unimodal maps: the
quadratic family. To appear in Annals of Math.

[AM2] A. Avila and C.G. Moreira, Statistical properties of unimodal maps: smooth
families with negative Schwarzian derivative.Astérisque, 286 (2003), 81–118.

[AM3] A. Avila and C.G. Moreira, Bifurcations of unimodal maps. Preprint
(www.arXiv.org).

[AM4] A. Avila and C.G. Moreira, Phase-Parameter relation and sharp statistical
properties of unimodal maps. Preprint (www.arXiv.org).

[BBM] V. Baladi, M. Benedicks and V. Maume, Almost sure rates of mixing for i.i.d.
unimodal maps. Ann. scient. Éc. Norm. Sup. (4), 35(1) (2002), 77–126.

[BV] V. Baladi and M. Viana, Strong stochastic stability and rate of mixing for
unimodal maps. Ann. scient. Éc. Norm. Sup., 29 (1996), 483–517.

[KN] G. Keller and T. Nowicki, Spectral theory, zeta functions and the distribution
of periodic points for Collet-Eckmann maps. Comm. Math. Phys., 149 (1992),
31–69.

[L1] M. Lyubich, Combinatorics, geometry and attractors of quasi-quadratic maps.
Ann. Math, 140 (1994), 347–404.

[L2] M. Lyubich, Dynamics of quadratic polynomials, III. Parapuzzle and SBR
measure. Astérisque, 261 (2000), 173–200.

Bull Braz Math Soc, Vol. 35, N. 2, 2004



QUASISYMMETRIC ROBUSTNESS OF COLLET-ECKMANN 331

[L3] M. Lyubich, Almost every real quadratic map is either regular or stochastic.
Ann. of Math. (2) 156(1) (2002), 1–78.

[MN] M. Martens and T. Nowicki, Invariant measures for Lebesgue typical quadratic
maps. Asterisque, 261 (2000), 239–252.

[MvS] W. de Melo and S. van Strien, One-dimensional dynamics. Springer, 1993.

[Pa] J. Palis, A global view of dynamics and a conjecture of the denseness of
finitude of attractors. Astérisque, 261 (2000), 335–347.

[Y] L.-S. Young, Decay of correlations for certain quadratic maps. Comm. Math.
Phys., 146 (1992), 123–138.

Artur Avila
Collège de France
3 rue d’Ulm, 75005 – Paris
FRANCE
e-mail: artur@ccr.jussieu.fr

Carlos Gustavo Moreira
Instituto de Matemática Pura e Aplicada – IMPA
Estrada Dona Castorina, 110 – Rio de Janeiro
BRAZIL
e-mail: gugu@impa.br

Bull Braz Math Soc, Vol. 35, N. 2, 2004


