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Semi-classical resolvent estimates for the
Schrödinger operator on non-compact
complete Riemannian manifolds
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Abstract. We prove uniform semi-classical estimates for the resolvent of the
Schrödinger operator h2�g + V (x), 0 < h � 1, at a nontrapping energy level E > 0,
where V is a real-valued non-negative potential and �g denotes the positive Laplace-
Beltrami operator on a non-compact complete Riemannian manifold which may have a
nonempty compact smooth boundary.

Keywords: semi-classical resolvent estimates, non-trapping energy level, generalized
geodesics.

Mathematical subject classification: 35B37, 35J15, 47F05.

1 Introduction and statement of results

The purpose of this note is to obtain semi-classical resolvent estimates for the
operator h2�g + V (x) at a nontrapping energy level E > 0 on a large class
of non-compact complete Riemannian manifolds, (M, g), dim M = n ≥ 2,
(which may have a compact boundary ∂M of class C∞) and for a large class of
non-negative potentials V ∈ C∞(M), where �g denotes the positive Laplace-
Beltrami operator on (M, g), and h > 0 is a small parameter. The manifolds
we are going to consider are of the form M = X0 ∪ X, where X0 is a com-
pact, connected Riemannian manifold with a metric g|X0 of class C∞(X0) with
a compact boundary ∂X0 = ∂M ∪ ∂X, ∂M ∩ ∂X = ∅, X = [r0, +∞) × S,
r0 � 1, with metric g|X := dr2 + σ(r). Here (S, σ (r)) is an n − 1 dimen-
sional compact Riemannian manifold without boundary equipped with a family
of Riemannian metrics σ(r) depending smoothly on r which can be written in
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any local coordinates θ ∈ S in the form

σ(r) =
∑
i,j

gij (r, θ)dθidθj , gij ∈ C∞(X).

Denote Xr = [r, +∞) × S. Clearly, ∂Xr can be identified with the Riemannian
manifold (S, σ (r)) with the Laplace-Beltrami operator �∂Xr

written as follows

�∂Xr
= −p−1

∑
i,j

∂θi
(pgij ∂θj

),

where (gij ) is the inverse matrix to (gij ) and p = (det(gij ))
1/2 = (det(gij ))−1/2.

We have

�X := �g|X = −p−1∂r(p∂r) + �∂Xr
= −∂2

r − p′

p
∂r + �∂Xr

,

where p′ = ∂p/∂r . We have the identity

p1/2�Xp−1/2 = −∂2
r + �r + q(r, θ), (1.1)

where
�r = −

∑
i,j

∂θi
(gij ∂θj

),

and q is an effective potential given by

q(r, θ) = (2p)−2

(
∂p

∂r

)2

+ (2p)−2
∑
i,j

∂p

∂θi

∂p

∂θj

gij + 2−1p�X(p−1).

We suppose that q = q1+q2, where q1 and q2 are real-valued functions satisfying

|q1(r, θ)| ≤ C,
∂q1

∂r
(r, θ) ≤ Cr−1−δ0, |q2(r, θ)| ≤ Cr−1−δ0, (1.2)

with constants C, δ0 > 0. Denote

h(r, θ, ξ) =
∑
i,j

gij (r, θ)ξiξj , (θ, ξ) ∈ T ∗S.

We also suppose that

−∂h

∂r
(r, θ, ξ) ≥ C

r
h(r, θ, ξ), ∀(θ, ξ) ∈ T ∗S, (1.3)
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with a constant C > 0. Note that this class of manifolds has already been
considered in [3], [12].

Let V ∈ C∞(M) be a real-valued function, V (x) ≥ 0, ∀x ∈ M , such that
V (r, θ) := V |X satisfies

|V (r, θ)| ≤ C1,
∂V

∂r
(r, θ) ≤ C1r

−1−δ1, (1.4)

with constants C1, δ1 > 0.
Given 0 < h � 1, denote by G(h) the selfadjoint realization of the

Schrödinger operator h2�g+V (x) on the Hilbert space H = L2(M, dVolg) with
Dirichlet or Neumann boundary conditions, Bu = 0, on ∂M . Fix an energy level
E > 0 such that

E − V (x) ≥ C2, ∀x ∈ M, (1.5)

with a constant C2 > 0. Let h0(x, ξ), (x, ξ) ∈ T ∗M , denote the principal
symbol of �g, and set

pE(x, ξ) = (E − V (x))−1h0(x, ξ).

The energy level E > 0 satisfying (1.5) will be said to be non-trapping for the
operator G(h) if for ∀a ≥ r0, ∃T = T (a) > 0 so that for every generalized
geodesics, γ (t), associated to the Hamiltonian pE(x, ξ), with γ (0) ∈ M \ Xa ,
there exists 0 < τ ≤ T with γ (τ) ∈ Xa . Recall that a generalized geodesics
(associated to pE) is the projection on M of the generalized bicharactersitcs
associated to the Hamiltonian pE (see [7], [8] for the precise definition).

Given a real s, choose a real-valued function χs ∈ C∞(M), χs = 1 on M \
Xr0+1/2, χs |X depending only on r , χs = r−s on Xr0+1. Our main result is the
following

Theorem 1.1. Assume(1.2)-(1.4) fulfilled. If E > 0 satisfying (1.5) is a non-
trapping energy level, then for every s > 1/2, there exist constants C, h0 > 0,
so that for 0 < h ≤ h0, 0 < ε ≤ 1, the following estimate holds

‖χs(G(h) − E ± iε)−1χs‖L(H) ≤ Ch−1. (1.6)

Remark 1. When V ≡ 0 the estimate (1.6) is equivalent to the high frequency
resolvent estimate proved in [12] (see Theorem 1.1).
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Remark 2. Using Proposition 2.3 below instead of Proposition 2.4 of [3], one
can show in the same way as in [3] that we have an analogue of (1.6) without
the non-trapping assumption but with O

(
eC/h

)
, C > 0, in the RHS. Such an

exponential bound for the resolvent has been first obtained by Burq [1] for a class
of long-range perturbations of the Euclidean Laplacian.

The estimate (1.6) has been first proved in the case of the operator h2�+V (x)

on Rn, � = − ∑n
j=1 ∂2

xj
being the Euclidean Laplacian and V a long-range po-

tential (see [5], [6], [10]), and then extended to more general perturbations on
Rn (see [4], [9]). In all these papers the proof was based on Mourre’s commu-
tator method. Vasy and Zworski [11] proved (1.6) in the case of asymptotically
Euclidean manifolds without using Mourre’s method. However, their proof has
been still based on what is an essential ingredient in Mourre’s method, namely
the existence of a global escape function due to the non-trapping condition. We
would like to emphasise on the fact that such a global escape function cannot be
constructed when the boundary ∂M is not empty. Note also that the manifold
studied in [11] is isometric to a manifold, (M, g), with ∂M = ∅, belonging to
the class described above. Let us also mention the work [2] where an estimate
like (1.6) for the cutoff resolvent in a strip was proved in the case of compactly
supported perturbations of the Euclidean Laplacian.

Our approach is quite different from those developed in the papers mentioned
above. We use Melrose-Sjöstrand [7], [8] results on propagation of C∞ singu-
larities to get an uniform semi-classical estimate on M \Xa , ∀a ≥ r0 (see Propo-
sition 2.1). Then we combine this estimate with an estimate on Xb, b >> r0

(see Proposition 2.3), which is a generalization of an estimate already proved in
[3] (see Proposition 2.4) in the case of V ≡ 0. To our best knowledge, it is the
first time an estimate like (1.6) is proved in the case of nonempty boundary ∂M

and a potential V non-identically zero.

2 Uniform a priori estimates

Throughout this section, given a domain M0 ⊂ M , the Sobolev space
H 1(M0, dVolg) will be equipped with the semi-classical norm defined by

‖u‖2
H 1(M0,dVolg)

:= ‖u‖2
L2(M0,dVolg)

+ ‖h∇gu‖2
L2(M0,dVolg)

,

where ∇g denotes the gradient corresponding to �g.

Proposition 2.1. Under the assumptions of Theorem 1.1, given any
u ∈ D(G(h)) and any a ≥ r0, the following estimate holds:

‖u‖H 1(M\Xa,dVolg) ≤ Ch−1‖(h2�g + V − E + iε)u‖L2(M\Xa+1,dVolg)

+ C‖u‖H 1(Xa\Xa+1,dVolg),
(2.1)
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for 0 < h ≤ h0, 0 < ε ≤ 1, with constants C, h0 > 0 independent of h and ε.

Proof. Let η ∈ C∞(M), η = 1 in M \ Xa , η = 0 in Xa+1, and set w = ηu ∈
D(G(h)). Then (2.1) would follow from the estimate

‖w‖H 1(M,dVolg) ≤ Ch−1‖(h2�g + V − E + iε)w‖L2(M,dVolg). (2.2)

We will derive (2.2) from the following a priori estimate

Proposition 2.2. Let U(t, x) = 0 in R × Xa+1 satisfy the equation

((E − V (x))∂2
t + �g)U(t, x) = V (t, x) in R × M,

BU(t, x) = 0 on R × ∂M.
(2.3)

Then, if E is a non-trapping level, there exist constants C, T > 0 so that the
following inequality holds

‖∂tU(T , ·)‖ + ‖∇gU(T , ·)‖ ≤ C‖U(0, ·)‖ + C‖∂tU(0, ·)‖−2

+ C

∫ T

0
‖V (t, ·)‖dt,

(2.4)

where ‖ ·‖ denotes the norm in L2(M, dVolg), while ‖ ·‖−2 denotes the classical
norm in the Sobolev space H−2(M, dVolg).

Proof. Denote by LE the self-adjoint realization of the operator (E −V )−1�g

on the Hilbert space HE = L2(M, (E − V )dVolg) with boundary conditions
Bu = 0. By Duhamel’s formula we have

U(t, ·) = cos
(
t
√

LE

)
U(0, ·) + sin

(
t
√

LE

)
√

LE

∂tU(0, ·)

+
∫ t

0

sin
(
(t − τ)

√
LE

)
√

LE

Ṽ (τ, ·)dτ,

(2.5)

where Ṽ = (E − V )−1V . Let χ ∈ C∞(M), χ = 1 on suppU, χ = 0 outside
a small neighbourhood of suppU. In view of (2.5) we can write

∂tU(t, ·) = −LEχ
sin

(
t
√

LE

)
√

LE

χU(0, ·)

+ [LE, χ ]sin
(
t
√

LE

)
√

LE

χU(0, ·)

+ χ cos
(
t
√

LE

)
χ∂tU(0, ·) +

∫ t

0
χ cos

(
(t − τ)

√
LE

)
χṼ (τ, ·)dτ,

(2.6)
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∇gU(t, ·) = ∇gχ cos
(
t
√

LE

)
χU(0, ·) + ∇gχ

sin
(
t
√

LE

)
√

LE

χ∂tU(0, ·)

+
∫ t

0
χ∇g

sin
(
(t − τ)

√
LE

)
√

LE

χṼ (τ, ·)dτ

+
∫ t

0
[∇g, χ ]sin

(
(t − τ)

√
LE

)
√

LE

χṼ (τ, ·)dτ.

(2.7)

It follows from Melrose-Sjöstrand’s result on propagation of C∞ singularities
(see [7], [8]) that the distribution kernels of the operators χ cos

(
T

√
LE

)
χ and

χ
sin(T

√
LE)√

LE
χ belong to C∞(M × M) for some T > 0 depending on supp χ .

Now (2.4) follows from (2.6), (2.7) and the inequality

‖∇gf ‖2
HE

≤ C‖∇gf ‖2 = C〈�gf, f 〉
= C〈LEf, f 〉HE

= C‖√LEf ‖2, ∀f ∈ D(LE). �

Let us apply (2.4) with U(t, x) = eit/hw(x),

V (t, x) = eit/hh−2(h2�g + V − E)w.

We get

‖w‖ + ‖h∇gw‖ ≤ O(h)‖w‖ + O(1)‖w‖−2

+ O(h−1)‖(h2�g + V − E)w‖. (2.8)

On the other hand, we have

‖w‖−2 ≤ C‖(E−V )w‖−2 ≤ C‖(h2�g+V − E)w‖−2 + Ch2‖�gw‖−2

≤ O(1)‖(h2�g + V − E)w‖ + O(h2)‖w‖. (2.9)

Combining (2.8) and (2.9), and taking h small enough lead to the estimate

‖w‖H 1 ≤ O(h−1)‖(h2�g + V − E)w‖. (2.10)

On the other hand, by Green’s formula we have

‖(h2�g + V − E + iε)w‖2 = ‖(h2�g + V − E)w‖2 + ε2‖w‖2,

so

‖(h2�g + V − E)w‖ ≤ ‖(h2�g + V − E + iε)w‖. (2.11)

Now (2.2) follows from (2.10) and (2.11). �
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Proposition 2.3. There exists a constant b � r0 so that if u ∈ H 2(Xb, dVolg),
is such that

rs(h2�g + V − E + iε)u ∈ L2(Xb, dVolg)

for 0 < s − 1/2 � 1, 0 < ε ≤ 1, then ∀0 < γ � 1 there exist constants
C1, C2, h0 > 0 independent of h and ε (but depending on γ ) so that for 0 < h ≤
h0 we have

‖r−su‖2
H 1(Xb+1,dVolg)

≤ C1h
−2‖rs(h2�g + V − E + iε)u‖2

L2(Xb,dVolg)

−C2hIm 〈∂ru, u〉L2(∂Xb) + γ ‖u‖2
H 1(Xb\Xb+1,dVolg)

. (2.12)

Remark. This proposition has been proved in [3] (Proposition 2.4) for every
b ≥ r0 in the case when q2 ≡ 0 and V ≡ 0. When the potential V is not
identically zero, however, one needs to take the parameter b big enough and
0 < h ≤ h0(b) � 1. The proof in this more general case is similar to that in [3],
but we will present it below for the sake of completeness.

Let us see that (2.1) and (2.12) imply (1.6). By Green’s formula we have

− h2Im 〈∂ru, u〉L2(∂Xb) =
− Im 〈(h2�g + V − E + iε)u, u〉L2(M\Xb,dVolg) − ε‖u‖2

L2(M\Xb,dVolg)

≤ Cγ1h‖χsu‖2
L2(M,dVolg)

+ Cγ −1
1 h−1‖χ−s(h

2�g + V − E + iε)u‖2
L2(M,dVolg)

,

(2.13)

∀γ1 > 0. Choose a = b + 3. Combining (2.1), (2.12) and (2.13), and choosing
the parameters γ and γ1 small enough, we get

‖χsu‖H 1(M,dVolg) ≤ Ch−1‖χ−s(h
2�g + V − E + iε)u‖L2(M,dVolg),

∀u ∈ D(G(h)), (2.14)

for 0 < h ≤ h0 with constants C, h0 > 0 independent of h and ε. Clearly, (2.14)
implies (1.6).

Proof of Proposition 2.3. Denote

P := p1/2
(
h2�g|X + V − E + iε

)
p−1/2 = D2

r + Lr + W − E + iε,

where Dr = −ih∂r , Lr = h2�r , W = V + h2q. Note that (1.3) implies

−[∂r, Lr ] ≥ C

r
Lr, C > 0. (2.15)
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In what follows ‖ · ‖ and 〈·, ·〉 will denote the norm and the scalar product on
L2(S). Denote by L2(Xb) and H 1(Xb) the spaces equipped with the norms

‖f ‖2
L2(Xb)

=
∫ ∞

b

‖f (r, ·)‖2dr,

‖f ‖2
H 1(Xb)

=
∫ ∞

b

(‖f (r, ·)‖2 + ‖Drf (r, ·)‖2 + 〈Lrf (r, ·), f (r, ·)〉) dr.

Choose a function φ ∈ C∞(R), 0 ≤ φ ≤ 1, such that φ(r) = 0 for r ≤ b + 1/2,
φ(r) = 1 for r ≥ b + 2/3, and φ′(r) ≥ 0, ∀r . Set w = p1/2u and

F(r) = −〈(Lr + W1 − E)φw(r, ·), φw(r, ·)〉 + ‖Dr (φw)(r, ·)‖2,

where W1 = V + h2q1 = W − h2q2. It is easy to see that the first derivative of
F(r) satisfies

F ′(r) = − 〈[∂r, Lr ]φw(r, ·), φw(r, ·)〉 − 〈W ′
1φw(r, ·), φw(r, ·)〉

− 2εIm 〈φw(r, ·), (φw)′(r, ·)〉
− 2h−1Im 〈φ(P − h2q2)w(r, ·),Dr (φw)(r, ·)〉
− 2h−1Im 〈[P, φ]w(r, ·), φDrw(r, ·)〉
− 2h−1Im 〈[P, φ]w(r, ·), [Dr , φ]w(r, ·)〉
≥ −〈[∂r, Lr ]φw(r, ·), φw(r, ·)〉 − 〈W ′

1φw(r, ·), φw(r, ·)〉
− εh−1

(‖φw(r, ·)‖2 + ‖Dr (φw)(r, ·)‖2
)

− Oγ (h−2)r2s‖(P − h2q2)w(r, ·)‖2

− O(γ )r−2s‖Dr (φw)(r, ·)‖2

− O(h)r−2s
(‖w(r, ·)‖2 + ‖Drw(r, ·)‖2

)
,

(2.16)

∀γ > 0. In view of (1.2) and (1.4), we have

W ′
1(r, θ) ≤ Cr−1−δ, (2.17)

with constants C > 0, δ = min{δ0, δ1} > 0. By (2.15), (2.16) and (2.17) we get,
for r ≥ b,

F ′(r) ≥C

r
〈Lrφw(r, ·), φw(r, ·)〉 − O(b−σ )r−2s‖φw(r, ·)‖2

− εh−1
(‖φw(r, ·)‖2 + ‖Dr (φw)(r, ·)‖2

)
− Oγ (h−2)r2s‖(P − h2q2)w(r, ·)‖2

− O(γ )r−2s‖Dr (φw)(r, ·)‖2

− O(h)r−2s
(‖w(r, ·)‖2 + ‖Drw(r, ·)‖2

)
,

(2.18)
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where σ = δ + 1 − 2s > 0. Integrating (2.18) from t ≥ b to +∞ and using that
Lr ≥ 0, we get

F(r) ≤O(b−σ )

∫ ∞

b

r−2s‖φw(r, ·)‖2dr + O(γ )

∫ ∞

b

r−2s‖Dr (φw)(r, ·)‖2dr

+ εh−1
∫ ∞

b

(‖φw(r, ·)‖2 + ‖Dr (φw)(r, ·)‖2
)
dr

+ Oγ (h−2)

∫ ∞

b

r2s‖(P − h2q2)w(r, ·)‖2dr

+ O(h)

∫ ∞

b

r−2s
(‖w(r, ·)‖2 + ‖Drw(r, ·)‖2

)
dr.

Hence∫ ∞

b

r−2sF (r)dr ≤O(b−δ)‖r−sφw‖2
L2(Xb)

+ O(γ )‖r−sDr (φw)‖2
L2(Xb)

+ O(εh−1)
(
‖φw‖2

L2(Xb)
+ ‖Dr (φw)‖2

L2(Xb)

)
+ Oγ (h−2)‖rs(P − h2q2)w‖2

L2(Xb)

+ O(h)‖r−sw‖2
H 1(Xb)

.

(2.19)

On the other hand, multiplying (2.18) by r1−2s and integrating from b to +∞
we get

(2s − 1)

∫ ∞

b

r−2sF (r)dr =
∫ ∞

b

r1−2sF ′(r)dr

≥ C

∫ ∞

b

r−2s〈Lr(φw)(r, ·), φw(r, ·)〉dr

− O(b−δ)‖r−sφw‖2
L2(Xb)

− O(γ )‖r−sDr (φw)‖2
L2(Xb)

− O(εh−1)
(
‖φw‖2

L2(Xb)
+ ‖Dr (φw)‖2

L2(Xb)

)
− Oγ (h−2)‖rs(P − h2q2)w‖2

L2(Xb)
− O(h)‖r−sw‖2

H 1(Xb)
.

(2.20)

On the other hand, we have

〈(Lr + W − E)φw, φw〉L2(Xb) + ‖Dr (φw)‖2
L2(Xb)

= Re 〈P(φw), φw〉L2(Xb),

Bull Braz Math Soc, Vol. 35, N. 3, 2004



342 FERNANDO CARDOSO, GEORGI POPOV and GEORGI VODEV

and hence

‖Dr (φw)‖2
L2(Xb)

≤ C‖φw‖2
L2(Xb)

+ ‖P(φw)‖2
L2(Xb)

≤ C‖w‖2
L2(Xb)

+ ‖Pw‖2
L2(Xb)

+ O(h2)‖r−sw‖2
H 1(Xb)

.
(2.21)

Furthermore we have

ε‖w‖2
L2(Xb)

=Im 〈Pw, w〉L2(Xb) − h2Im 〈∂rw, w〉L2(∂Xb)

≤ γ −1h−1‖rsPw‖2
L2(Xb)

+ γ h‖r−sw‖2
L2(Xb)

− h2Im 〈∂rw, w〉L2(∂Xb).

(2.22)

By (2.21) and (2.22),

εh−1
(
‖φw‖2

L2(Xb)
+ ‖Dr (φw)‖2

L2(Xb)

)
≤ Oγ (h−2)‖rsPw‖2

L2(Xb)

+ O(γ )‖r−sw‖2
H 1(Xb)

− ChIm 〈∂rw, w〉L2(∂Xb),
(2.23)

∀γ > 0, 0 < h ≤ h0(γ ), with a constant C > 0. Integrating by parts it is easy
to obtain the following estimate:∣∣∣〈r−2s(Lr + W − E)φw, φw〉L2(Xb) + ‖r−sDr (φw)‖2

L2(Xb)

∣∣∣
≤ O(h−1)‖Pw‖2

L2(Xb)
+ O(h)‖r−sw‖2

H 1(Xb)
.

(2.24)

Since E − W ≥ E − V − O(h) ≥ C2 − O(h) ≥ C2/2 > 0, we deduce from
(2.24),

‖r−sφw‖2
L2(Xb)

≤C‖r−sDr (φw)‖2
L2(Xb)

+ C〈r−2sLr(φw), φw〉L2(Xb)

+ O(h−1)‖Pw‖2
L2(Xb)

+ O(h)‖r−sw‖2
H 1(Xb)

.
(2.25)

Combining (2.19), (2.20), (2.23), (2.24) and (2.25), we get

‖r−sφw‖2
H 1(Xb)

≤ O(b−δ)‖r−sφw‖2
L2(Xb)

+ O(γ )‖r−sw‖2
H 1(Xb)

− ChIm 〈∂rw, w〉L2(∂Xb) + Oγ (h−2)‖rsPw‖2
L2(Xb)

,
(2.26)

∀γ > 0, 0 < h ≤ h0(γ ), with a constant C > 0, provided s − 1/2 > 0 is small
enough. Clearly, (2.12) follows from (2.26) by taking b big enough, γ > 0 small
enough depending on b, and 0 < h ≤ h0(b, γ ) � 1. �
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