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Immersions with fractal set of points of zero
Gauss-Kronecker curvature

Alexander Arbieto† and Carlos Matheus‡

— To professor João Lucas Barbosa, in occasion of his 60th birthday.

Abstract. We construct, for any “good” Cantor set F of Sn−1, an immersion of the
sphere Sn with set of points of zero Gauss-Kronecker curvature equal to F ×D1, where
D1 is the 1-dimensional disk. In particular these examples show that the theorem of
Matheus-Oliveira strictly extends two results by do Carmo-Elbert and Barbosa-Fukuoka-
Mercuri.
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1 Introduction

Let x : Mn → R
n+1 be a codimension one Euclidean immersion of an orientable

manifold M . Let N : Mn → Sn be the associated Gauss map in the given
orientation. Recall that A = dN is self-adjoint and its eigenvalues are the
principal curvatures. We denote Hn = det(dN) the Gauss-Kronecker curvature
and rank(x) := rank(N) := minp∈M rank(dpN).

A compact set F ⊂ Sn is called a good Cantor set if Sn − F = ⋃
i∈N

Ui ,
is the disjoint union of open balls Ui in Sn (with the standard metric) of radius
bounded by a small constant δ0 = δ0(n) (to be choosen later).

Our main result is:
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Theorem A. For any F ⊂ Sn−1 a good Cantor set, there are immersions
x : Sn → R

n+1 such that rank(x) = n − 1, the Gauss-Kronecker curvature
is non-negative and {p ∈ Sn : Hn(p) = 0} = F × D1, where D1 is the 1-
dimensional disk.

Before starting some comments, we briefly recall the definition:

Definition 1.1. A complete orientable hypersurface M has finite geometrical
type (in [BFM] sense) if M is equal to a compact manifold M minus a finite
number of points (called ends), the Gauss map N : M → Sn extends continu-
ously to each “end” and the set of points of zero Gauss-Kronecker curvature is
contained in a finite union of submanifolds of dimension ≤ n− 2; M has finite
total curvature if∫

M

|A|n < ∞, where |A| =
( n∑
i=1

k2
i

)1/2

,

ki are the principal curvatures. We remark that, as showed in [dCE], if M has
finite total curvature then M has finite geometrical type.

The motivation of our Theorem A are the following results. In a recent work,
do Carmo and Elbert [dCE] show that:

Theorem 1.2 [do Carmo, Elbert]. IfM is a hypersurface of finite total curva-
ture with Gauss-Kronecker curvatureHn �= 0 everywhere thenM is topologically
a sphere minus a finite number of points.

In fact, this result can be improved, as showed in [BFM]:

Theorem 1.3 [Barbosa, Fukuoka, Mercuri]. IfM is a 2n dimensional hyper-
surface of finite geometrical type such that {p ∈ M : Hn(p) = 0} is a subset of a
finite union of submanifolds with dimension less than n−1 then the hypersurface
is a sphere minus two points. If M is minimal, M is the 2n-catenoid.

In general, it is not easy to obtain the hypothesis of the result by Barbosa,
Fukuoka and Mercuri for arbitrary immersions, since the classical theorems
(Sard, Moreira [M]) treat only the critical values (in our case, the spherical
image of points of zero curvature). With this difficult in mind, Matheus and
Oliveira [MO], using the concept of Hausdorff dimension, generalize the previ-
ous results:
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Theorem 1.4 [Matheus, Oliveira]. If x : M → R
n+1 is an immersion of finite

geometrical type such that rank(x) ≥ k and the (k−[n2 ])-dimensional Hausdorff
measure of N({p ∈ M : Hn(p) = 0}) is zero then M is topologically a sphere
minus a finite number of points ([r] = integer part of r). If M is minimal, M is
the catenoid.

However, it is not obvious the existence of immersions satisfying Matheus-
Oliveira’s hypothesis which does not satisfies the assumptions of Barbosa-
Fukuoka-Mercuri. The question about existence of “fractal immersions” was
posed to second author by Walcy Santos during the Differential Geometry sem-
inar at IMPA. The main goal of this paper is to show how one can construct
immersions with “large” fractal set of points of zero curvature. Clearly, the ex-
istence of such immersions follows from our Theorem A. The outline of proof
of Theorem A is:

• First, we construct immersions ϕ of Sn with rank equal to k, {Hn = 0} :=
{p : Hn(p) = 0} = Sk ×Dn−k (Dn−k is a (n − k)-dimensional disk and
Sk is a round sphere) and N({Hn = 0}) = Sk;

• Second, if U is a ball in Sn−1, we produce a modification ϕ|U of ϕ such
that ϕU = ϕ in (Sn−1 − U) × D1 and the Gauss-Kronecker curvature of
ϕU(U ×D1) does not vanishes;

• Finally, we consider F = Sn−1 − ⋃∞
i=1Ui and we produce the desired

immersion by induction, using the two steps above.

In next three sections, we are going to make precise the steps described above.
In other words, we describe explicitly the immersions with the properties com-
mented in the previous outline.

We observe that in the special case of “good” Cantor sets, even if it has positive
measure, the manifold can be the sphere (this occurs because the “singular” set
has “good” geometry). In particular, the theorems of Matheus-Oliveira are not
sharp. Moreover, the proof of our Theorem A shows that the round balls can
be replaced by sets with a well-defined “distance function”. However, the proof
only works in codimension 1 (i.e., for good Cantor sets F ⊂ Sn−1), by technical
reasons. Also, we can apply these techniques in the non-compact case. This is
showed in last section of this paper.

To finish this introduction, we comment that related to our construction of
fractal sets (or equivalently, non-negatively curved metrics), there is the work of
B. Guan and P. Guan [GG] about convex hypersurfaces of prescribed curvature,
although this work is quite different from [GG]. In fact, we deal with prescribed
curvature but there are regions of zero curvature, so their theorem does not covers
our present case.
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2 Some immersions with cylindrical pieces

The main result of this section is the following lemma:

Lemma 2.1. There are immersions ϕ : Sn → R
n+1 such that rank(ϕ) = k and

{p ∈ Sn : Hn(p) = 0} = Sk ×Dn−k, where Sk is a round sphere in R
k+1 with

radius 0 <
√
γ < 1,Dn−k is the (n− k)-dimensional disk of radius

√
α, α < 1

2
and α < γ < 1 − α.

The ideia of the proof of this lemma is flatten the boundary of a hemisphere
such that the curvature is positive everywhere except at the boundary. Now take a
cylinder and glue isometrically the boundaries of the cylinder and the hemisphere
(see Figure 1 after the proof of Lemma 2.1). Gromov [G] uses this ideia (in other
context) to construct some examples of manifolds of nonpositive curvature with
special properties. Because the authors does not know any reference in literature
where these examples are constructed in details (the known references deals only
with higher codimension surgeries [GL]), we present the proof of the Lemma 2.1.

Proof of Lemma 2.1. Fix some α < β < γ . We write R
n+1 	 p = (x, y),

where x ∈ R
k+1 and y ∈ R

n−k. We denote ||.|| the Euclidean metric. Consider
some real function ν ∈ C∞ s.t. ν(r) ≡ γ if 0 ≤ r ≤ α, ν(r) ≡ 1 if β ≤ r ≤ 1
and ν is strictly increasing in [α, β]. The immersion ϕ : Sn → R

n+1 is:

ϕ(x, y) = (θ(||y||2) · x, y) = (z, w), where θ(r) =
√
ν(r)− r · µ(r)

1 − r
,

and µ is a convenient real function (it will be defined later). We take µ such that
µ(r) ≡ 0 if 0 ≤ r ≤ α and µ(r) ≡ 1 if β ≤ r ≤ 1. These implies that

ϕ(x, y) = (x, y) if ||y||2 ≥ β, ϕ(x, y) =
( √

γ√
1 − ||y||2 · x, y

)
if ||y||2 ≤ α.

In other words, ϕ has a spherical piece and a cylindrical piece. Now, it is sufficient
to define ϕ (i.e., µ) in such way that the Gauss-Kronecker curvature is positive
except at the cylindrical piece.

By definition, using y = w, (x, y) ∈ Sn ⇒ ||x||2 + ||y||2 = 1, we have
||z||2 + µ(||w||2) · ||w||2 = ν(||w||2). That’s it, if

f (z,w) = ||z||2 + µ(||w||2) · ||w||2 − ν(||w||2),
then f |ϕ(Sn) ≡ 0. As usual, the Gauss map isN(z,w) = grad f

||grad f || . But ∂f
∂zi

= 2 ·zi
and ∂f

∂wj
= 2 ·wj · {µ+ ||w||2 · µ′ − ν ′}. For sake of simplicity, we will denote
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c1(r) = µ+ r · µ′ − ν ′. Then,

||grad f || = 2 ·
√
ν + ||w||2 · (c2

1 − µ).

We denote c2(r) =
√
ν + r · (c2

1 − µ). Now we have:

N(z,w) = 1

c2(||w||2) · (z, c1(||w||2) · w).

Clearly, ∂Nl
∂zi

= 0 if l �= i, ∂Nl
∂zi

= 1
c2

if l = i. Analogously, ∂Nl
∂wj

= 2 · ( 1
c2

)′ · zl ·wj
if l ≤ k + 1 and, if l ≥ k + 2,

∂Nl

∂wj
=

{
2 · ( c1

c2

)′ · wj · wl if l �= j

2 · ( c1
c2

)′ · wj · wl + c1
c2

if l = j

These computations implies that:

dN =
( 1

c2
· Ik+1 �
0 A+ c1

c2
· In−k

)
,

where Im is the (m×m)-identity matrix and A = 2 · ( c1
c2

)′ · [wj ·wl]j l (wj is the
j -th component of w). We observe that A has eigenvalues 0 with multiplicity
(n− k − 1) and 2 · ( c1

c2

)′ · ||w||2 with multiplicity 1. In particular, the principal

curvatures of ϕ are: 1
c2

with multiplicity k, c1
c2

with multiplicity n − k − 1 and

2 · ( c1
c2

)′ · ||w||2 + c1
c2

with multiplicity 1. Because

det (dN − λ · Id) = det

(
1

c2
· Id

)
· det

(
A+ c1

c2
· Id − λ · Id

)
.

We need Hn > 0 if ||y||2 = ||w||2 > α, Hn = 0 if ||w||2 ≤ α. To solve this,
we consider ψ ∈ C∞, ψ |[0,α] ≡ 0 and ψ |[β,1] ≡ 1. The admissible µ needs to
satisfy:

c1

c2
= ρ (1)

2rρ ′ + ρ = ψ (2)

where ρ|[0,α] ≡ 0, ρ|[β,1] ≡ 1 also. As we will see later, this property is sufficient
to conclude the proof.
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In order to make the following rigorous, fix any 0 < α̃ < α and β < β̃ < 1.
The ODE (2) can be explicitly solved:

(2) ⇐⇒ ρ ′ + ρ

2r
= ψ

2r
⇐⇒ (

e
∫ r
α

1
2s ds · ρ)′ = ψ

2r
.

Integrating (and using ρ(α) = 0), we get (2) ⇔ ρ(r) = 1√
2r

·
r∫
α

ψ√
2s
ds, for

r ∈ [̃α, β̃].
Now, we solve the (implicit) ODE (1). Observe that

(1) ⇔ c2
1 = ρ2ν + c2

1rρ − µrρ2 ⇔ c2
1

ν − rµ
= ρ2

1 − rρ2
:= �2.

Integrating and making the change of variables u = ν − rµ, we obtain, by
definition of c1, − ∫ ν−rµ

γ
du√
u

= ∫ r
α
�(s) ds ⇔ 2

√
γ − 2

√
ν − rµ = ∫ r

α
�.

Then:

µ = 1

r

[
ν − (√

γ − 1

2

∫ r

α

�
)2
]

(in the interval [̃α, β̃], where 1
r

makes sense). Because ψ satisfies ψ |[0,α] ≡ 0,
µ|[0,α] ≡ 0 holds.

It remains only µ|[β,1] ≡ 1, for some ψ carefully choosen. However,

µ = 1 ⇐⇒ (∗) r = ν −
(√

γ − 1

2

∫ r

α

�

)2

, for all r ≥ β.

By definition, � = 1√
1−r , for r ≥ β. In particular, if r ≥ β,

∫ r
α
� = ∫ β

α
� +∫ r

β
� = ∫ β

α
�+2

√
1 − β−2

√
1 − r . Then (∗) ⇐⇒ 1

2

∫ β
α
� = √

γ−√
1 − β.

Fix ε > 0 small and consider ψ1 s.t. ψ1|[α+ε,β] ≥ 1 − ε, ψ1 strictly increasing
in [α, β] and ψ1|[0,α] ≡ 0, ψ1|[β,1] ≡ 1. For a sufficiently small ε > 0, if ρ1 and
�1 denotes the functions associated toψ1, then ρ1|[α+ε,β] ≥ 1−2ε. In particular,

�1 ≥ (1 − 3ε)
1√

1 − r
⇒ 1

2

∫ β

α

�1 ≥ (1 − 4ε) · {√1 − α − √
1 − β}.

By hypothesis, γ < 1 − α that imply 1
2

∫ β
α
�1 ≥ √

γ − √
1 − β. With a similar

argument, we can take ψ0 s.t. ψ0|[0,α] ≡ 0, ψ0|[β,1] ≡ 1 and ψ0|[α,β−ε] ≤ ε. If
ε > 0 is small, we get 1

2

∫ β
α
�0 ≤ √

γ − √
1 − β, where �0 is the associated

function to ψ0. Now, consider the linear combination ψt = (1 − t)ψ0 + tψ1.
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An easy verification is that ψt has the desired values in the intervals [0, α] and
[β, 1], for any t ∈ [0, 1]. By a continuity argument, it is not difficult that there
is some t0 such that 1

2

∫ β
α
�t0 = √

γ − √
1 − β. Finally, we consider ψ = ψt0 .

The Gauss-Kronecker curvature has the properties of the lemma for the previ-
ousψ . Indeed, by the definitions, rank(ϕ) = k, sinceHn is positive everywhere
except at the cylindrical pieceSk×Dn−k andSk×Dn−k has exactly k positive prin-
cipal curvatures. Moreover,ψ > 0 if r > α implies that {Hn = 0} = Sk×Dn−k.
At this point, the informations about the radii of Sk and Dn−k are clear. This
concludes the proof. �

The proof of Lemma 2.1 is illustrated in Figure 1. The conditions on the
numbers α, β, γ are necessary. In other case, our immersions creates some
undesired regions of negative Gauss-Kronecker. The role of these numbers in
the construction of ϕ is explained in Figure 1.

S
n

ϕ (γ)

α

β

R
n-k

1/2

Sk

Figure 1: Immersion with large region of zero curvature.

In next section, we show how one can perturbate ϕ to destroy regions of
zero curvature. With this is easy to obtain fractal immersions, by sucessively
destroying “large” regions of zero curvature in such way that the set of zero
curvature is fractal at the end of this process.

3 Removing zero Gauss-Kronecker curvature

Before giving the statement and the proof of the main result of this paragraph, we
briefly describe the ideia of the lemma. Take the immersion ϕ and an open setU
of Sn−1. We want to perturbe ϕ such that the region correspondent toU×D1 has
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positive curvature (i.e., we want to “inflate” the set), and this perturbation should
glue smoothly with the other region (Sn−1 −U)×D1 of the cylinder Sn−1 ×D1.
This can be done because the region of positive curvature {(z, w) : |w| > α}
permits the change of curvature in the “goal” region. Moreover, this method
does not have points of negative curvature since the curvature of Sn−1 is positive.
The ideia is more clear contained in Figure 2.

�
�
�
�

U

c

R

0

−α

N(q)

U

α

Cross-Section View:

−β

β

Figure 2: Removing regions with zero curvature.

With this figure in mind, the main lemma of this section is:

Lemma 3.1. IfU is an open ball of Sn−1 with radius bounded by δ0 = δ0(n−1),
and ϕ : Sn → R

n+1 is the immersion constructed above, then there exists a
perturbation ϕU of ϕ such that ϕU = ϕ in (Sn−1−U)×D1 ⋃ {(z, w) : |w| ≥ β}
and the Gauss-Kronecker curvature of ϕU(U ×D1) is positive.

Proof of Lemma 3.1. Let U ⊂ Sn−1 be a round ball of radius δ and center c.
Denote by d(z) = 1

2 dist(z, c)2, where dist is the distance function in Sn−1. We
will consider a perturbation of ϕ by normal variation, i.e., Ft(q) = q+ t · f (q) ·
N(q), for q ∈ ϕ(Sn) (here N(q) denotes the normal vector to M := ϕ(Sn) at
q). To prove the result, we need to show that a suitable f : M → R, t > 0 have
the desired properties. In order to verify these properties, we first calculate the
normal vector Nt(qt ) to Mt := Ft(M) at qt := Ft(q). By definition,

dFt(q)v = v + t.f (q).dN(q) · v + t.(df (q).v) ·N(q).
Bull Braz Math Soc, Vol. 35, N. 3, 2004
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In particular,

0 = 〈Nt(qt ), dFt(q).v〉
= 〈Nt(qt ), v〉 + t.(df (q).v).〈Nt(qt ), N(q)〉

+t.f (q).〈Nt(qt ), dN(q).v〉
∀ v ∈ TqM .

So, if δ0 = δ0(n − 1) is small, we can define on U a global ortonormal
frame {ei(q)}ni=1 which diagonalizes dN(q). If ki(q) are the respectives principal
curvatures then the previous equation implies:

〈Nt(qt ), ei(q)〉 = − t · df (q) · ei(q)
1 + t.f (q).ki(q)

· 〈Nt(qt ), N(q)〉 .

Moreover, ||Nt(qt )||2 = 1 says that:

〈Nt(qt ), N(q)〉 =
⎡⎣ √√√√1 + t2

n∑
i=1

(df (q)ei(q))2

(1 + tf (q)ki(q))2

⎤⎦−1

:= ζt (q) .

In particular, we can write:

Nt(qt ) = ζt (q).

[
n∑
i=1

− tdf (q)ei(q)

1 + tf (q)ki(q)
· ei(q)+N(q)

]
.

Differentiating the last expression:

dNt(qt ) · v = dζt (q) · v
[

n∑
i=1

− tdf (q)ei(q)

1 + tf (q)ki(q)
· ei(q)+N(q)

]

+ ζt (q) ·
[

n∑
i=1

− tdf (q)ei(q)

1 + tf (q)ki(q)
· dei(q) · v + dN(q) · v

]

+ ζt (q) ·
[

n∑
i=1

−t · ei(q)

(1 + tf (q)ki(q))
· [〈d2f (q) · v, ei(q)〉

+ 〈gradf (q), dei(q) · v〉]]

− ζt (q) ·
[

n∑
i=1

−t · ei(q)
[ −tdf (q)ei(q)
(1 + tf (q)ki(q))2

· (df (q)v · ki(q)

+ f (q)dki(q).v
)]]
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Recall that we want to know the value of det dNt(qt ). But it is not diffi-
cult to see that, ∂

∂t
det dNt(qt )|t=0 = (

1
c2

)n−1 · 〈 ∂
∂t
dNt(qt )|t=0 · en(q), en(q)

〉 +∑n−1
i=1

(
1
c2

)n−2 ·ψ · 〈 ∂
∂t
dNt(qt )|t=0 · ei(q), ei(q)

〉
. In fact this follows from the fact

that the determinant detA is the multilinear alternating n-form of the columns
vectors det(A.e1, . . . , A.en). Thus,

d

dt
detA(t)|t=0 =

n∑
i=1

det(A(t).e1, . . . , A
′(t).ei, . . . , A(t).en)|t=0.

Since ei(q), for i = 1, . . . , n−1, are eigenvectors of dN(q)with eigenvalue 1
c2

and en is an eigenvector of dN(q) with eigenvalue ψ (see proof of Lemma 2.1),
if we define A(t) = dNt(qt ), ei = ei(q), the formula above gives the claim.

We observe that the formula above uses (implicitly) that the codimension
(n− k) of the sphere Sk is 1. See Remark 5.2 below. However,

∂

∂t
dNt(qt )|t=0 · v = ∂

∂t
ζt (q)|t=0 · dN(q) · v

+ lim
t→0

ζt (q) ·
[
−

n∑
i=1

df (q)ei(q)dei(q) · v

−
n∑
i=1

ei(q) · (〈d2f (q)v, ei(q)〉 + 〈gradf (q), dei(q)v〉)
]

+ ∂

∂t
dζt (q)|t=0 · v ·N(q) .

Taking v = ei(q), i = 1, . . . , n, we have:〈
∂

∂t
dNt(qt )|t=0.ei(q), ei(q)

〉
= −〈d2f (q)ei(q), ei(q)〉 .

By the geometry of our immersion, we choose f (q) = f (z,w) = l0.λ(d(z)) ·
σ(w) (see Figure 2). Here σ is a concave function (σ ′′ < 0) s.t. σ(0) = 0, e.g.,
σ(w) = −w2/2 (at least in [0, α0], α < α0 < β close to α) and λ is a bump
function s.t. λ ≡ 1 if t ≤ 0, λ ≡ 0 if t ≥ δ, λ = e−1/δ−t if t is close to δ and λ
is strictly decreasing in (0, δ).

An easy calculation shows that

〈d2f (q)en(q), en(q)〉 = l0.λ(d(z)) · σ ′′(w) ·
〈
∂

∂w
, en(q)

〉2

.
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If α0 is sufficiently close to α:〈
∂

∂w
, en(q)

〉2

≥ 1/2 and

〈d2f (q)ei(q), ei(q)〉 = l0.σ (w) · [λ′′||grad(d)||2 + λ′�d
]
.

Then,

∂

∂t
det dNt |0 = − l0.

(
1

c2

)n−2

·
[(

1

c2

) 〈
∂

∂w
, en(q)

〉2

· λ.σ ′′

+ ψσ
{
λ′′||grad(d)||2 + λ′�d

}]
.

To complete the proof, we show that the last expression is positive in {(z, w) :
d(z) < δ, |w| ≤ α0} and it is small in {(z, w) : |w| ≥ β}. This is sufficient
because the derivative is positive imply that the curvature increases in the “goal”
region, and the derivative is small (possible negative) does not creates regions of
negative curvature since the curvature starts positive in the construction.

Since 1
c2

≥ √
γ ,

〈
∂
∂w
, en(q)

〉2 ≥ 1
2 , l0 is arbitrarily small and the term:(

1

c2

)
· λ.σ ′′.

〈
∂

∂w
, en(q)

〉2

+ ψσ
{
λ′′||grad(d)||2 + λ′�d

}
is uniformly bounded, the region {(z, w) : |w| ≥ β} remains with positive
curvature. At the critcal region {(z, w) : d(z) < δ, |w| ≤ α0}, we consider two
cases:

1. If d(z) is close to δ,

λ′′ =
(

1

(δ − t)4
− 2 · 1

(δ − t)3

)
· λ and λ′ = − 1

(δ − t)2
· λ .

So, if d(z) is close to δ, i.e., δ−d(z) is close to zero, the term λ′′||grad(d)||2
+λ′�d is positive. Since, σ, σ ′′ is negative and ψ is positive, this con-
cludes the first case.

2. If d(z) is far from δ, the term is λ′′||grad(d)||2 + λ′�d is bounded and λ
is positive and far away from zero. So, if α0 is sufficiently close to α, ψ
is small (and positive). This concludes the second case.

This completes the proof. �
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4 Proof of Theorem A

Proof of Theorem A. Consider the good Cantor set F = Sn−1 − ⋃∞
i=1Ui ,

where Ui are round balls. We fix an immersion ϕ = ϕ0 given by Lemma 2.1.
For each i, let ϕi = ϕUi a perturbation of ϕ with support {(z, w) : d(z) <
δi, |w| ≤ αi0}, where δi is the radius of Ui , αi0 ≥ α. Althought the existence
of ϕi with the previous properties is not explicitly stated in Lemma 3.1, this is
contained in the proof. Finally, define x = limn ϕn ◦ · · · ◦ ϕ1 ◦ ϕ0. Observe that
Ui are pairwise disjoint implies that the support of ϕi are disjoint. So the limit
immersion x above exists and satisfies the desired properties. �

5 Final Remarks

We finish the paper with three remarks. The first remark is a possible general-
ization of Theorem A for open sets more general than round balls. The second
remark is an explanation about the restrictive hypothesis on the codimension.
Finally, the third is a generalization of the examples for the non-compact case.

Remark 5.1. We can replace in Theorem A the round balls by sets with “dis-
tance functions” (i.e., bump functions with support equal to the open set) whose
gradient is positive and bounded Laplacian. This follows from a carefull reading
of Lemma 3.1, the only place where properties of distance functions were used.

Remark 5.2. The proof of Lemma 3.1 works for codimension 1 since for higher
codimensions, the determinat formula has a critical point of order (n − k − 1)
(the determinant is morally tn−k−1 · detAt , where At are positive matrices close
to A0). So, our trick of calculating the first derivative of this family and shows
that the determinant increases does not work (the critical point is “flat”).

Remark 5.3. We observe that Matheus-Oliveira have also theorems for non-
compact manifolds. In this case, our techniques can be applied to give examples
of non-compact manifolds (or equivalently, immersions) satisfying Matheus-
Oliveira but not do Carmo-Elbert and Barbosa-Fukuoka-Mercuri hypothesis.
Since the proof is essentially analogous, we present here only a brief sketch of
this contruction:

• Consider the higher dimensional catenoid M ⊂ R
n+1 (which is, topo-

logically, a sphere minus two points) and numbers 0 ≤ α ≤ β. As in
Lemma 2.1, one can modifythe catenoid to get a cylinder in the region
{(z, w) : |w| ≤ α} and the original catenoid in {(z, w) : |w| ≥ β}
((z, w) ∈ R

n × R). See Figure 3.
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Figure 3: The non-compact case.

• Using a lemma similar to Lemma 3.1, one can perturb the new “catenoid”
to obtain a fractal set of points of negative Gauss-Kronecker curvature
(although the Lemma 3.1 gives positive curvature, we can obtain negative
curvature if we choose in the proof of Lemma 3.1, σ a convex function,
because the catenoid has negative curvature).

We point out that, in [MO], there exist a statement about minimal immersions
but our method is not able to exhibit examples of minimal hypersurfaces in
Matheus-Oliveira’s hypothesis but not in Barbosa-Fukuoka-Mercuri’s hypothe-
sis.
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