
Bull Braz Math Soc, New Series 35(3), 377-385
© 2004, Sociedade Brasileira de Matemática

The set of smooth metrics in the torus without
continuous invariant graphs is open and
dense in the C1 topology

Rafael O. Ruggiero

Abstract. We show that the set of C∞ metrics in the two dimensional torus with no
continuous invariant graphs of the geodesic flow is open and dense in the C1 topology.
The generic nonexistence of invariant graphs with rational rotation numbers was known
in the C∞ topology for metrics, and in general the generic nonexistence in the C∞
topology of invariant graphs with Liouville rotation numbers is known for twist maps
and Hamiltonian flows in the torus. The main idea of the proof is that small C1 bumps
are enough to prevent the existence of invariant graphs.
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Introduction

Let g be a C∞ Riemannian metric in the torus T 2, let (T 2, g) be the torus en-
dowed with the Riemannian metric g, and let T1T

2 be the unit tangent bundle
of the torus. We shall denote by (T1T

2, g) the unit tangent bundle endowed by
the Sasaki metric induced by g. A subset S ⊂ T1T

2 is called an invariant graph
if the set S is invariant by the action of the geodesic flow of g and the canonical
projection π : T1T

2 −→ T 2 restricted to S is a homeomorphism. The graph S is
of classCk, k ≥ 0, if S is a submanifold of T1T

2 of classCk. Invariant graphs are
examples of invariant tori of Euler-Lagrange flows defined in the tangent space
of the torus, whose study is one of the central subjects of classical mechanics
and mathematical physics. One of the most appealing aspects of the theory of
invariant graphs is the interplay between dynamics and calculus of variations,
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which turns invariant graphs into natural counterparts of homotopically nontriv-
ial, closed, invariant curves of measure preserving twist maps of the annulus. In
the present note we are interested in the generic nonexistence of invariant graphs.
Some of the main results about the nonexistence of invariant graphs are due to
Mather for twist maps and billiards [15], [16], MacKay [10], MacKay-Percival
[14] for Hamiltonians and twist maps, and Bangert [2] who gave examples of
metrics in the torus with the so-called big bumps whose geodesic flows cannot
have any invariant graph. There are also many results concerning the destruction
of especific families of invariant graphs by perturbations of the system. Here we
should mention the work of Mather [17] proving theC∞-genericity of the nonex-
istence of invariant graphs of measure preserving twist maps of the annulus with
Liouville rotation numbers, the works of MacKay and many authors about the
destruction of certain invariant graphs using renormalization ideas (for instance
see [11], [12] also with many references on the subject, [13]). A very interesting
example due to Bangert [2] of a flat metric in T 2 that is approached in the C1

topology by a sequence of metrics with no invariant graphs at all is perhaps the
best known answer to the following question: given a metric in the torus, what
is the highest k ∈ N such that one can prevent the existence of invariant graphs
in the geodesic flow by perturbing the metric in the Ck topology? The work
of Kolmogorov, Arnold and Moser implies that k ≤ 4, and suggests that the
destruction of all invariant graphs by perturbations might be very difficult. None
of the results existing in the literature implies the genericity in some topology
of the nonexistence of invariant graphs. Notice that the deformation of a metric
in T 2 by a big bump cannot be attained by C0 perturbations of the given metric.
Our main result is the following.

Theorem 1. The set of C∞ metrics in T 2 with no continuous invariant graphs
of the geodesic flow is open and dense in the C1 topology.

In fact, what we show is that the set ofC∞ metrics in T 2 for which there exists
a point in the torus that is not contained in any globally minimizing geodesic is
open and dense in the C1 topology. Recall that a geodesic γ ∈ T 2 of the metric
g is called globally minimizing for g if any lift γ̄ of γ by the covering map is
a global minimizer of the pullback g∗ of the metric g in the universal covering:
the g∗-length of γ̄ [t, s] equals the distance (in the metric g∗) dg∗(γ̄ (t), γ̄ (s)) for
every s, t ∈ R. The proof of Theorem 1 is based in two main ideas. The first
one comes from calculus of variations and the work of Weierstrass about fields
of minimizers. The canonical projection of a continuous invariant graph of the
geodesic flow of (T 2, g) is a continuous flow in T 2 whose orbits are globally
g-minimizing geodesics (see for instance [23]), a well known fact if the invariant
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graph is a C1 submanifold (see [4], [19] for instance), or if the invariant graph
is continuous and contains no periodic orbits [3]. The second idea is to show
that we can make small C1 bumps in the metric g supported in arbitrarily small
neighborhoods of T 2 which create conjugate points in these neighborhoods. The
idea of creating conjugate points in small neighborhoods by C1 perturbations of
the metric does not work with C2 perturbations. In fact, if new conjugate points
appear after C2 perturbations of the metric they are typically far from each other
(see for instance [10], [21] or [7]). We would like to thank the IMCA in Lima,
Perú, the Catholic University of Lima, and Professors C. Camacho and A. Poirier
for their kind hospitality while part of this work was in progress.

1 C1 perturbations of the Euclidean metric in a disk which create conju-
gate points

Let us first introduce some notations. An open disk in R
2 with radius r > 0

centered at (0, 0) will be denoted by Dr , its closure will be D̄r , the circle of
radius r centered at (0, 0)will be Sr . A conic sector Cα,r of the diskDr is the set
of points (x, y) ∈ Dr such that the angle between (x, y) and (1, 0) is less than
α. The Euclidean metric in R

2 will be called g0. The main result of the section
is the following:

Lemma 1.1. Given r > 0, 0 < s < r , there exists a C∞ metric gs,r in the disk
Dr such that

1. There exists an open neighborhood Dε(s,r) of (0, 0) such that every gs,r -
geodesic γ : [a, b] −→ Dr satisfying

(a) The endpoints γ (a) �= γ (b) belong to Dr
2
,

(b) γ [a, b] ∩Dε(s,r) �= ∅,

is not gs,r -minimizing.

2. The metric gs,r coincides with the Euclidean metric g0 outside the disk
Ds′ , where s ′ = s + r−s

2 < r ,

3. lims→r ‖ gs,r − g0 ‖C1= 0.

Proof. The idea is to endow Dr with a metric induced by a small cone where
a small neighborhood of its vertex has been removed and replaced by a smooth
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cap. To construct the cone, let r > 0, 0 < s < r , and consider the function
fs,r : D̄s −→ R given by

fs,r (x, y) =
√
r2 − s2

(
1 − 1

s

√
x2 + y2

)
.

The graph of fs,r is the cone As,r generated by the rotation around the z-axis of
the segment Ls,r defined by

Ls,r = {(x, 0, z), x ∈ [0, s], z =
√
r2 − s2

(
1 − x

s

)}.
The segment Ls,r has lenght r , its slope is

−
√
r2 − s2

s
= −

√
r2

s2
− 1,

and it is clear that as s → r the segment Ls,r tends to the horizontal segment
{(t, 0, 0), t ∈ [0, r]}. The function fs,r is continuous, and differentiable at every
point of Ds but (0, 0). The variation of the first derivatives of fs,r is bounded

above by 2
√
r2

s2 − 1. Let us endow the cone As,r with the restriction of the

Euclidean metric of R
3. The cone As,r is of course a singular surface, but since

As,r is compact it is a complete metric, geodesic space. The curvature ofAs,r can
be calculated at every point but the vertex, and it is equal to zero; the geodesics
in As,r are the straight lines through the vertex and the curves satisfying the
corresponding Clairaut equation of surfaces of revolution. The following claim
is inspired in [2]:

Claim 1: The union of two straight lines in As,r containing the vertex is not a
minimizing geodesic.

A short proof of this fact is the following. Observe first of all that by removing
the straight line Ls,r from the cone As,r we obtain a subset Bs,r = As,r − Ls,r
that is isometric to an open conic sector Cα(s,r),r in R

2, where α(s, r) < 2π ,
endowed with the Euclidean metric. Let � : Bs,r −→ Cα(s,r),r be an isometry
between these metric spaces. Consider two straight segments R1, R2 in As,r
joining the vertex of As,r with its boundary, which make an angle θ(R1, R2) in
As,r that has to be strictly less than α(s, r) < π . The union of the segments R1,
R2 separates As,r in two subcones, let us call by A(R1, R2) the smallest one (if
the union of R1 and R2 dividesAs,r in two subcones of the same size, we choose
any of them as A(R1, R2)). By the rotational symmetry of As,r we can assume
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DESTRUCTION OF INVARIANT TORI BY C1 PERTURBATIONS 381

without loss of generality that the segment Ls,r is not contained in A(R1, R2).
Under this assumption, the isometry � sends the lines R1 ∩ Bs,r , R2 ∩ Bs,r to
two lines L1, L2 in Cα(s,r),r whose closures contain (0, 0) and make an angle
that is strictly less than π . Moreover, the set �(A(R1, R2)) is a cone bounded
by L1 and L2 that is isometric to A(R1, R2). Clearly, the union of the closures
of L1 and L2 is not a minimizing geodesic in the closure of Cα(s,r),r . Because
if p ∈ L1, q ∈ L2, the segment [p, q] contained in �(A(R1, R2)) ⊂ Cα(s,r),r
minimizes the distance between p and q. And since � is an isometry, the curve
�−1([p, q]) minimizes the distance between �−1(p) ∈ R1 and �−1(q) ∈ R2,
thus proving that the union of R1 and R2 cannot be minimizing in As,r .

By the Claim we have that there exists an open ballUs,r with center at the vertex
(0, 0, fs,r (0, 0)) in the cone As,r such that no minimizing geodesic segment in
As,r with endpoints in Dr

2
meets Us,r . Indeed, since the set of minimizing

geodesics in As,r is closed in the C0 topology, a convergent sequence of such
minimizing geodesics approaching the vertex would converge to a minimizing
curve formed by the union of a pair of lines in As,r containing the vertex. Let
Dε(s,r) be the disk around (0, 0) such that the graph of fs,r restricted to Dε(s,r)

is Us,r . Next, let us extend the function fs,r to a continuous function f̄s,r : fs,r :
Dr −→ R which assumes the value 0 at the points of Dr − Ds , and coincides
with fs,r in Ds .

Claim 2: We can approach the function f̄s,r by aC∞ function Fs,r : Dr −→ R

with the following properties:

(1) If δ = r−s
2 , the functionFs,r coincides with f̄s,r outside the union ofDε(s,r)

and a δ-tubular neighborhood of {x2 + y2 = s2},
(2) There exists an open neighborhood Ūs,r of (0, 0, Fs,r (0, 0)) in the graph

of Fs,r that is avoided by minimizing geodesics in the graph of Fs,r with
endpoints outside the set D(s, r2 ) = {(x, y, Fs,r (x, y)), (x, y) ∈ Dr

2
}.

(3) ‖ f̄s,r − Fs,r ‖≤ 2
√
r2

s2 − 1.

The crucial points regarding the proof of the main theorem are assertions (2)
and (3) in Claim 2, which say essentially thatFs,r isC1-close to the zero function
in Dr and that there exists a small neighborhood Ūs,r of (0, 0, Fs,r (0, 0)) in the
graph of Fs,r such that every minimizing geodesic segment whose endpoints are
suitably far away from (0, 0, Fs,r (0, 0)) does not meet Ūs,r . The proof of Claim
2 is straightforward from the above construction and elementary analysis. Item
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(3) is due to the fact that the variation of the first derivatives of f̄s,r is bounded

above by 2
√
r2

s2 − 1.

Now, let � : Dr −→ graph(Fs,r ) be the map �(x, y) = (x, y, Fs,r (x, y)).
It is clear that � is a diffeomorphism that is C1-close to the identity, and let
gs,r be the metric defined in Dr by the pullback by � of the restriction of the
Euclidean metric to the graph of Fs,r . The metric gs,r , s ∈ (0, r) is the metric in
the statement of Lemma 1.1. �

2 The nonexistence of invariant graphs is open and dense in theC1 topology

Lemma 2.1. The set of C∞ Riemannian metrics in T 2 without continuous
invariant graphs is dense in the C1 topology.

Proof. We shall show that given a C∞ Riemannian metric g in T 2, and ε > 0,
there exists a C∞ Riemannian metric gε in T 2 that is ε-close to g in the C1

topology whose geodesic flow has no invariant graphs. Let p ∈ (T 2, g) be a
point where the Gaussiang-curvature is zero. The pointp always exists due to the
Gauss-Bonet Theorem. Given ε > 0 small, there exists δ > 0 and a Riemannian
structure (T 2, ḡ) that is 1

2ε-close to (T 2, g) in theC2 topology, with the property
that the Gaussian curvature in the ball Bδ(p) of g-radius δ centered at p is zero.
By Cartan’s Theorem [6], there exists an isometry T : Bδ(p) −→ Dδ, whereDδ

is the disk in R
2 of radius δ centered at (0, 0). Choose 0 < s < δ, and consider

the metric gs,δ constructed in Lemma 1.1 in the diskDδ. Define a new metric gs

in T 2 by

gsq = ḡq

if q /∈ Bδ(p), and

gsq = T ∗gs,δ|T (q)
if q ∈ Bδ(p), where T ∗gs,δ is the pullback of the metric gs,δ by the map T .
The metric gs is clearly C∞ in Bδ(p) and in the interior of the complement of
Bδ(p). Item (2) in Lemma 1.1 implies that gs is C∞ in T 2: in fact, the metric
gs,δ coincides with the Euclidean metric in Dδ when restricted to the annulus
{s ′ <‖ (x, y) ‖< δ}, where s ′ = s + δ−s

2 , and hence T ∗gs,δ is just the metric
ḡ outside a small ball Br(s)(p) ⊂ Bδ(p). By Lemma 1.1, we can choose s < δ

such that ‖ ḡ − gs ‖C1< 1
2ε, and therefore ‖ g − gs ‖C1< ε.
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Claim: The geodesic flow of (T 2, gs) has no continuous invariant graphs.
Indeed, a continuous invariant graphS ⊂ (T1T

2, gs)would define a continuous
flowψt : T 2 −→ T 2 without singularities by globally minimizing gs-geodesics.
In particular, there would exist a globally minimizing geodesic γ of (T 2, gs)

such that γ (0) = p that is an orbit of the flowψt . We can assume without loss of
generality that the parameter t of the flow ψt is the gs arc length. It is clear that
the connected component of the intersection of the orbitO(p) = {ψt(p), t ∈ R}
through p with the closure of Bδ(p) is of the form ψ[a,b](p), with a < 0 < b,
and ψa(p), ψb(p) in the boundary of Bδ(p). To show this assertion, observe
first that this connected component is diffeomorphic to an open segment of the
real line. And this segment has to be bounded; otherwise we would get that
either ψ[0,∞)(p) or ψ(−∞,0](p) is contained in Bδ(p) which would imply, by
Poincaré-Bendixson theorem, that ψt has singularities. But this impossible by
the assumptions on the flow ψt .

Thus, we can apply Lemma 1.1 to the geodesicψ[a,b](p) to get a contradiction:
by Lemma 1.1 there exists an open small neighborhood of p that is avoided by
every minimizing geodesic segment with endpoints in the boundary of Bδ(p).
This finishes the proof of the Claim.

The Claim and the estimate ‖ g− gs ‖C1< ε finish the proof of the lemma. �

Lemma 2.2. The set of C∞ metrics in T 2 without continuous invariant graphs
in open in the C1 topology.

Proof. The proof of this lemma follows from standard arguments of the theory
of globally minimizing objects which are invariant by Lagrangian flows (see for
instance [2]). However, we give a sketch of proof for the sake of completeness.
The point is that the set of metrics with continuous invariant graphs is closed
in the C1 topology. In fact, let (T 2, gn) be a sequence of C∞ metrics having
continuous invariant graphs Sn ⊂ (T1T

2, gn) such that the metrics gn converge to
aC∞ metricg∞ in theC1 topology. The geodesic flows of the metricsgn converge
uniformly on compact subsets of the arc length parameter to the geodesic flow of
g∞. Each graph Sn defines a gn-unit, continuous vector field Xn : T 2 −→ T T 2

whose integral orbits are globally gn-minimizing geodesics. Moreover, each
vector field Xn has an associated homological direction hn ∈ R

2, according
to the work of Hedlund [8]. Then, if hnk → h∞ is a convergent subsequence
of homological directions, it is not difficult to show that there exists a limit
vector field X∞ in T 2 by globally g∞-minimizing geodesics approached by a
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subsequence of the vector fields Xn whose homological direction is h∞. The
torus {(p,X∞(p)), p ∈ T 2} is a continuous invariant graph of the geodesic flow
of (T 2, g∞). �
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