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Dense solutions to the Cauchy problem
for minimal surfaces
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Abstract. We show a general way to produce in explicit coordinates complete minimal
surfaces in R3 that lie densely in the whole space. This construction relies on solving
the Björling problem for adequate initial data.

Keywords: minimal surfaces, Björling problem, dense surfaces.

Mathematical subject classification: 53C42.

1 Introduction

The existence of complete minimal surfaces in R3 that are dense in the whole
space has motivated in the last few years some work, and opened new problems in
the theory [BJO, BeJo, And2]. First, Rosenberg provided an example of a com-
plete minimal surface with bounded curvature lying densely in R3, constructed
by Schwarzian reflection on a fundamental domain.

Inspired by this example and a question by L.P. Jorge, P. Andrade described in
[And2] a complete minimal surface that is dense in a large open subset of R3, but
not in the whole space. To do so, he used a parametrization of the Weierstrass
formulae derived in [And1]. The main features of Andrade’s example are, first,
that it has bounded curvature and, second, that it is given in explicit coordinates.
Unfortunately, this is just an isolated example.

Finally, in [BeJo] it was proposed a line of research that can be summarized
as follows: to what extent does a complete non-proper minimal surface with
bounded curvature need to be dense? Of course, in this question one has to
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leave apart some trivial cases, like the universal coverings of complete minimal
surfaces with finite total curvature.

Motivated by these facts, the aim of the present work is to show a general
procedure for constructing complete minimal surfaces in R3 that lie densely in
the whole space. All these minimal surfaces will be given in explicit coordinates,
in terms of suitable elliptic functions.

The construction that we develop here is completely different from Rosen-
berg’s approach, and relies on solving the Cauchy problem for minimal surfaces
with certain adequate initial data.

Just as the Dirichlet problem for minimal surfaces is usually called the
Plateau problem, this Cauchy problem is classically known as Björling prob-
lem [DHKW]. It asks for the construction of a minimal surface passing through
a given curve, and with prescribed tangent plane at each point of the curve, and
was solved by H.A. Schwarz in the 19th century (see also [ACM] for the situa-
tion in the Minkowski 3-space setting). The present work seems to be the first
time that Björling problem is applied to study the global behaviour of complete
minimal surfaces in R3.

We have organized this paper as follows. In Section 2 we will construct a
general family of connected regular curves in the x1, x2-plane, with the property
that the only minimal surface that has any of these curves as a planar geodesic
is complete, and its projection over the x1, x2-plane is dense in it. Moreover, the
general solution to Björling problem will provide explicit coordinates for these
minimal surfaces.

In Section 3 we shall prove that among these examples there exist some of
them which are dense in R3.

The authors are grateful to Prof. F.J. López for clarifying discussions.

2 Complete solutions to Björling problem

Let � be the rectangular lattice � = {m + in : m, n ∈ Z}, denote by C∞ the
Riemann sphere, and consider an elliptic function h : C/� → C∞ on the torus
C/� satisfying

C.1 h(z) ∈ R ∪ {∞} for all z ∈ R,

C.2 there is some b ∈ R such that f = √
b + h′ is a well defined elliptic

function on C/�,

C.3 all zeroes and poles of f lie in Q + iQ.
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Later on we will produce elliptic functions satisfying these conditions.
Choose q ∈ Q such that f (q) �= 0,∞, and α ∈ R \ Q. If we let g(z) =

bz + h(z), the curve β : R → R2 ≡ C defined as β(s) = g(q + (1 + iα)s) is
regular by C.3, and real analytic. By identifying R3 ≡ C × R, we shall regard β
as a plane curve lying in the x1, x2-plane of R3. Let us consider the meromorphic
functions g1, g2 given by

g1(z) = g(q + (1 + iα)z), g2(z) = g(q + (1 − iα)z).

In the same way we can define h1(z), h2(z) and f1(z), f2(z) in terms of h and
f , respectively. With this, one can easily check that f1, h1 are actually elliptic
functions on the torus C/�, where � is the lattice � = �/(1 + iα), and that
f2, h2 are elliptic functions on C/ϒ , where ϒ = �/(1 − iα).

Then, we have

Theorem 1. The only minimal surface that contains β(s) as a planar geodesic
is complete, and can be explicitly parametrized as ψ : C̃ \ S → R3,

ψ(z) = 1

2

(
Re(g1(z)+ g2(z)), Im(g1(z)− g2(z)),

2
√

1 + α2 Im
∫ z

f1(w)f2(w)dw

)
,

(1)

where S denotes the set of poles of h1h2 in C and C̃ \ S is the universal covering
of C \ S.

This minimal surface is symmetric with respect to the x1, x2-plane, and its
projection over that plane is dense.

Proof. For any regular, real analytic curve β(s) in the x1, x2-plane, the classical
solution to Björling problem shows that the only minimal surface in R3 containing
β(s) as a planar geodesic is given near β(s) by (see [DHKW])

ψ(z) =
(

Re β1(z),Re β2(z), Im
∫ z √

β ′
1(w)

2 + β ′
2(w)

2dw

)
. (2)

Here βi(z) is a holomorphic extension of βi(s) to a simply connected open subset
of C, and the integral is taken along an arbitrary path joining z and a fixed base
point s0 ∈ R.

In our case, it follows from C.1 and the identification C ≡ R2 that

2 (β1(z), β2(z)) = (
g1(z)+ g2(z),−i(g1(z)− g2(z))

)
.
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From this expression we obtain that (2) turns into (1). In addition it is clear that,
if � = C̃ \ S, then ψ : � → R3 is well defined. Moreover, β(s) is a planar
geodesic of this minimal surface, and so ψ(�) is symmetric with respect to the
x1, x2-plane.

Let ds2 denote the metric of the minimal surface, i.e. ds2 = 〈dψ, dψ〉. Since

4
∂ψ

∂z
=

(
(1 + iα)f 2

1 + (1 − iα)f 2
2 ,−i

(
(1 + iα)f 2

1 − (1 − iα)f 2
2

)
,

− 2i
√

1 + α2f1f2

)

we obtain that 8〈ψz,ψz̄〉 = (1 + α2)
(|f1(z)|2 + |f2(z)|2

)2
, and therefore the

metric is written as

ds2 = 1 + α2

4

(|f1(z)|2 + |f2(z)|2
)2 |dz|2. (3)

Note that ds2 is well defined on C \ S. Since α is irrational, the condition C.3
ensures that f1, f2 cannot vanish simultaneously. Thus the metric (3) is regular
on C \ S.

It is obvious that the metric ds2 is complete about any point in S. In addition,
let σ(u) be a divergent curve in C not meeting S. Since f1 is elliptic, we can
choose small disks about its zeroes so that

1. the Euclidean length of σ(u) in the exterior of these disks is infinite, and

2. |f1| ≥ c for some c > 0 in the exterior of these disks.

Thus the length of σ(u) with respect to ds2 is infinite. This ensures that ds2

is complete.
We have only left to check the assertion about the projection of ψ(�). For

this, we begin by noting that, under the identification R3 ≡ C×R, the projection
of ψ over the x1, x2-plane is

(ψ1(z), ψ2(z)) = ψ1(z)+ iψ2(z) = 1

2

(
g1(z)+ g2(z)

)
.

If we denote z = s + it , this equation is written as

2 (ψ1(s + it)+ iψ2(s + it)) = 2b(q + (1 + iα)s)+ h1(z)+ h2(z). (4)
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Now, since due to C.1 we have h(z̄) = h(z), we find that h2(z) = h1(z̄), and (4)
turns into

2 (ψ1 + iψ2) (s + it) = 2b(q + (1 + iα)s)+ h1(s + it)+ h1(s − it). (5)

Let s0 ∈ R be fixed and arbitrary, and let us define the meromorphic map

G(w) = h1(s0 + iw)+ h1(s0 − iw).

It is clear that G(w) is elliptic on C/�. On the other hand, if w = u + iv, the
curve [(u, 0)] : R → C/� is dense over the torus C/�, due to the fact that α is
irrational. Since G(w) is elliptic and non-constant, the curve

G(u, 0) = h1(s0 + iu)+ h1(s0 − iu)

is dense on the Riemann sphere C∞. Now, by (5), the map (ψ1 + iψ2)(s0 + it)

is a (possibly non-connected) dense curve in C. This finishes the proof. �

Remark 2. It is not difficult to obtain elliptic functions h : C/� → C∞
satisfying conditions C.1, C.2 and C.3. First, note that from C.2 h must have
odd degree. Let ℘ be the Weierstrass function of the torus C/�, and a > 0 the
real number such that ℘(1/2) = a = −℘(i/2). If we search among elliptic
functions in C/� of degree three, the choices⎧⎪⎪⎨

⎪⎪⎩
h = ℘ ′ b = 2a2 f = √

6℘

h = ℘ ′/℘2 b = 2 f = √
6a/℘

h = (1/(℘ − a))′ b = 1 f = √
3(℘ + a)/(℘ − a)

satisfy C.1, C.2 and C.3. This follows from the identities

℘ ′2 = 4℘
(
℘2 − a2

)
, ℘ ′′ = 6℘2 − 2a2. (6)

In general, any elliptic function h on C/� can be expressed as

h = R1(℘)+ ℘ ′R2(℘)

for rational functions R1, R2. This fact together with (6) make it possible to
obtain many more examples with the three desired conditions.
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3 Dense examples

In this Section we shall show that some of the complete minimal surfaces con-
structed in Theorem 1 are dense in R3.

First of all, assume that h has a pole of order l at d ∈ C, what means that f
has a pole of order k = (l + 1)/2 at d. In particular, all poles of h must be of
odd order. Then f1 has a pole of order k at z0 = (d − q)/(1 + iα), and f2 is
holomorphic at z0. Let us compute the residue of f1f2 at z0.

If
∑k

n=1 a−n(z−d)−n is the principal part of f at the pole d ∈ C, then a direct
computation shows that

Res (f1f2, z0) =
k∑
n=1

a−n(1 − iα)n−1f (n−1)

(
q + 1−iα

1+iα (d − q)

)
(
(n− 1)! (1 + iα)n

) . (7)

In the same way, f2 has a pole of order k at z̃0 = (d − q)/(1 − iα), f1 is
holomorphic at z̃0 and

Res (f1f2, z̃0) =
k∑
n=1

a−n(1 + iα)n−1f (n−1)

(
q + 1+iα

1−iα (d − q)

)
(
(n− 1)! (1 − iα)n

) . (8)

Let us consider the real function A that assigns to every α ∈ R the value

A(α) = Im (Res (f1f2, z0))

Im (Res (f1f2, z̃0))
∈ R, (9)

defined whenever the lower part of the quotient is non-zero.
It follows from (7) and (8) that the functionA is smooth. Note thatA can be

constant, as the choice h = ℘ ′, d = 0 shows. Indeed, whenever d ∈ R, we find
from C.1, (7) and (8) that A(α) ≡ −1 if the quotient is well defined.

However, A is not constant in general. For instance, if we make the choices
h = ℘ ′ and d = i, the graphic of A(α) is shown in Figure 1.

So, let us choose h satisfying C.1, C.2 and C.3, and assume that h has a pole
at d ∈ C such that A = A(α, d) is not constant with respect to α. Since A is
continuous, there is some α ∈ R \ Q so that A(α) ∈ R \ Q.

For this α we consider β(s) = g(q + (1 + iα)s), and thus we obtain via
Theorem 1 a complete minimal surface given by (1).

If we regard ψ(z) as parametrized in C \ S, then its first two coordinates are
well defined, but the integral of the holomorphic 1-form f1(z)f2(z)dz that gives
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Figure 1: The graphic of A(α) for h = ℘ ′, d = i and q = 1/2.

the third coordinate has non-zero residue at z0 ∈ S and z̃0 ∈ S. Moreover, if we
denote

A = 2
√

1 + α2 Im (Res (f1f2, z0)) , B = 2
√

1 + α2 Im (Res (f1f2, z̃0)) ,

then A,B are non-zero, since A(α) is irrational. Thus, the integration over a
homotopically non-trivial loop about z0 produces a translational symmetry of
the minimal surface with vector (0, 0, A). In the same way, by integrating about
z̃0 one obtains a translational symmetry of vector (0, 0, B).

This ensures that the minimal surface is invariant under all translations of R3 in
the direction of the x3-axis with vector (0, 0, λA+ µB), λ,µ ∈ Z. Besides, all
these planes are symmetry planes of the surface, and at each height x3 = λA+µB
the minimal surface is an exact replic of its intersection with the x1, x2-plane.

Finally, since A(α) ∈ R \ Q, it holds A/B ∈ R \ Q. This ensures that
{λA+ µB : λ,µ ∈ Z} is dense in R. But in addition, the projection of ψ over
the x1, x2-plane is dense in that plane. All of this implies that the minimal surface
is dense in the whole R3. Summarizing, we have proved the following.

Theorem 3. Let h : C/� → C∞ satisfy C.1, C.2, C.3, and assume that the
functionA in (9) is not constant for some pole d of h. Then there exist infinitely
many α ∈ R\Q such thatA(α) ∈ R\Q. For any such pair (h, α), the complete
minimal surface constructed in Theorem 1 is dense in R3, and symmetric with
respect to a dense family of parallel planes in R3.
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