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Concentration phenomena in weakly coupled
elliptic systems with critical growth*

Riccardo Molle and Angela Pistoia

Abstract. In this paper we consider the weakly coupled elliptic system with critical
growth ⎧⎪⎨

⎪⎩
−�u = |u| 4

N−2 u+ ε
[
a(x)u+ b(x)v

]
in �,

−�v = |v| 4
N−2 v + ε

[
c(x)u+ d(x)v

]
in �,

u = v = 0 on ∂�,

where a, b, c, d are C1− functions defined in a bounded regular domain� of R
N . Here

we construct families of solutions which blow-up and concentrate at some points in �
as the positive parameter ε goes to zero.
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1 Introduction and main results

In this paper we consider the weakly coupled elliptic system⎧⎪⎪⎨
⎪⎪⎩

−�u1 = |u1|p−1u1 + ε
[
a(x)u1 + b(x)u2

]
in �,

−�u2 = |u2|p−1u2 + ε
[
c(x)u1 + d(x)u2

]
in �,

u1 = u2 = 0 on ∂�,

(1.1)

where � is a bounded regular domain in R
N , N ≥ 5, ε > 0, p = N+2

N−2 ,
a, b, c, d ∈ C1(�̄).
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If b(x) = c(x) in� system (1.1) is of gradient-type, namely (1.1) is the Euler-
Lagrange equation of a suitable functional defined on the space H1

0(�)×H1
0(�).

In [2] the authors consider the scalar case, namely a, b, c, d are real constants.

Using a variational argument they proved that if the matrix A =
(
a b

c d

)
is

symmetric, so that the system is of gradient-type, and a > 0 or d > 0 then for ε
small enough there exists a nontrivial weak solution of (1.1). Moreover, using a
Pohozaev-type identity (see [15]), they prove that ifA is symmetric and negative
definite and� is star-shaped u1, u2 = 0 is the unique classical solution to (1.1).

If b(x) �= c(x) then system (1.1) is not variational. As it is pointed out in [7]
it seems that the only available technique to treat such systems is topological,
explicitely the topological degree of Leray-Schauder. But in this case one needs
a priori bounds on the positive solutions of (1.1). How to get such bounds can
be seen in [7], where an extensive list of references is given on this matter. In
particular in the case of a weakly coupled system a priori bound exists in the
subcritical case (see [1]).

Here we are interested in studying the weakly coupled system (1.1) in the
critical case. In particular we want to find solutions which concentrate in some
points of � in the sense of the following definition.

Definition 1.1. Let (u1ε , u2ε ) be a family of solutions for (1.1). We say that
(u1ε , u2ε ) blow-up and concentrate at the points ξ1 and ξ2 in � if there exist
rates of concentration δ1ε, δ2ε and points ξ1ε, ξ2ε ∈ � with lim

ε→0
δiε = 0 and

lim
ε→0

ξiε = ξi such that uiε − P�Uδiε,ξi ε, i = 1, 2, go to zero in H1
0(�) as ε

goes to zero.

Here (see [3], [6] and [17])

Uλ,y(x) = CN
λ
N−2

2(
λ2 + |x − y|2)N−2

2

, x ∈ R
N, y ∈ R

N, λ > 0,

with CN = [N(N − 2)](N−2)/4, are all the positive solutions of the problem
−�U = U

N+2
N−2 in R

N . P�Uλ,y denotes the projection onto H1
0(�) of Uλ,y , i.e.

�P�Uλ,y = �Uλ,y in �, P�Uλ,y = 0 on ∂�.
Before to state our results we need to introduce some notation.
Let us denote byG the Green’s function of the negative laplacian on� and by

H its regular part, chosen in such a way that

H(x, y) = BN

|x − y|N−2
−G(x, y), ∀(x, y) ∈ �2,
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where BN = [
(N − 2)meas(SN−1)

]−1
and SN−1 is the (N − 1)−dimensional

unit sphere. For every x ∈ � the leading term of H , namely τ(x) := H(x, x),

is called Robin function of � at the point x. The harmonic radius r is defined
by r(x) = τ(x)−

1
N−2 . It is a smooth positive function in the interior of�, which

vanishes at every point on the boundary.
Blowing-up solutions appear in a large class of problems with critical growth.

For example, as far as it concerns the Brezis-Nirenberg problem (see [5])⎧⎨
⎩

−�u = u
N+2
N−2 + εa(x)u in �,

u > 0 in �,
u = 0 on ∂�,

(1.2)

it was proved that (see [16] and [13]) any “stable” critical point ξ0 of the function
	(ξ) = a(ξ)r(ξ)2 with a(ξ0) > 0 generates a family of solutions to (1.2)which
blow-up and concentrate at ξ0.

In this paper we first consider the case of different concentration points, namely
in Definition 1.1 it holds ξ1 �= ξ2. Let us introduce the functions	1, 	2 : � → R

defined by 	1(ξ) = a(ξ)r(ξ)2 and 	2(ξ) = d(ξ)r(ξ)2.

Definition 1.2. Let 	 : � → R be a C1−function, we say that ξ0 is a stable
critical point of 	 if ∇	(ξ0) = 0 and there exists a neighbourhood V ⊂⊂ � of
ξ0 such that ∇	(ξ) �= 0 ∀ ξ ∈ ∂V , if ∇	(ξ) = 0, ξ ∈ V, then	(ξ) = 	(ξ0)

and deg
(∇	, V̄ , 0

) �= 0, where deg denotes the Brouwer degree.

Notice that any isolated local maximum point or any isolated local minimum
point or any nondegenerate critical point of 	 are stable critical point of 	.

Theorem 1.3. LetN ≥ 5. For i = 1, 2 let ξi be a stable critical point of	i with
	i(ξi) > 0. If ξ1 �= ξ2, then there exists a family of solutions of problem (1.1)
that blow-up and concentrate at two points ξ ∗

1 and ξ ∗
2 such that ∇	i(ξ ∗

i ) = 0
and 	i(ξ ∗

i ) = 	i(ξi), with rates of concentration δiε such that

lim
ε→0

δiεε
− 1
N−4 =

(
2

N − 2

B

A2
	i(ξ

∗
i )

) 1
N−4

r(ξ ∗
i )

(see Lemma 4.1 and Lemma 4.2).

It is not difficult to show examples in which Theorem 1.3 applies (see exam-
ples 4.7 and 4.8).

If we consider the case when concentration points are the same, namely in
Definition 1.1 it holds ξ1 = ξ2, the problem becomes much more difficult of
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the previous one. We are only able to treat the symmetric case, where we can
assume the crucial condition ξ1ε = ξ2ε = 0. It remains open the case when the
concentration points are the same, but ξ1ε �= ξ2ε.

In Section 5 we assume that � is a symmetric domain, namely for any i =
1, . . . , N

(x1, . . . , xi, . . . , xN) ∈ � ⇐⇒ (x1, . . . ,−xi, . . . , xN) ∈ �. (1.3)

We say that a function w : � → R is symmetric if for any i = 1, . . . , N

w(x1, . . . , xi, . . . , xN) = w(x1, . . . ,−xi, . . . , xN). (1.4)

We prove the following result.

Theorem 1.4. Let � be a symmetric domain and a, b, c, d be symmetric func-
tions. Assume one of the following conditions

(1) N ≥ 5, a(0) = d(0) = 0 and b(0), c(0) > 0;
(2) N ≥ 5, a(0), d(0) > 0 and b(0), c(0) ≥ 0;
(3) N ≥ 7, a(0), d(0) > 0 and b(0), c(0) ≤ 0.

Then there exists a family of symmetric solutions of problem (1.1) that concen-
trates at the origin.

We would like to emphasize the fact that using Theorem 5.6 and Proposi-
tion 5.8, we can find more general conditions on a(0), b(0), c(0) and d(0)which
ensure the existence of families of blowing-up solutions. At this aim we quote
Example 5.9 where a non-uniqueness result is proved (see also Theorem 5.4 and
Remark 5.10).

We want to point out that the solutions given in Theorems 1.3 and 1.4 are
actually positive if the system is cooperative, namely b(x), c(x) ≥ 0 in � (see
Proposition 4.6).

Finally we remark that if� is symmetric with respect to the origin (i.e. x ∈ �
iff −x ∈ �) we can construct solutions which are symmetric with respect to the
origin (i.e. w(x) = w(−x)) provided assumptions (1), (2) or (3) of Theorem 1.4
are satisfied (see Remark 5.11).

The paper is organized as follows. In Section 2 we set the problem in a suitable
framework and in Section 3 we reduce the problem to a finite dimensional one
using a Ljapunov-Schmidt reduction argument as in [4] and [10]. This tool
allows us to treat both variational and not variational system. In Section 4 we
study the finite dimensional problem and we prove Theorem 1.3. Section 5 deals
with the symmetric case and with the proof of Theorem 1.4.
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2 Setting of the problem

Let α = 1
N−4 and set �ε = �/εα. An easy computation shows that, if u1(x),

u2(x) are solutions of (1.1), then v1(y) = εα
N−2

2 u1(ε
αy), v2(y) = εα

N−2
2 u2(ε

αy)

solve⎧⎨
⎩

−�v1 = |v1|p−1v1 + ε2α+1
[
a(εαy)v1 + b(εαy)v2

]
in �ε,

−�v2 = |v2|p−1v2 + ε2α+1
[
c(εαy)v1 + d(εαy)v2

]
in �ε,

v1 = v2 = 0 on ∂�ε.
(2.5)

Let H1
0(�ε) be the Hilbert space equipped with the usual inner product

(u, v)H1
0
= ∫
�ε

∇u∇v, which induces the norm ‖u‖H1
0
=
( ∫
�ε

|∇u|2
)1/2

.

Moreover, if r ∈ [1,+∞) and u ∈ Lr(�ε), we will set ‖u‖r =
(∫
�ε

|u|r
)1/r

.

It will be useful to rewrite problem (2.5) in a different setting. Let us then
introduce the following operator.

Definition 2.1. Let i∗ε : L
2N
N+2 (�ε) −→ H1

0(�ε) be the adjoint operator of the

immersion iε : H1
0(�ε) ↪→ L

2N
N−2 (�ε), i.e.

i∗ε (u) = v ⇐⇒ (v, ϕ) =
∫
�ε

u(x)ϕ(x)dx ∀ ϕ ∈ H1
0(�ε).

Remark 2.2. There exists c > 0 such that

‖i∗ε (u)‖H1
0
≤ c‖u‖ 2N

N+2
∀ u ∈ L

2N
N+2 (�ε), ∀ ε > 0.

Let H = H1
0(�ε)×H1

0(�ε),which is an Hilbert space equipped with the inner

product
(
(u1, u2), (φ1, φ2)

)
H

= (u1, φ1)H1
0
+ (u2, φ2)H1

0
that induces the norm

‖(u1, u2)‖ =
(

‖u1‖2

H1
0

+ ‖u2‖2

H1
0

)1/2

.

For (u1, u2) ∈ H and r ∈
[
1, 2N

(N−2)

]
, we set ‖(u1, u2)‖r = ‖u1‖r + ‖u2‖r .

By Remark 2.2 we get the following result.

Lemma 2.3. Let I∗
ε : L

2N
N+2 (�ε)× L

2N
N+2 (�ε) −→ H be defined by I∗

ε(u1, u2) =(
i∗ε (u1), i

∗
ε (u2)

)
.
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Then I∗
ε is continuous uniformly with respect to ε, namely there exists c > 0

such that∥∥I∗
ε(u1, u2)

∥∥ ≤ S− 1
2 ‖(u1, u2)‖ 2N

N+2
, ∀ u1, u2 ∈ L

2N
N+2 (�ε), ∀ ε > 0.

By means of the definition of the operator I∗
ε , problem (2.5) turns out to be

equivalent to

(u1, u2) = I∗
ε

(
F(u1, u2)+ ε2α+1G(εαy, u1, u2)

)
, u ∈ H, (2.6)

where

F(s, t) = (f (s), f (t)) , f (s) = |s|p−1s and

G(x, s, t) = (a(x)s + b(x)t, c(x)s + d(x)t) .

We are looking for solutions (u1(x), u2(x)) to (2.6) of the form

(u1(x), u2(x)) = (
PεUλ1,ξ1/εα (x)+ φ1ε(x), PεUλ2,ξ2/εα (x)+ φ2ε(x)

)
,

where we have denoted Pε = P�ε . Here φε(x) = (
φ1ε(x), φ2ε(x)

)
is a lower

order term belonging to a suitable subspace of H which will be introduced in the
following.

Let us denote

ψ0
λ,y(x) = ∂Uλ,y

∂λ
= CN

N − 2

2
λ
N−4

2
|x − y|2 − λ2

(λ2 + |x − y|2)N/2 , x ∈ R
N,

and for j = 1, . . . , N

ψ
j

λ,y(x) = ∂Uλ,y

∂yj
= −CN(N − 2)λ

N−2
2

xj − yj

(λ2 + |x − y|2)N/2 , x ∈ R
N.

The space spanned by ψj

λ,y , j = 0, 1, . . . , N , is the set of the solutions of the

linearized problem −�ψ = pU
p−1
λ,y ψ, in R

N. Moreover let

Pεψ
j

λ,ξ/εα (x) = i∗ε
(
U
p−1
λ,ξ/εαψ

j

λ,ξ/εα

)
(x) x ∈ �ε. (2.7)

For i = 1, 2, let Ki
ε = span〈Pεψ0

λi ,ξi/ε
α , Pεψ

1
λi ,ξi/ε

α , . . . , Pεψ
N
λi,ξi/ε

α 〉 and

Ki
ε

⊥ = {
φ ∈ H 1

0 (�) : (φ, Pεψj

λi ,ξi/ε
α ) = 0, j = 0, 1, . . . , N

}
.
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Moreover let us define the operators

�i
ε(u) =

N∑
j=0

(u, Pεψ
j

λ,ξ/εα )H1
0
Pεψ

j

λ,ξ/εα and �i,⊥
ε (u) = u−�i

ε(u).

Set λ = (λ1, λ2) and ξ = (ξ1, ξ2) and let us consider the subspace of H given
by Kε,λ,ξ = K1

ε ×K2
ε and its complementary space K⊥

ε,λ,ξ = K1
ε

⊥ ×K2
ε

⊥
.

Finally let us introduce the operators�ε,λ,ξ : H −→ Kε,λ,ξ and�⊥
ε,λ,ξ : H −→

K⊥
ε,λ,ξ , defined by �ε,λ,ξ (u1, u2) = (

�1
ε(u1),�

2
ε(u2)

)
and �⊥

ε,λ,ξ (u1, u2) =
(u1, u2)−�ε,λ,ξ (u1, u2). If µ ∈ (0, 1), we set

Oµ = {
(λ, ξ) ∈ R

2 ×�2 : λi ∈ (µ,µ−1),

dist(ξi, ∂�) ≥ µ, i = 1, 2, |ξ1 − ξ2| ≥ µ
}
.

By (2.7) and Remark 2.2 we easily deduce the following result:

Lemma 2.4. For any µ ∈ (0, 1) there exist ε0 > 0 and c > 0 such
that ‖�⊥

ε,λ,ξ (u1, u2)‖ ≤ c‖(u1, u2)‖, for any (λ, ξ) ∈ Oµ, ε ∈ (0, ε0) and
(u1, u2) ∈ H.

Our approach to solve problem (2.6) will be to find (λ, ξ) ∈ Oµ, for some µ,
and (φ1, φ2) ∈ K⊥

ε,λ,ξ such that

�⊥
ε,λ,ξ

{(
PεUλ1,ξ1/εα + φ1, PεUλ2,ξ2/εα + φ2

)
− I∗

ε

[
F
(
PεUλ1,ξ1/εα + φ1, PεUλ2,ξ2/εα + φ2

)
+ ε2α+1G

(
εαy, PεUλ1,ξ1/εα + φ1, PεUλ2,ξ2/εα + φ2

)]} = 0

(2.8)

and

�ε,λ,ξ

{(
PεUλ1,ξ1/εα + φ1, PεUλ2,ξ2/εα + φ2

)
− I∗

ε

[
F
(
PεUλ1,ξ1/εα + φ1, PεUλ2,ξ2/εα + φ2

)
+ ε2α+1G

(
εαy, PεUλ1,ξ1/εα + φ1, PεUλ2,ξ2/εα + φ2

)]} = 0.

(2.9)

3 Finite dimensional reduction

In this section we will solve equation (2.8).
Let us introduce the linear operator Lε,λ,ξ : K⊥

ε,λ,ξ → K⊥
ε,λ,ξ , defined by

Lε,λ,ξ (φ) = φ −�⊥
ε,λ,ξ I∗

ε

(
F ′ (PεUλ1,ξ1/εα (x), PεUλ2,ξ2/εα (x)

)
φ
)
.
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Lemma 3.1. For any µ ∈ (0, 1) there exists ε̄1 > 0 and a constant C > 0
such that, for every (λ, ξ) ∈ Oµ and for every ε ∈ (0, ε̄1), the operator Lε,λ,ξ is
invertible and it holds ‖Lε,λ,ξφ‖ ≥ C‖φ‖ for any φ ∈ K⊥

ε,λ,ξ .

Proof. The claim follows exactly as in Proposition 3.2 in [13], because

Lε,λ,ξ (φ1, φ2) = (φ1 −�1
ε[i∗ε (f ′(PεUλ1,ξ1/εα )φ1)],

φ2 −�2
ε[i∗ε (f ′(PεUλ2,ξ2/εα )φ2)]). �

By using the invertibility of the operator Lε,λ,ξ we can solve equation (2.8).

Proposition 3.2. For any µ ∈ (0, 1) there exist R, ε0 > 0 such that for
every (λ, ξ) ∈ Oµ and for any ε ∈ (0, ε0) there exists a unique φε,λ,ξ =(
φ1ε,λ,ξ , φ2ε,λ,ξ

) ∈ K⊥
ε,λ,ξ such that

�⊥
ε,λ,ξ

{(
PεUλ1,ξ1/εα + φ1, PεUλ2,ξ2/εα + φ2

)
− I∗

ε

[
F
(
PεUλ1,ξ1/εα + φ1, PεUλ2,ξ2/εα + φ2

)
+ ε2α+1G

(
εαy, PεUλ1,ξ1/εα + φ1, PεUλ2,ξ2/εα + φ2

)]} = 0.

(3.10)

Moreover

‖φε,λ,ξ‖ ≤

⎧⎪⎪⎨
⎪⎪⎩
Rε

N+2
2(N−4) if N ≥ 7,

Rε2| log ε| if N = 6,

Rε3 if N = 5.

(3.11)

Proof. First of all we point out that φ solves equation (3.10) if and only if φ is
a fixed point of the operator Tε,λ,ξ : K⊥

ε,λ,ξ −→ K⊥
ε,λ,ξ defined by

Tε,λ,ξ (φ) = L−1
ε,λ,ξ�

⊥
ε,λ,ξI

∗
ε

[
F(PεUλ1,ξ1/εα + φ1, PεUλ2,ξ2/εα + φ2)

−F(Uλ1,ξ1/εα , Uλ2,ξ2/εα )− F ′(PεUλ1,ξ1/εα , PεUλ2,ξ2/εα )(φ1, φ2)

+ε2α+1G(εαy, PεUλ1,ξ1/εα + φ1, PεUλ2,ξ2/εα + φ2)
]
.

We will show that

Tε,λ,ξ : {φ ∈ K⊥
ε,λ,ξ : ‖φ‖ ≤ Rεγ } −→ {φ ∈ K⊥

ε,λ,ξ : ‖φ‖ ≤ Rεγ }
Bull Braz Math Soc, Vol. 35, N. 3, 2004
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is a contraction mapping, for R and γ suitable chosen, provided ε is small
enough.

From Lemma 2.3, Lemma 2.4 and Lemma 3.1 we get the estimate

‖Tε,λ,ξφ‖
≤ c

∥∥F(PεUλ1,ξ1/εα + φ1, PεUλ2,ξ2/εα + φ2)

− F(PεUλ1,ξ1/εα , PεUλ2,ξ2/εα )

−F ′(PεUλ1,ξ1/εα , PεUλ2,ξ2/εα )(φ1, φ2)
∥∥

2N
N+2

+ c
∥∥F(PεUλ1,ξ1/εα , PεUλ2,ξ2/εα )− F(Uλ1,ξ1/εα , Uλ2,ξ2/εα )

∥∥
2N
N+2

+ cε2α+1
∥∥G(εαy, PεUλ1,ξ1/εα + φ1, PεUλ2,ξ2/εα + φ2)

∥∥
2N
N+2

.

(3.12)

First of all we have

‖F(PεUλ1,ξ1/εα + φ1, PεUλ2,ξ2/εα + φ2)− F(PεUλ1,ξ1/εα , PεUλ2,ξ2/εα )

− F ′(PεUλ1,ξ1/εα , PεUλ2,ξ2/εα )(φ1, φ2)‖ 2N
N+2

= c
∑
i=1,2

‖f (PεUi + φi)− f (PεUi)− f ′(PεUi)φi‖ 2N
N+2

≤ c‖φ‖min{2,p}.

(3.13)

Secondly, by Lemma 5.3 in [13], we get∥∥G(εαy, PεUλ1,ξ1/εα + φ1, PεUλ2,ξ2/εα + φ2)
∥∥

2N
N+2

≤ max{‖a‖∞, ‖c‖∞}
(
‖PεUλ1,ξ1/εα‖ 2N

N+2
+ ‖φ1‖ 2N

N+2

)
+ max{‖b‖∞, ‖d‖∞}

(
‖PεUλ2,ξ2/εα‖ 2N

N+2
+ ‖φ2‖ 2N

N+2

)
≤ c

(
χ2(ε)+ ε−2α‖φ‖ 2N

N−2

)
.

(3.14)

Finally by Lemma 5.2 in [13] we get∥∥F(PεUλ1,ξ1/εα , PεUλ2,ξ2/εα )− F(Uλ1,ξ1/εα , Uλ2,ξ2/εα )
∥∥

2N
N+2

=
∑
i=1,2

∥∥f (PεUλi,ξi/εα )− f (Uλi,ξi/εα )
∥∥

2N
N+2

≤ χ1(ε).
(3.15)

By (3.13), (3.14), (3.15) we deduce that if ‖φ‖ ≤ Rεγ as in (3.11), since
α = 1

N−4 , then

‖Tε,λ,ξφ‖ ≤ c
(‖φ‖min{2,p} + χ1(ε)+ χ2(ε)ε

2α+1 + ε‖φ‖) ≤ Rεγ . (3.16)
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Our next goal is to show that we, actually, have a contraction. Indeed, for any
φ1, φ2 ∈ K⊥

ε,λ,ξ , we have:

‖Tε,λ,ξφ2 − Tε,λ,ξφ
1‖

≤ c
∑
i=1,2

∥∥f (PεUλi,ξi/εα + φ2
i )− f (PεUλi,ξi/εα + φ1

i )

−f ′(PεUλi,ξi/εα )(φ
2
i − φ1

i )
∥∥

2N
N+2

+ cε2α+1
∥∥G(εαy, PεUλ1,ξ1/εα + φ2

1, PεUλ2,ξ2/εα + φ2
2)

−G(εαy, PεUλ1,ξ1/εα + φ1
1, PεUλ2,ξ2/εα + φ1

2)
∥∥

2N
N+2
.

(3.17)

If N ≥ 7, by the mean value theorem (θ ∈ (0, 1)) we get∥∥f (PεUλi,ξi/εα + φ2
i )− f (PεUλi,ξi/εα + φ1

i )

− f ′(PεUλi,ξi/εα )(φ
2
i − φ1

i )
∥∥

2N
N+2

= ∥∥[f ′(PεUλi,ξi/εα + φ2
i + θ(φ1

i − φ2
i ))

− f ′(PεUλi,ξi/εα )](φ2
i − φ1

i )
∥∥

2N
N+2

≤ c

(
‖φ1

i − φ2
i ‖p2N

N−2
+ ‖φ2

i

∥∥p−1
2N
N−2

‖φ1
i − φ2

i ‖ 2N
N−2

)
.

(3.18)

Moreover

‖G(εαy, PεUλ1,ξ1/εα + φ2
1, PεUλ2,ξ

1
2 /ε

α + φ2
2)

−G(εαy, PεUλ1,ξ1/εα + φ1
1, PεUλ2,ξ2/εα + φ1

2)‖ 2N
N+2

≤ ε−2α max{‖a‖∞, ‖b‖∞, ‖c‖∞, ‖d‖∞}‖φ2 − φ1‖ 2N
N−2
.

(3.19)

By (3.17)-(3.19) we get the claim.
If N = 5, 6 we proceed in a similar way. �

4 The reduced problem

In this section we are finding (λ, ξ) such that also equation (2.9) is verified,
namely for j, l = 0, 1, . . . , N

0 = ( (
PεUλ1,ξ1/εα + φ1ε,λ,ξ , PεUλ2,ξ2/εα + φ2ε,λ,ξ

)
− I∗

ε

[
F(PεUλ1,ξ1/εα + φ1ε,λ,ξ , PεUλ2,ξ2/εα + φ2ε,λ,ξ )

+ε2α+1G(εαy, PεUλ1,ξ1/εα + φ1ε,λ,ξ , PεUλ2,ξ2/εα + φ2ε,λ,ξ )
]
,

(Pεψ
j

λ1,ξ1/εα
, Pεψ

l
λ2,ξ2/εα

)
)
H.

(4.20)
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We need the expansion of the R.H.S. of (4.20).
First of all, arguing as in Proposition 2.1 of [14], we get the following result.

Lemma 4.1. For i = 1, 2 and j = 1, . . . , N , it holds(
PεUλi,ξi/εα + φiε,λ,ξ − i∗ε [f (PεUλi,ξi/εα + φiε,λ,ξ )], Pεψj

λi ,ξi/ε
α

)
H 1

0

= −A
2

2

∂

∂ξ
j

i

[τ(ξi)λN−2
i ]εα(N−1) +O(‖φε,λ,ξ‖2)+ εα

N
2 O(‖φε,λ,ξ‖)

and (
PεUλi,ξi/εα + φiε,λ,ξ − i∗ε [f (PεUλi,ξi/εα + φiε,λ,ξ )], Pεψ0

λi ,ξi/ε
α

)
= A2

2

∂

∂λi
[τ(ξi)λN−2

i ]εα(N−2) +O(‖φε,λ,ξ‖2)+ εα
N−2

2 O(‖φε,λ,ξ‖)

as ε goes to zero, uniformly with respect to (λ, ξ) ∈ Oµ.HereA = ∫
RN
U
p

1,0(z)dz.

Secondly we have the following expansion.

Lemma 4.2. Assume that w(x) ∈ C1(�̄), then, for j = 1, . . . , N ,∫
�ε

w(εαy)PεUλi,ξi/εα (y)Pεψ
j

λi ,ξi/ε
α (y) dy = −B

2

∂

∂ξ
j

i

[
w(ξi)λ

2
i

]
εα (1 + o(1))

and∫
�ε

w(εαy)PεUλi,ξi/εα (y)Pεψ
0
λi ,ξi/ε

α (y) dy = B

2

∂

∂λi

[
w(ξi)λ

2
i

]
(1 + o(1)) ,

as ε goes to zero, uniformly with respect to (λ, ξ) ∈ Oµ.HereB = ∫
RN
U 2

1,0(z)dz.

Moreover if i �= h and j = 1, . . . , N∫
�ε

w(εαy)PεUλh,ξh/εα (y)Pεψ
j

λi ,ξi/ε
α (y) dy = O

(
εα(N−3)

)
(4.21)

and ∫
�ε

w(εαy)PεUλh,ξh/εα (y)Pεψ
0
λi ,ξi/ε

α (y) dy = O
(
εα(N−4)

)
, (4.22)

as ε goes to zero, uniformly with respect to (λ, ξ) ∈ Oµ.
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Proof. For j = 0, 1, . . . , N , let us compute∫
�ε

w(εαy)PεUλi,ξi/εαPεψ
j

λi ,ξi/ε
α =

∫
�ε

w(εαy)Uλi,ξi/εαψ
j

λi ,ξi/ε
α

+
∫
�ε

w(εαy)
(
PεUλi,ξi/εα − Uλi,ξi/εα

)
ψ
j

λi,ξi/ε
α

+
∫
�ε

w(εαy)PεUλi,ξi/εα
(
Pεψ

j

λi ,ξi/ε
α − ψ

j

λi,ξi/ε
α

)
.

(4.23)

Furthermore∫
�ε

w(εαy)Uλi,ξi/εαψ
j

λi ,ξi/ε
αdy

= ε−αN
∫
�

w(x)Uλi,ξi/εα
( x
εα

)
ψ
j

λi,ξi/ε
α

( x
εα

)
dx.

(4.24)

For j = 1, . . . , N , (4.24) is equal to

λi

∫
�−ξi
λi ε

α

w(ξi + λiε
αz)U1,0

∂U1,ξi

∂ξ
j

i

∣∣∣∣∣
ξ=0

dz

= 1

2
λi

∫
�−ξi
λi ε

α

w(ξi + λiε
αz)
∂U 2

1,0

∂zj
dz

= 1

2
λi

[
−
∫
�−ξi
λi ε

α

∂w

∂zj
(ξi + λiε

αz)U 2
1,0(z)dz

+
∫
∂
(
�−ξi
λi ε

α

)w(ξi + λiε
αz)U 2

1,0(z)dσ

]

= −1

2
λiε

αλi

∫
�−ξi
λi ε

α

∂w

∂ξj
(ξi + λiε

αz)U 2
1,0(z)dz+ o(εα)

= −λ2
i ε
α B

2

∂w(ξi)

∂ξ
j

i

(1 + o(1)).

(4.25)

For j = 0, (4.24) is equal to

λiw(ξi)

∫
RN

U1,0
∂Uλi,0

∂λi

∣∣∣∣
λi=1

(1 + o(1)) = Bλiw(ξi)(1 + o(1)). (4.26)
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Now, by Lemma 5.4 in [13]∣∣∣∣
∫
�ε

w(εαy)
(
PεUλi,ξi/εα − Uλi,ξi/εα

)
ψ
j

λi,ξi/ε
α

∣∣∣∣
≤ ‖w‖∞

∫
�ε

∣∣∣(PεUλi,ξi/εα − Uλi,ξi/εα
)
ψ
j

λi,ξi/ε
α

∣∣∣
≤
{
o(εα) if j = 1, . . . , N

o(1) if j = 0.
(4.27)

and by Lemmas 5.3 and 5.5 in [13] it follows that∣∣∣∣
∫
�ε

w(εαy)PεUλi,ξi/εα
(
Pεψ

j

λi ,ξi/ε
α − ψ

j

λi,ξi/ε
α

)∣∣∣∣
≤ c‖w‖∞‖Pεψj

λi ,ξi/ε
α − ψ

j

λi,ξi/ε
α‖ 2N

N−2
‖PεUλi,ξi/εα‖ 2N

N+2

≤
{
o(εα) if j = 1, . . . , N

o(1) if j = 0.
(4.28)

For i �= h and j = 1, . . . , N we have∣∣∣∣∣∣∣
∫
�ε

w(εαy)PεUλh,ξh/εα (y)Pεψ
j
λi ,ξi/ε

α (y) dy

∣∣∣∣∣∣∣
≤ ‖w‖∞ε−αN

∫
�

Uλh,ξh/εα
( x
εα

)(∣∣∣ψjλi,ξi/εα
( x
εα

)∣∣∣ + max
∂�

∣∣∣ψjλi,ξi/εα
( x
εα

)∣∣∣)dx
= O

(
εα(N−3)

)
. (4.29)

A similar argument proves (4.22). �
Finally we can give the expansion of (4.20).

Proposition 4.3. It holds((
PεUλ1,ξ1/εα + φ1ε,λ,ξ , PεUλ2,ξ2/εα + φ2ε,λ,ξ

)
−I∗

ε

[
F(PεUλ1,ξ1/εα + φ1ε,λ,ξ , PεUλ2,ξ2/εα + φ2ε,λ,ξ )

+ε2α+1G(εαy, PεUλ1,ξ1/εα + φ1ε,λ,ξ , PεUλ2,ξ2/εα + φ2ε,λ,ξ )
]
,(

Pεψ
j

λ1,ξ1/εα
, 0
))

H

=
⎧⎨
⎩
ε
N−1
N−4

[
− ∂	

∂ξ
j
1

(λ, ξ)+ o(1)
]

if j = 1, . . . , N,

ε
N−2
N−4

[
∂	
∂λ1
(λ, ξ)+ o(1)

]
if j = 0,

(4.30)
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and ((
PεUλ1,ξ1/εα + φ1ε,λ,ξ , PεUλ2,ξ2/εα + φ2ε,λ,ξ

)
−I∗

ε

[
F(PεUλ1,ξ1/εα + φ1ε,λ,ξ , PεUλ2,ξ2/εα + φ2ε,λ,ξ )

+ε2α+1G(εαy, PεUλ1,ξ1/εα + φ1ε,λ,ξ , PεUλ2,ξ2/εα + φ2ε,λ,ξ )
]
,(

0, Pεψ
l
λ2,ξ2/εα

))
H

=
⎧⎨
⎩
ε
N−1
N−4

[
− ∂	

∂ξ l2
(λ, ξ)+ o(1)

]
if l = 1, . . . , N,

ε
N−2
N−4

[
∂	
∂λ2
(λ, ξ)+ o(1)

]
if l = 0,

(4.31)

as ε goes to zero, uniformly with respect to (λ, ξ) ∈ Oµ, where 	 : (R+)2 ×
�2 −→ R is defined by (see Lemma 4.1 and Lemma 4.2).

	(λ, ξ) = A2

2

[
τ(ξ1)λ

N−2
1 + τ(ξ2)λ

N−2
2

]
− B

2

[
a(ξ1)λ

2
1 + d(ξ2)λ

2
2

]
. (4.32)

Proof. The claim easily follows by Lemma 4.1, Lemma 4.2 and (3.11). We
point out that α is chosen so that α(N − 1) = 3α + 1. �

Now we get the following necessary condition.

Theorem 4.4. Let

(u1ε, u2ε) = (PεUλ1ε,ξ1ε/ε
α + φ1ε,λ1ε,ξ1ε

, PεUλ2ε,ξ2ε/ε
α + φ2ε,λ2ε,ξ2ε

)

be a family of solutions of (2.6) (see Proposition 3.2) such that lim
ε→0

λiε = λi > 0

and lim
ε→0

ξiε = ξi ∈ �, i = 1, 2, with ξ1 �= ξ2. Then (λ, ξ) is a critical point of

the function 	.

Proof. By Proposition 4.3 it follows ∇	(λε, ξε) + o(1) = 0, uniformly with
respect to ε. Then passing to the limit we get the claim. �

Conversely we prove the following sufficient condition.

Theorem 4.5. Let (λ, ξ) be a stable critical point of the function 	 (see Defini-
tion 1.2) with λ1, λ2 > 0 and ξ1 �= ξ2. Then there exists a family of solutions

(u1ε, u2ε) = (PεUλ1ε,ξ1ε/ε
α + φ1ε,λ1ε,ξ1ε

, PεUλ2ε,ξ2ε/ε
α + φ2ε,λ2ε,ξ2ε

)

of problem (2.6). Moreover lim
ε→0

λε = λ∗ and lim
ε→0

ξε = ξ ∗, where (λ∗, ξ ∗) is a

critical point of 	 with 	(λ∗, ξ ∗) = 	(λ, ξ).
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Proof. By Proposition 4.3 and Definition 1.2 we get that for ε small enough
there exists (λε, ξε) in a neighbourhood V of (λ0, ξ0) such that ∇	(λε, ξε) +
o(1) = 0. Up to a subsequence we can assume that λε → λ∗ and ξε → ξ ∗.
Therefore (λ∗, ξ ∗) is a critical point of the function 	 and by Definition 1.2 it
follows that ψ(λ∗, ξ ∗) = ψ(λ, ξ). �

We remark that if (λ, ξ) is an isolated critical point of	 then (λ∗, ξ ∗) = (λ, ξ)

(see Definition 1.2).
We also point out that the maximum principle easily implies the following

result.

Proposition 4.6. If we assume b(x), c(x) ≥ 0, x ∈ �, then the solutions
(u1ε , u2ε ) of system (1.1) given in Theorem 4.5 are positive in �.

We are in position to prove our first main result.

Proof of Theorem 1.3. First notice that, in general, if f : � → R is a smooth
function, α ∈ R \ {0} and x̄ ∈ � is such that f (x̄) �= 0, then x̄ is a stable critical
point for f if and only if x̄ is a stable critical point for |f |α. Then our claim
follows from Theorem 4.5 and Lemma 5.7 in [13], taking δiε = λiεε

1
N−4 . �

Example 4.7. Let� be a “dumb-bell with thin handle” (see [14], Section 3) and
let a(x) = d(x) = 1 for any x ∈ �. Then there exist two families of solutions
to (1.1) which blow-up and concentrate at two different points of �.

Example 4.8. Let a and d be positive functions with disjoint supports. Then
there exists a family of solutions to (1.1) which blow-up and concentrate at two
different points of �.

5 The symmetric case

In this section we assume that� is a symmetric domain and thata, b, c, d are sym-
metric functions (see (1.3), (1.4)). LetHs = {(u, v) ∈ H : u, v are symmetric}.

We are looking for a solution of (2.6) in the space Hs as (u1(x), u2(x))

= (
PεUλ1,0(x)+ φ1ε(x), PεUλ2,0(x)+ φ2ε(x)

)
, where the rest term φε(x) =(

φ1ε(x), φ2ε(x)
)

belongs to the space K⊥
ε,ξ,0 ∩ Hs .

Arguing exactly as in the previous Sections 2 and 3 we can prove that

Proposition 5.1. For any µ ∈ (0, 1) there exist R, ε0 > 0 such that for every
λ ∈ (µ, 1/µ) and for any ε ∈ (0, ε0) there exists a unique φε,λ = (

φ1ε,λ, φ2ε,λ

) ∈
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K⊥
ε,ξ,0 ∩ Hs such that

�⊥
ε,λ,0

{(
PεUλ1,0 + φ1ε,λ , PεUλ2,0 + φ2ε,λ

)
− I∗

ε

[
F
(
PεUλ1,0 + φ1ε,λ , PεUλ2,0 + φ2ε,λ

)
+ ε2α+1G

(
εαy, PεUλ1,0 + φ1ε,λ , PεUλ2,0 + φ2ε,λ

)]} = 0.

(5.33)

Moreover ‖φε,λ‖ satisfies estimate (3.11).

The problem reduces to find parameters λ1 and λ2 such that also Equation (2.9)
is verified, namely

0 = ((
PεUλ1,0 + φ1ε,λ, PεUλ2,0 + φ2ε,λ

)
− I∗

ε

[
F(PεUλ1,0 + φ1ε,λ, PεUλ2,0 + φ2ε,λ)

+ε2α+1G(εαy, PεUλ1,0 + φ1ε,λ, PεUλ2,0 + φ2ε,λ)
]
,(

sPεψ
0
λ1,0, tPεψ

0
λ2,0

))
H ∀ (s, t) ∈ R

2.

(5.34)

Arguing as in Lemma 4.2, we can prove that:

Lemma 5.2. It holds if i �= j∫
�ε

w(εαy)PεUλi,0(y)Pεψ
0
λj ,0(y) dy

= w(0)
∂

∂λj

⎡
⎣∫

RN

Uλi,0(y)Uλj ,0(y)dy

⎤
⎦ (1 + o(1))

and if i = j ∫
�ε

w(εαy)PεUλi,0(y)Pεψ
0
λi ,0(y) dy

= 1

2
w(0)

∂

∂λj

⎡
⎣∫

RN

U 2
λi ,0(y)dy

⎤
⎦ (1 + o(1)) ,

as ε goes to zero, uniformly with respect to λ ∈ [µ, 1/µ].
Arguing as in the proof of Proposition 4.3, we get the expansion of the R.H.S.

of (5.34).
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Proposition 5.3. It holds((
PεUλ1,0 + φ1ε,λ, PεUλ2,0 + φ2ε,λ

)
− I∗

ε

[
F(PεUλ1,0 + φ1ε,λ, PεUλ2,0 + φ2ε,λ)

+ ε2α+1G(εαy, PεUλ1,0 + φ1ε,λ, PεUλ2,0 + φ2ε,λ)
]
,
(
Pεψ

0
λ1,0, 0

))
H

= ε
N−2
N−4

[
σ1(λ)+ o(1)

]
(5.35)

and((
PεUλ1,0 + φ1ε,λ, PεUλ2,0 + φ2ε,λ

)
− I∗

ε

[
F(PεUλ1,0 + φ1ε,λ, PεUλ2,0 + φ2ε,λ)

+ ε2α+1G(εαy, PεUλ1,0 + φ1ε,λ, PεUλ2,0 + φ2ε,λ)
]
,
(
0, Pεψ

0
λ2,0

))
H

= ε
N−2
N−4 [σ2(λ)+ o(1)]

(5.36)

as ε goes to zero, uniformly with respect to λ ∈ [µ, 1/µ]. Here the function
σ : (0,+∞)× (0,+∞) → R

2, is defined by

σ1(λ) = ∂

∂λ1

⎡
⎣1

2
A2τ(0)λN−2

1 − 1

2
a(0)

∫
RN

U 2
λ1

− b(0)
∫

RN

Uλ1Uλ2

⎤
⎦

σ2(λ) = ∂

∂λ2

⎡
⎣1

2
A2τ(0)λN−2

2 − 1

2
d(0)

∫
RN

U 2
λ2

− c(0)
∫

RN

Uλ1Uλ2

⎤
⎦ .

(5.37)

Arguing as in the proof of Theorem 4.4, we have the following necessary
condition.

Theorem 5.4. Let (u1ε, u2ε) = (PεUλ1ε,0 + φ1ε,λ1ε
, PεUλ2ε,0 + φ2ε,λ2ε

) (see
Proposition 5.1) be a family of solutions of (2.6) such that lim

ε→0
λiε = λi > 0.

Then σ(λ) = 0 (see (5.37)).

Conversely, given the following notion of stable zero for a vector field, we can
prove a sufficient condition.
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Definition 5.5. Let G : � → R
N be a C1−function, we say that ξ0 is a stable

zero of G if G(ξ0) = 0 and there exists a neighbourhood V ⊂⊂ � of ξ0 such
that G(ξ) �= 0 ∀ ξ ∈ ∂V and deg

(
G, V̄ , 0

) �= 0.

Theorem 5.6. If λ∗ = (λ∗
1, λ

∗
2) is a stable zero of the function σ (see (5.37)),

then there exists a family of symmetric solutions (u1ε, u2ε) = (PεUλ1ε,0 +
φ1ε,λ1ε

, PεUλ2ε,0 + φ2ε,λ2ε
) of problem (2.6) with lim

ε→0
λε = λ∗.

Proof. By Proposition 5.3 it follows that

�ε,λ,0
{(
PεUλ1,0 + φ1ε,λ, PεUλ2,0 + φ2ε,λ

)
− I∗

ε

[
F(PεUλ1,0 + φ1ε,λ, PεUλ2,0 + φ2ε,λ)

+ε2α+1G(εαy, PεUλ1,0 + φ1ε,λ, PεUλ2,0 + φ2ε,λ)
]}

= ε
N−2
N−4 [σ(λ)+ o(1)] .

By Definition 5.5 we get that for ε small enough there exists λε in a neigh-
bourhood of λ∗ such that σ(λε)+ o(1) = 0 and the claim follows. �

In order to find stable zeroes of the function σ , we need the following technical
lemma.

Lemma 5.7. Let φ : (0,+∞) → R be defined by

φ(t) :=
∫

RN

ψ0
1,0(y)Ut,0(y)dy. (5.38)

Let N ≥ 5. Then

(i) lim
t→0

t−
N−2

2 φ(t) = C, where C := C2
N
N−2

2

∫
RN

|y|2−1

(|y|2+1)
N
2

1
|y|N−2 dy, C < 0 if

N ≥ 7, C = 0 if N = 6, C > 0 if N = 5;

(ii) lim
t→+∞ t

N−6
2 φ(t) > 0;

(iii) φ(1) > 0 and φ′(1) > 0.

Moreover if N ≥ 7

(iv) there exists m ∈ (0, 1) such that φ is increasing in (m, 1/m) and is de-
creasing in (0,m) ∪ (1/m,+∞);
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(v) there exists a unique ζ ∈ (0, 1) such that φ(ζ ) = 0

and if N = 5, 6

(vi) φ′(t) > 0 for any t > 0.

Proof. Since

φ(t) = C2
N

N − 2

2
t
N−2

2

∫
RN

|y|2 − 1

(|y|2 + 1)
N
2

1

(|y|2 + t2)
N−2

2

dy, (5.39)

(i) follows. Moreover, setting y = tx in (5.39), we have

t
N−6

2 φ(t) −→ C2
N

N − 2

2

∫
RN

1

(|x|2 + 1)
N−2

2

1

|x|N−2
dy as t → +∞,

that proves (ii).
By (5.39), φ(1) > 1 and

φ′(t) =
(
CN

N − 2

2

)2

t
N−4

2

∫
RN

|y|2 − 1

(|y|2 + 1)
N
2

|y|2 − t2

(|y|2 + t2)
N
2

dy, (5.40)

from which (iii) follows.
Now let us prove (iv) and (vi). First we point out that, if we make the change

of variable y = tx in (5.40), we deduce that φ′(t) = φ′ ( 1
t

)
for any t > 0. So

it is enough to study φ in (1,+∞) and to show that there exists M ∈ (1,+∞)

such that φ is increasing in (1,M) and is decreasing in (M,+∞).

Using polar co-ordinates we can rewrite (5.40) as

φ′(t) = α1t
N−4

2

∞∫
0

ρN−1 ρ2 − 1

(ρ2 + 1)
N
2

ρ2 − t2

(ρ2 + t2)
N
2

dρ, (5.41)

where α1 = (
CN

N−2
2

)2
meas(SN−1) and SN−1 is the (N − 1)−dimensional unit

sphere.
Using hypergeometric functions (see [11], Section 9.1) and their properties

(in particular, 9.137 in [11]) we can compute

φ′(t) = α2t
−N+4

2

[
−N(N − 6)F

(
N

2
,
N + 2

2
, N,

t2 − 1

t2

)
(t2 + 1)

+2(N − 2)2F

(
N

2
,
N

2
, N,

t2 − 1

t2

)
t2
]
,

(5.42)
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where α2 = α1
�(N−4

2 )�(
N
2 )

8�(N) . If N = 5, 6, then (5.42) directly imply (vi).

If N ≥ 7, let us evaluate the second derivative φ′′(t) at any critical point t of
φ, namely φ′(t) = 0 :

φ′′(t) = −α3
t−

N+6
2

t4 − 1
F

(
N

2
,
N

2
, N,

t2 − 1

t2

)(
t4 − 2

N + 2

N − 6
t2 + 1

)
, (5.43)

where α3 = α2
N + 2

2

�
(
N
2

)
�
(
N+2

2

)
� (N + 1)

.

Now, since (ii) and (iii) hold, there exists a local maximum pointM ∈ (1,+∞)

such that φ′(t) ≥ 0 for any t ∈ (1,M). By (5.42) we deduce that M2 ≥
N+2+4

√
N−2

N−6 . If M is not the global maximum point of φ in (1,+∞) then there
exists a local minimum point t of φ with t > M. Then t must satisfy φ′(t) = 0
and φ′′(t) ≥ 0. By (5.43) we deduce that t2 ≤ N+2+4

√
N−2

N−6 and a contradiction
arises. That proves claim (iv).

Finally (v) follows from (i)-(iv). �
The following proposition allows us to reduce the existence of zeroes of σ to

the existence of zeroes of a function which only depends on one variable.

Proposition 5.8. Let � : (0,+∞) → R be defined by

�(t) := tN−4 [a(0)B + b(0)φ(t)] −
[
d(0)B + c(0)φ

(
1

t

)]
, (5.44)

where φ is defined in (5.38) and B is given in Lemma 4.2.
If t∗ is a stable zero of the function � with

a(0)B + b(0)φ(t∗) > 0, (5.45)

then λ∗ = (λ∗
1, λ

∗
2) with λ∗

1 = {
2
[
(N − 2)A2τ(0)

]−1[
a(0)B + b(0)φ(t∗)

]} 1
N−4

and λ∗
2 = t∗λ∗

1 is a stable zero of the function σ defined in (5.37).
Moreover if σ(λ1, λ2) = 0 then �(λ2/λ1) = 0 and condition (5.45) holds.

Proof. It is enough to point out that σ(λ1, λ2) = 0 if and only if⎧⎪⎨
⎪⎩

N−2
2 A2τ(0)λN−4

1 − a(0)B − b(0) 1
λ1

∫
RN

ψ0
λ1,0Uλ2,0 = 0

N−2
2 A2τ(0)λN−4

2 − d(0)B − c(0) 1
λ2

∫
RN

ψ0
λ2,0Uλ1,0 = 0
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and if we choose λ2 = tλ1 the previous system is equivalent to{
N−2

2 A2τ(0)λN−4
1 = a(0)B + b(0)φ(t)

tN−4 [a(0)B + b(0)φ(t)] − [
d(0)B + c(0)φ

(
1
t

)] = 0.

The claim easily follows. �
Finally we can prove our second main result.

Proof of Theorem 1.4. To prove this theorem, taking into account Proposi-
tion 5.8 and Theorem 5.6, we will show that the function � has, in each case, a
stable critical point that verifies (5.45)

Proof of (1). IfN ≥ 7, then by (v) of Lemma 5.7 we get�(ζ) < 0 < �
(

1
ζ

)
.

Hence there exists t∗ ∈
(
ζ, 1

ζ

)
which is a stable zero of the function � and

satisfies (5.45), because b(0)φ(t∗) > 0.
If N = 6, then by (i) and (ii) of Lemma 5.7 lim

t→0
�(t) = −Cc(0) < 0 and

lim
t→+∞�(t) = +∞. Hence there exists a stable zero t∗ for the function �, that

verifies (5.45).
An analogous argument proves the case N = 5.

Proof of (2). If N ≥ 7, then by Lemma 5.7 we get

lim
t→0

�(t) = −d(0)B < 0 and lim
t→+∞ t

−(N−4)�(t) = a(0)B > 0. (5.46)

So there exists t∗ which is a stable zero of the function�.We have to prove that
t∗ satisfies (5.45). In fact if t∗ > ζ then φ(t∗) > 0 and (5.45) holds. If t∗ < ζ

then φ
(

1
t∗
)
> 0 and

a(0)B + b(0)φ
(
t∗
) = 1

t∗N−4

[
d(0)B + c(0)φ

(
1

t∗

)]
> 0, (5.47)

namely (5.45) holds.
Taking into account Lemma 5.7, easier calculations prove the casesN = 5, 6.

Proof of (3). Assume N ≥ 7. We get again (5.46), so a stable zero t∗ for
the function � exists. We have to verify that such a stable critical point verify
also (5.45). If

K := min
(0,+∞)

[
d(0)B + c(0)φ

(
1

t

)]
=
[
d(0)B + c(0)φ

(
1

m

)]
> 0,
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then (5.47) shows our claim. If K ≤ 0, then �(m) > 0, so we can take
t∗ ∈ (0,m). Hence (5.45) follows since φ is decreasing in (0,m). �

Using Proposition 5.8 and Theorem 5.6 we can give the following example.

Example 5.9. AssumeN ≥ 7, a(0) > 0 and c(0) = 0. Then there exists d∗ > 0
and b∗ > 0 such that for any d(0) ∈ (0, d∗) and |b(0)| > b∗ there exists three
different families of symmetric solutions of problem (1.1) that concentrates at
the origin.

Remark 5.10. If N = 5, 6, then case (3) of Theorem 1.4 in general does not
hold.

For example, if N = 6 and a(0)B + b(0)C > 0 and d(0)B + c(0)C > 0 (see
Lemma 4.2 and (i) in Lemma 5.7) it is not difficult to see that the function �
has a stable zero which satisfies (5.45). If N = 5 and a(0) > 0, b(0) < 0 and
c(0) < 0 are fixed and d(0) > 0 is large enough, then there exists a stable zero
for the function � which satisfies (5.45).

On the contrary if N = 5, 6 a(0) > 0, b(0) < 0 and c(0) < 0 are fixed
and d(0) > 0 is small enough, then the function � has not a zero which satis-
fies (5.45).

Remark 5.11. Let � be symmetric with respect to the origin (i.e. x ∈ � iff
−x ∈ �) then it is easily seen that all the arguments of this section works, making
use of the subspace of H given by

H̃s = {
(u1, u2) ∈ H : ui(x) = ui(−x), ∀x ∈ �ε, i = 1, 2

}
.

So, in this new setting, we can get results analogous to those referred in
Theorem 1.4.
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