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Generic diffeomorphisms away from homoclinic
tangencies and heterodimensional cycles
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Abstract. The C1 density conjecture of Palis asserts that diffeomorphisms exhibiting
either a homoclinic tangency or a heterodimensional cycle are C1 dense in the com-
plement of the C1 closure of hyperbolic systems. In this paper we prove some results
towards the conjecture.

Keywords: hyperbolic diffeomorphism, homoclinic tangency, heterodimensional cycle,
generic property, dominated splitting.

Mathematical subject classification: 37D30.

§1. Introduction

Let M be a compact manifold without boundary, and Diff(M) be the set of
diffeomorphisms of M , endowed with the C1 topology.

A diffeomorphism f : M → M is called hyperbolic if the limit set L(f ) of
f is a hyperbolic set, where L(f ) is by definition the closure of the union of
the ω-limit set ω(x) and α-limit set α(x), for all x ∈ M . Hyperbolic systems
include many nice systems such as structurally stable systems, AxiomA systems,
etc. However, contrary to a common expectation, hyperbolic systems are found
not dense in Diff(M). That is, there are diffeomorphisms that can not be C1

approximated by hyperbolic systems (see [AS] [N1] [Si] for early examples of
this nature). Which bifurcation phenomena could be typical in this robustly
non-hyperbolic world? Palis [P,PT] has the following famous conjecture:

The C1 Density Conjecture. Diffeomorphisms of M exhibiting either a ho-
moclinic tangency or a heterodimensional cycle are C1 dense in the complement
of the C1 closure of hyperbolic systems.
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Here a point x ∈ M is called a homoclinic tangency of f , if there is a
hyperbolic periodic orbit P of f such that x ∈ Wu(P )∩Ws(P )−P , and such that
the intersection of Wu(P ) and Ws(P ) at x is not transverse. A heterodimensional
cycle of f consists of two hyperbolic periodic orbits P and Q of f of different
indices such that Wu(P ) ∩ Ws(Q) �= ∅, and Wu(Q) ∩ Ws(P ) �= ∅. Here by
the index of a hyperbolic periodic orbit P we mean the integer dim(Ws(P )).
Note that at least one of the two intersections, Wu(P ) ∩ Ws(Q) or Wu(Q) ∩
Ws(P ), is not transverse, due to inadequate dimensions. Homoclinic tangency
and heterodimensional cycle are two bifurcation phenomena that go beyond the
Kupka-Smale systems. This makes the conjecture of Palis even more striking.

In dimension 2 the conjecture is proved recently by Pujals and Sambarino in
a remarkable paper [PS]. Note that in dimension 2, a priori, there can be no
heterodimensional cycles (a heterodimensional cycle involves periodic saddles
of different indices, while in dimension 2 all periodic saddles have the same
index 1). Hence in dimension 2, what was conjectured by Palis, and now proved
by Pujals and Sambarino, is that any diffeomorphism can be C1 approximated
either by a hyperbolic diffeomorphism, or by one with a homoclinic tangency.

In dimension higher than 2, there are systems that can be C1 approximated
neither by hyperbolic systems, nor by systems with a homoclinic tangency [Sh1]
[M1] [BD] [BV], and the conjecture says such a system must be C1 approximated
by one with a heterodimensional cycle. In this paper we prove some results
towards the conjecture for higher dimensions. Note that the conjecture can
be alternately stated as that Hyperbolic diffeomorphisms are C1 dense in the
complement of the C1 closure of diffeomorphisms exhibiting either a homoclinic
tangency or a heterodimensional cycle. We will prove in this paper that there is
a C1 residual subsetR in the complement of the C1 closure of diffeomorphisms
exhibiting either a homoclinic tangency or a heterodimensional cycle such that
every f ∈ R is “nearly" hyperbolic, in the sense as described in TheoremA and B
below. The statements use the notion of the so called minimally non-hyperbolic
set we now introduce.

A compact invariant set � of f is called minimally non-hyperbolic of f if �

is not a hyperbolic set of f but any nonempty compact invariant proper subset
of � is a hyperbolic set of f . This notion plays an important role in Pujals
and Sambarino [PS]. It resembles the notion of minimally rambling sets, studied
intensively by Liao [L2].

Proposition 1.1 ([L2, P.4], [PS, P.983]). Any non-empty non-hyperbolic com-
pact invariant set of f contains at least one minimally non-hyperbolic set of f .
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Proof. Let A be a non-empty non-hyperbolic compact invariant set of f . LetC
be the set of non-empty non-hyperbolic compact invariant subset of A, respecting
f . C is partially ordered by the inclusion. It is easy to see any linearly ordered
subset of C has a lower bound in C. By Zorn’s lemma, C has a minimal element
�. It is easy to see � is a minimally non-hyperbolic set of f , contained in A.
This proves Proposition 1.1.

We follow Liao [L2] to divide minimally non-hyperbolic sets into two types,
simple and non-simple, in a slightly different way by using the following char-
acterization of hyperbolic sets that can be found in Selgrade [S], Sacker and Sell
[SS], Mañé [M2] and Liao [L1]. Denote

Ds(x) = {
v ∈ Tx(M) | ‖Df n(v)‖ → 0, n → +∞}

,

Du(x) = {
v ∈ Tx(M) | ‖Df −n(v)‖ → 0, n → +∞}

.

These are Df -invariant (as family) linear subspaces of TxM . By definition,
vectors of Ds and Du are asymptotic to zero under forward or backward iterates,
respectively, but not necessarily exponentially fast. However, if the two sub-
spaces form a direct sum at every point of a compact invariant set, exponential
rates will follow:

Proposition 1.2 ([S, SS, M2, L1]). A compact invariant set A of f is hyperbolic
if and only if Ds(x) ⊕ Du(x) = TxM, for all x ∈ A.

Let us call a point x ∈ M resisting of f if the equality Ds(x)⊕Du(x) = TxM

does not hold. This means either Ds(x) + Du(x) �= TxM , or Ds(x) ∩ Du(x) �=
{0}. The set of resisting points of f is f -invariant, but generally not closed.
A minimally non-hyperbolic set � will be called of simple type if there is a
resisting point a ∈ � such that both ω(a) and α(a) are proper subsets of �.
Otherwise the minimally non-hyperbolic set will be called of non-simple type.
The following proposition describes the structure of a simple type minimally
non-hyperbolic set.

Proposition 1.3. A simple type minimally non-hyperbolic set � of f can be
written as � = ω(a) ∪ Orb(a) ∪ α(a), where a ∈ � is a resisting point of f ,
such that ω(a) and α(a) are both hyperbolic, and a /∈ ω(a) ∪ α(a).

Proof. Since ω(a) and α(a) are both proper subsets of �, they are hyperbolic.
Hence a /∈ ω(a)∪α(a).Also, being a non-hyperbolic (with a resisting) compact
invariant subset, ω(a) ∪ Orb(a) ∪ α(a) must be the whole �. This proves
Proposition 1.3.
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Thus a simple type minimally non-hyperbolic set � has a clear structure. It is
a non-transverse (more correctly, non-direct-sum) heteroclinic (if ω(a)∩α(a) =
∅) or homoclinic (if ω(a) ∩ α(a) �= ∅) connection of two hyperbolic sets. In
particular, in case ω(a) = α(a) = {p} is a hyperbolic fixed point, this will be
the familiar picture of homoclinic tangency.

On the other hand, there has been no general structure theorem available for a
non-simple type minimally non-hyperbolic set. By definition a non-simple type
minimally non-hyperbolic set � must be topologically transitive. Indeed, by
definition, every resisting point a ∈ � satisfies either ω(a) = �, or α(a) = �.
A trivial example for a non-simple type minimally non-hyperbolic set would be
a non-hyperbolic fixed point, or a non-hyperbolic periodic orbit, or any non-
hyperbolic minimal set. Liao proves under the conditions of [L2] that a non-
simple type minimally non-hyperbolic set must not be a minimal set. Pujals-
Sambarino prove under the conditions of [PS] that the only non-simple type
minimally non-hyperbolic set is an invariant circle with an irrational rotation.
These highly non-trivial results form a key step in their work, and also justify
the use of a general principle of Liao:

Principle. To prove that a compact invariant set A is hyperbolic, it suffices
to rule out the possibility of the existence of simple type and non-simple type
minimally non-hyperbolic sets contained in A.

This principle has an advantage that, to prove that a compact invariant set A

(for instance the nonwandering set) is hyperbolic, we do not have to handle the
whole set A globally, but only have to rule out the possibility of the existence of
the two types of minimally non-hyperbolic sets in A, which may be of relatively
less global nature.

Now we state the main results of this paper. Recall that Palis conjecture can
be alternately stated as that Hyperbolic diffeomorphisms are C1 dense in the
complement of the C1 closure of diffeomorphisms exhibiting either a homoclinic
tangency or a heterodimensional cycle.

Theorem A. There is a C1 residual subset R in the complement of the C1

closure of diffeomorphisms exhibiting either a homoclinic tangency or a het-
erodimensional cycle, such that every f ∈ R has no simple type minimally
non-hyperbolic sets contained in L(f ).

To prove Palis conjecture it remains to rule out the possibility of the existence
of non-simple type minimally non-hyperbolic sets � (contained automatically
in L(f ) since � is topologically transitive), for a dense (or residual, if possible)
subset of diffeomorphisms in the complement of the C1 closure of diffeomor-
phisms exhibiting either a homoclinic tangency or a heterodimensional cycle.
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The following Theorem B has not achieved this, but asserts that such a non-
simple type minimally non-hyperbolic set �, if it exists, must look somewhat
special. We hope this would help to rule out its existence eventually. Since the
intersection of (countably many) residual subsets is residual, we will use the
same notation for several different residual subsets of the same space (R for a
local one, and A for a global one).

Theorem B. There is a C1 residual subset R in the complement of the C1

closure of diffeomorphisms exhibiting either a homoclinic tangency or a het-
erodimensional cycle, such that any non-simple type minimally non-hyperbolic
set � of any f ∈ R has the following feature:

(1) � is the common Hausdorff limit of two sequences of hyperbolic periodic
orbits of different indices. More precisely, there are two sequences of
hyperbolic periodic orbits {Pk} and {Qk} of f that both converge to �

in the Hausdorff metric, such that ind(Qk) = ind(Pk) + 1 and Wu(P )

intersects Ws(Q) transversely. In particular, � can not be contained in
any normally hyperbolic arc or circle of f .

(2) � is partially hyperbolic with central bundle at most 2-dimensional. More
precisely, either there is a three-ways Df -invariant splitting T�M = Es ⊕
Ec ⊕ Eu, where Es is dominated by Ec, and Ec is dominated by Eu, such
that Es is contracting, Eu is expanding, and Ec is 1-dimensional and is
neither contracting nor expanding, or, there is a four-ways Df -invariant
splitting T�M = Es ⊕ Ecs ⊕ Ecu ⊕ Eu, where Es is dominated by Ecs ,
Ecs is dominated by Ecu, and Ecu is dominated by Eu, such that Es is
contracting, Eu is expanding, and Ecs and Ecu are each 1-dimensional
and neither contracting nor expanding.

Theorem A and B will be proved in §2 and §3, respectively. Theorem A
can be obtained quickly from the results of [W2] and [GW] (which are actually
preparations for the present paper). The proof of Theorem B will depend in
addition the elegant selecting lemma of Liao [L2], reviewed in §3.

I wish to thank Shaobo Gan and Yong Zhang for intensive discussions on
the minimally rambling sets theory of Liao and the work of Pujals and Sam-
barino on the Palis conjecture. I also thank the referee for many nice comments
and suggestions.

§2. The proof for Theorem A

We start with recalling a characterization for diffeomorphisms that are C1 away
from homoclinic tangencies, by dominated splittings on the so called preperiodic
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sets. A point x ∈ M is C1 preperiodic, if for any C1 neighborhood U of f in
Diff(M) and any neighborhood U of x in M , there is g ∈ U and y ∈ U such
that y is periodic of g (see [W1]). We denote the set of C1 preperiodic points by
P∗(f ). It is easy to see that P∗(f ) is closed and f -invariant. Also,

�(f ) ⊂ P∗(f ) ⊂ R(f ),

where �(f ) and R(f ) denote the nonwandering and chain recurrent sets of f ,
respectively. The first inclusion is by the C1 closing lemma of Pugh [Pu, PR],
and the second inclusion is just by definitions.

Note that in the definition of preperiodic points it is equivalent to replace the
term “periodic” by “hyperbolic periodic”, because any periodic point can be
made hyperbolic by an arbitrarily small Cr perturbation. We call a point x ∈ M

C1 i-preperiodic of f , 0 ≤ i ≤ d, if for any C1 neighborhoodU of f in Diff(M)

and any neighborhood U of x in M , there is g ∈ U and y ∈ U such that y is
a hyperbolic periodic point of g of index i. Denote by P i∗(f ) the set of C1

i-preperiodic points of f . Then

P∗(f ) =
d⋃

i=0

P i
∗(f ).

P i∗(f ) is closed and f -invariant, for each 0 ≤ i ≤ d. Generally P i∗(f ) and
P

j
∗ (f ) are not disjoint for i �= j . In fact, according to Liao [L2] and Mañé

[M3], P i∗(f ) are mutually disjoint for 0 ≤ i ≤ d if and only if f is Axiom A
and no-cycle.

Let � be a compact invariant set of f . A continuous invariant splitting T�M =
�s ⊕ �u on � is called dominated of index i, 1 ≤ i ≤ d − 1, if dim �s(x) = i

for all x ∈ �, and if there are two constants 0 < λ < 1 and C > 0 such that

‖Df n|�s(x)‖ · ‖Df −n|�u(f n(x))‖ ≤ Cλn

for all x ∈ � and n ≥ 0. We may call �s ⊕ �u specifically a (C, λ)-dominated
splitting. This is equivalent to that for some constants ι ∈ IN and 0 < µ < 1,

‖Df ι|�s(x)‖ · ‖Df −ι|�u(f ι(x))‖ ≤ µ

for all x ∈ �. We may also call �s ⊕ �u specifically an (ι, µ)-dominated
splitting. A compact invariant set may have more than one dominated splitings.
Nevertheless, for fixed i, dominated splitting of index i is unique.
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Proposition 2.1 ([W2]). Let f : M → M be a diffeomorphism. The following
three conditions are equivalent:

(1) f has dominated splitting of index i on its C1 i-preperiodic set P i∗(f ), for
all 1 ≤ i ≤ d − 1.

(2) f can not be C1 approximated by a system that exhibits a homoclinic
tangency associated with some hyperbolic periodic point of some index
1 ≤ i ≤ d − 1.

(3) There is a C1 neighborhood U of f and a number γ > 0 such that for
any hyperbolic periodic point p of any g ∈ U of any index 1 ≤ i ≤ d − 1,
∠(Es(p, g), Eu(p, g)) ≥ γ.

Another major issue to us will be C1 generic properties about orbits-connect-
ing. There are a number of recent work along this direction, see [Ab1], [Ab2],
[Ar], [CMP] and [GW]. We state three propositions of this type. The first one
concerns a weak form of transitivity. It is to generalize the notion of topological
transitive sets as much as possible, but still to keep certain recurrence so that the
C1 connecting lemma applies on such a set to yield various connections. We say
y ∈ M is attainable from x ∈ M respecting f , if for any neighborhood U of x

in M and any neighborhood V of y in M , there is z ∈ U such that f n(z) ∈ V for
some integer n ≥ 1. Thus a nonwandering point of f is attainable from itself.
We say x and y are bi-attainable to each other if y is attainable from x and x is
attainable from y. A compact invariant set � is called weakly transitive if every
pair of points of � are bi-attainable to each other. The main examples in our
mind for weakly transitive sets are a single ω-limit set � = ω(x) or α-limit set
� = α(x) (this is more general than a transitive set because x may not be in �),
or the Hausdorff limit � of a sequence of periodic orbits Pk of f .

Proposition 2.2 ([Ar], [GW]). There is a C1 residual subset A ⊂ Diff(M)

such that for every f ∈ A, bi-attainability is a closed equivalence relation on
the nonwandering set �(f ).

Thus for every f ∈ A, �(f ) decomposes into closed, f -invariant equiva-
lence classes (generally infinite in number). We call each equivalence class a
weakly transitive component of f . Note that bi-attainability is not an equivalence
relation in general.

The second generic property concerns the possibility of creation of a heterodi-
mensional cycle by C1 perturbations. Recall for a hyperbolic set H with constant
dimension i of stable subspaces, we define its index to be i. Any hyperbolic set
decomposes into at most dim(M) + 1 pieces of hyperbiolic subsets, of which
the index is well defined.
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Proposition 2.3 ([GW]). There is a C1 residual subset A ⊂ Diff(M) such
that for every f ∈ A, if a weakly transitive set � of f contains two hyperbolic
sets H1 and H2 of different indices, then f can be C1 approximated by g that
has a heterodimensional cycle.

Note that H1 and H2 in the assumption must be both of saddle type. That is,
1 ≤ ind(H1) ≤ d − 1, 1 ≤ ind(H2) ≤ d − 1. This is because a hyperbolic
set of index 0 (or d) consists of finitely many periodic sources (or sinks), and
because if a weakly transitive set � contains a periodic source (or sink) P , �

must reduce to P .
The problem stated in Proposition 2.3 is very natural. Being contained in the

same weakly transitive set �, the two hyperbolic sets of different indices are
loosely connected each other. The problem is then to create a true connection
between two hyperbolic periodic orbits of different indices. Interference of orbits
appears in the perturbations however, which makes it unclear if the problem could
be solved by the C1 connecting lemma alone, even if the set � in question is
not only weakly transitive, but transitive. See [GW] for a detailed illustration
about this subtle point. Some C1 generic assumptions then are added to avoid
the interference of orbits.

The third generic property concerns how much a homoclinic class spreads. It
involves a similar subtle point and needs some generic assumptions, as stated
in Proposition 2.4 next. Recall that the homoclinic class H(P ) of a hyperbolic
periodic orbit P of f is defined to be the closure of the union of hyperbolic
periodic orbits of f that are H -related to P . Here two hyperbolic periodic
orbits P and Q of f are called H -related if Wu(P ) ∩ Ws(Q) �= ∅ with a
transverse intersection, and Wu(Q)∩Ws(P ) �= ∅ with a transverse intersection.
A homoclinic class H(P ) is called trivial if it consists of the orbit P only. If
H(P ) is non-trivial, it coincides with the closure of transverse homoclinic points
of P . If ind(P ) = i, we will simply call H(P ) an i-homoclinic class. Note that
i may not be uniquely assigned to H(P ), because generally it is possible that
H(P ) = H(Q) for a hyperbolic periodic orbit Q with ind(P ) �= ind(Q).

Proposition 2.4 ([Ar], [GW]). There is a C1 residual subset A ⊂ Diff(M)

such that for every f ∈ A, if a weakly transitive set � of f contains a hyperbolic
set K of index i, then � ⊂ H(P ) for a hyperbolic periodic orbit P of index i.
In particular, if this � is a weakly transitive component, then � = H(P ).

Note that K must be of saddle type. That is, 1 ≤ i ≤ d − 1. This is because
otherwise � would reduces to a periodic source or sink, contradicting that �

is non-trivial.
In particular, Proposition 2.4 says that, for generic f , any homoclinic class

H(P ) is itself a weakly transitive component, − the component that contains
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P . Of course, being transitive, a homoclinic class can not go beyond the weakly
transitive component it lies in. Thus, generically, every homoclinic class spreads
as much as it can.

We also need the following two simple facts. Recall Ds(x) and Du(x) are the
two linear subspaces of vectors in TxM that tend to zero asymptotically under
positive and negative Df -iterates, respectively, defined in §1. Also, note that if
ω(x) happens to be hyperbolic for some x ∈ M , then ind(ω(x)) is well defined.

Lemma 2.5. Let a be any point of M . If ω(a) is hyperbolic, then dim Ds(a) =
ind(ω(a)). Likewise, if α(a) is hyperbolic, then dim Du(a) = d − ind(α(a)).

Proof. The proof is easy by the shadowing lemma. We take the case of ω(a).
Write ind ω(a) = i. Take a large integer m such that the positive f -orbit of
b = f m(a) remains close to ω(a). Together with the negative f -orbit of a point
y ∈ ω(a) that is close to b, it gives a pseudo orbit, which is hence shadowed
by the f -orbit of some point z, which remains entirely in a small neighborhood
of ω(a) hence is hyperbolic of index i. Moreover, by shadowing, b ∈ Ws(z).
Hence a ∈ Ws(z). Then it is easy to see dim Ds(a) = i. This proves Lemma 2.5.

The following elementary lemma is due to Liao. We omit the proof, which is
cited in [W2, Lemma 2.2].

Lemma 2.6 ([L2]). Assume � is a compact invariant set of f with a dominated
splitting �s ⊕ �u on �, and x ∈ �. Then either �s(x) ⊂ Ds(x), or Ds(x) ⊂
�s(x). Likewise, either �u(x) ⊂ Du(x), or Du(x) ⊂ �u(x).

Now we prove Theorem A.

Theorem A. There is a C1 residual subset R in the complement of the C1

closure of diffeomorphisms exhibiting either a homoclinic tangency or a het-
erodimensional cycle, such that every f ∈ R has no simple type minimally
non-hyperbolic sets contained in L(f ).

Proof. Let R be the set of diffeomorphisms in the complement of the C1 clo-
sure of diffeomorphisms exhibiting either a homoclinic tangency or a heterodi-
mensional cycle that satisfy the C1 generic conditions stated in Propositions
2.2 through 2.4, as well as the well known C1 generic condition L(f ) = P(f )

(a consequence of the C1 closing lemma of Pugh). Let f ∈ R.We prove f has no
simple type minimally non-hyperbolic set contained in L(f ) = P(f ). Suppose
f has a simple type minimally non-hyperbolic set � in P(f ). By Proposition 1.3,

� = ω(a) ∪ Orb(a) ∪ α(a),
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where a ∈ � is a resisting point of f such that ω(a) and α(a) are both hyper-
bolic, and a /∈ ω(a) ∪ α(a). Since a ∈ P(f ), there is a sequence of periodic
orbits of f that converge in the Hausdorff metric to a compact f -invariant set 	

with a ∈ 	. Thus 	 ⊃ �. Being the Hausdorff limit of a sequence of periodic
orbits, 	 is weakly transitive. If ω(a) and α(a) have different indices, by Propo-
sition 2.3, a heterodimensional cycle can be created by C1 perturbation, giving
a contradiction. Thus ω(a) and α(a) have the same index, say i. Note that 	 is
non-trivial, because even the subset � of it does not reduce to a periodic orbit. In
particular, 1 ≤ i ≤ d − 1. By Proposition 2.4, 	 is contained in an i-homoclinic
class of f , hence contained in P i(f ) ⊂ P i∗(f ) and hence, by Proposition 2.1,
has a dominated splitting

T	(M) = �s ⊕ �u

of index i. By Lemma 2.5,

dim Ds(a) = i, and dim Du(a) = d − i.

Hence by Lemma 2.6, Ds(a) = �s(a), Du(a) = �u(a). Thus

Ta(M) = Ds(a) ⊕ Du(a),

contradicting that a is a resisting point. This proves Theorem A.

§3. The proof for Theorem B

First we quote two results from [W2] about periodic orbits for systems C1 away
from homoclinic tangencies. The first one says that, for such a system, non-
hyperbolic periodic orbits appear in a very restricted way. Let π(p) denote the
period of a periodic point p.

Lemma 3.1 ([W2]). Assume f can not be C1 approximated by systems with
homoclinic tangencies. Then there is a C1 neighborhood U of f such that for
any periodic point p of any g ∈ U, Dgπ(p)|TpM can have at most one eigenvalue
of modulus 1 which, if exists, is real and has multiplicity 1.

Alternately, let us call a non-hyperbolic periodic orbit P of f sole-neutral par-
tially hyperbolic if TP M splits into a three ways Df -invariant splitting TP M =
Gs ⊕ Gc ⊕ Gu with Gc 1-dimensional, such that Df |Gs is contracting, Df |Gu

is expanding, and Df π(P )|Gc is either id, or −id. Then Lemma 3.1 just says
that any non-hyperbolic periodic orbit of any g ∈ U is sole-neutral partially
hyperbolic. If dim Gs = i, we will call P i-sole-neutral partially hyperbolic.
Thus i runs from 0 to d − 1.
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Lemma 3.2 ([W2]). Assume f can not be C1 approximated by systems with
homoclinic tangencies. Then there is a C1 neighborhood U0 ⊂ U (where U is
given as in Lemma 3.1) of f and a number K ≥ 2, such that for any hyperbolic
periodic point p of any g ∈ U0,

‖Dgπ(p)|Es(p)‖ ≤ K,

‖Dg−π(p)|Eu(p)‖ ≤ K,

where Es(p) and Eu(p) are the stable and unstable subspaces of p, respectively.

Here we adopt the usual convention that Es or Eu could be trivial. That is,
we regard a trivial subbundle as to automatically satisfy the inequality. Thus
whenever we say such an inequality is not satisfied below, the subbundle in
question has to be non-trivial.

Let us call an eigenvalue λ of some linear automorphism δ-neutral if 1 − δ ≤
|λ| ≤ 1 + δ.

Lemma 3.3. Assume f can not be C1 approximated by systems with homoclinic
tangencies. Then there is a C1 neighborhoodV of f , together with three numbers
K ≥ 2, 0 < λ < 1 and δ > 0 such that the following conditions hold.

(1) Any periodic point p of any g ∈ V can have for Dgπ(p) at most one
δ-neutral eigenvalue λp which, if exists, must be real and of multiplicity 1.

(2) If a periodic point p of g ∈ V has no δ-neutral eigenvalue for Dgπ(p),
then (it is hyperbolic and)

‖Dgπ(p)|Es(p)‖ ≤ Kλπ(p), and

‖Dg−π(p)|Eu(p)‖ ≤ Kλπ(p).

(3) If a periodic point p of g ∈ V has a δ-neutral eigenvalue λp for Dgπ(p),
then TpM splits into a Dgπ(p)-invariant partially hyperbolic splitting
Gs(p) ⊕ Gc(p) ⊕ Gu(p), where Gc(p) is the 1-dimensional eigenspace
associated with λp, such that

‖Dgπ(p)|Gs(p)‖ ≤ Kλπ(p), and

‖Dg−π(p)|Gu(p)‖ ≤ Kλπ(p).

In particular, this is true for any non-hyperbolic periodic orbit of g ∈ V .
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Proof. Since the idea of the proof is simple but the details are tedious, we only
illustrate the idea of the proof. See [W2] for more details.

Let the C1 neighborhood U1 and the three numbers K ≥ 2, δ1 > 0 and
λ = 1/(1 + δ1) be determined as in [W2, Lemma 3.6]. Rewrite U1 as V , and
δ1 as δ, for short. This gives the required V , K , λ and δ. We remark that the
procedure to determine these items in [W2, Lemma 3.6] is quite long, hence is
omitted. The idea is that, roughly, δ > 0 and V ⊂ U0 (where U0 is given as
in Lemma 3.2) are chosen small enough so that, given any hyperbolic periodic
point p of any g ∈ V , with perturbations such as (1 + δ)-stretching or (1 − δ)-
depressing on the tangent spaces TgipM along the orbit of p (By Franks lemma
[F], these can indeed be realized as C1 perturbations of g), one will never get out
ofU0, the neighborhood where Lemma 3.1 and 3.2 with (K, λ)-estimates hold.
Now we verify V , K , λ and δ satisfy Lemma 3.3.

First note that any δ-neutral eigenvalue λp of any periodic point p of any g ∈ V
is real of multiplicity 1, because otherwise small stretching (or compressing) on
the tangent spaces along the g-orbit of p will be allowed to reach a contradiction
to Lemma 3.1. More precisely, this means if we define

Tj : Dgj(TpM) → Dgj(TpM)

to be

Tj = (1 + tδ)id

(or (1 − tδ)id), where t ∈ [0, 1], then there is gt ∈ U0 that keeps the orbit
of p unchanged such that Dgt at the point g

j
t (p) is just Tj ◦ Dggj (p). With a

suitable choice of t , gt would have a non-real eigenvalue of absolute value 1, or
a multiple root of real eigenvalue of absolute value 1, contradicting (3) or (2) of
Lemma 3.1. This proves that any δ-neutral eigenvalue λp of any periodic point
p of any g ∈ V is real of multiplicity 1. Second, we prove any periodic point p

of any g ∈ V can have for Dgπ(p) at most one δ-neutral eigenvalue λp. Suppose
a periodic point p of a g ∈ V has two different real δ-neutral eigenvalues λ1

and λ2 with |λ1| < |λ2|. Let V1 and V2 be the two 1-dimensional eigenspaces
associated with λ1 and λ2. We claim the angle between V1 and V2 (as well as their
iterates under Dg) is bounded below by the constant γ > 0 given in Proposition
2.1. In fact, if |λ1| < 1 < |λ2|, then V1 belongs to the stable subspace and V2

belongs to the unstable subspace, and Proposition 2.1 applies. On the other hand,
if |λ2| ≤ 1 (or if |λ1| ≥ 1), a (1+ δ)-stretching (or a (1− δ)-compressing) on the
whole tangent space will keep the angle unchanged, and make V1 stable but V2

unstable, for a perturbation in U0. Thus Proposition 2.1 applies anyway. This
proves that the angle between V1 and V2 is bounded below by γ > 0. Then a
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simultaneous (1+ δ)-stretching on V1 and (1− δ)-compressing on V2 (this is the
real perturbation, while the stretching or compressing just mentioned is merely
a testing one to get the conclusion about the angle) will be allowed. This would
give rise to a g′ ∈ U0 with two independent eigenvectors of real eigenvalue of
absolute value 1, contradicting (1) of Lemma 3.1. This proves (1).

Next let p be a periodic point of g ∈ V that has no δ-neutral eigenvalue for
Dgτ . It is then hyperbolic. With (1 + δ)-stretching on TgipM along the orbit
we get a g1 ∈ U0 that keeps the orbit of p unchanged such that Es(gip) is still
contracting with respect to g1. By Lemma 3.2,

(1 + δ)n‖Dgπ(p)|Es
p
‖ = ‖Dg

π(p)

1 |Es
p
‖ ≤ K.

Hence

‖Dgπ(p)|Es
p
‖ ≤ 1/(1 + δ)π(p)K = λπ(p)K.

The other inequality is proved similarly. This proves (2).
Now we prove (3). Let p be a periodic point of g ∈ V that has a δ-neutral

eigenvalue λp for Dgπ(p). By (1), TpM splits into a Dgπ(p)-invariant splitting
Gs(p) ⊕ Gc(p) ⊕ Gu(p), where Gc(p) is the 1-dimensional eigenspace Dgπ(p)

associated with λp, and Gs(p) and Gu(p) are generated by the rest of the stable
and unstable eigenvalues of Dgπ(p), respectively. Thus the orbit P of p is
partially hyperbolic with 1-dimensional central direction. Since Gs(p) contains
no δ-neutral eigenvalue, the same proof by (1 + δ)-stretching on TgipM shows
that

‖Dgπ(p)|Gs
p
‖ ≤ 1/(1 + δ)π(p)K = λπ(p)K.

The other inequality for Gu(p) is proved the same way. This proves (3), hence
Lemma 3.3.

Note that, in Lemma 3.3, while the two constants K and λ are independent of
the periodic point p, the inequalities in item (2) are only known to hold at the
π(p)-th iterate, where π(p) depends on the periodic point p. Thus this does not
necessarily imply (uniform) hyperbolicity on the set of all hyperbolic periodic
points. A similar remark holds for item (3).

Lemma 3.3 allows the following improvement.

Lemma 3.4. Assume f can not be C1 approximated by systems with homoclinic
tangencies. Then there is a C1 neighborhoodV of f , together with three numbers
K ≥ 2, 0 < λ < 1 and δ > 0 and a positive integer ι such that the following
conditions hold.
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(1) Any periodic point p of any g ∈ V can have for Dgπ(p) at most one
δ-neutral eigenvalue λp which, if exists, must be real and of multiplicity 1.

(2) If a periodic point p of g ∈ V has no δ-neutral eigenvalue for Dgπ(p),
then (it is hyperbolic and)

[π(p)/ι]−1∏
j=0

‖Dgι|Es(gjιp)‖ ≤ Kλ[π(p)/ι],

and

[π(p)/ι]−1∏
j=0

‖Dg−ι|Eu(g−j ιp)‖ ≤ Kλ[π(p)/ι].

(3) If a periodic point p of g ∈ V has a δ-neutral eigenvalue λp for Dgπ(p),
then TpM splits into a Dgπ(p)-invariant partially hyperbolic splitting
Gs(p) ⊕ Gc(p) ⊕ Gu(p), where Gc(p) is the 1-dimensional eigenspace
associated with λp, such that

[π(p)/ι]−1∏
j=0

‖Dgι|Gs(gjιp)‖ ≤ Kλ[π(p)/ι],

and

[π(p)/ι]−1∏
j=0

‖Dg−ι|Gu(g−j ιp)‖ ≤ Kλ[π(p)/ι].

In particular, this is true for any non-hyperbolic periodic orbit of g ∈ V .

(4) For any hyperbolic periodic point p of any g ∈ V of index i, 1 ≤ i ≤ d−1
(saddle type),

‖Dgι|Es(p)‖ · ‖Dg−ι|Eu(gι(p))‖ ≤ λ.

Proof. Item (1) repeats that of Lemma 3.3 just for completeness. Items (2)
and (3) are improvement of those of Lemma 3.3. Such an improvement (from
the norm of product to the product of norms) has been standard in the work of
Liao and Mañé, for instance see [M3, Page 528]. We omit the proof. Item (4)
is just Proposition 2.1, with the domination constants (ι, λ) specified. Note that
an (ι1, λ1)-dominated splitting is automatically an (ι2, λ2)-dominated splitting if
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ι1 ≤ ι2 and λ1 ≤ λ2. Thus (ι, λ) can be chosen to work for items (1) through (4)
simultaneously. This proves Lemma 3.4.

We add two more C1 generic properties, Lemma 3.5 and 3.6. According to
Liao [L2], a compact set � is called a fundamental i-limit of f , if there is a
sequence of diffeomorphisms gk that converges to f in the C1 topology, together
with a sequence Pk, where Pk is a periodic orbit of gk of index i, such that
Pk → � in the Hausdorff metric. Note that a fundamental i-limit � of f is f -
invariant. When the integer i is not specified in question, we will simply speak
of a fundamental limit of f .

Lemma 3.5. There is a C1 residual subset A ⊂ Diff(M) such that for every
f ∈ A, any fundamental i-limit � of f is the Hausdorff limit of a sequence of
hyperbolic periodic orbits of index i of f itself.

Proof. Let C be the set of non-empty compact subsets of M , endowed with
the Hausdorff metric. It is well known that C is a compact metric space. Take
a countable basis V1, V2, . . . , Vn, . . . of C. For each n, let Nn be the set of
C1 diffeomorphisms g such that g has a C1 neighborhood U in Diff(M) such
that every g1 ∈ U does not have any hyperbolic periodic orbit of index i that
is an element of Vn, and let Hn be the set of C1 diffeomorphisms g such that g

has a C1 neighborhood U in Diff(M) such that every g1 ∈ U has a hyperbolic
periodic orbit of index i that is an element of Vn. By definition Nn ∪Hn is C1

open in Diff(M). It is also clear that Nn ∪Hn is C1 dense in Diff(M). In fact,
if g /∈ Nn, then g can be C1 approximated by g1 that has a hyperbolic periodic
orbit of index i that is an element of Vn. Since a hyperbolic periodic orbit of
index i survives under C1 perturbations, g1 ∈ Hn. This verifies that Nn ∪Hn

is C1 dense in Diff(M). Let

A =
∞⋂

n=1

(Nn ∪Hn).

ThenA isC1 residual in Diff(M). We prove that anyf ∈ A satisfies Lemma 3.5.
Let f be any diffeomorphism inA, and � be the Hausdorff limit of a sequence

of hyperbolic periodic orbits (Pn, gn) of index i, where gn → f in the C1

topology. Take any neighborhood W of � in C (here � is treated as an element
of C). There is an integer k such that � ∈ Vk ⊂ W. Then f /∈ Nk. But f ∈ A.
Hence f ∈ Hk, which means, in particular, that f itself has a hyperbolic periodic
orbit of index i that is an element of Vk. This proves Lemma 3.5.
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Lemma 3.6. There is a C1 residual subset A ⊂ Diff(M) such that for every
f ∈ A, every transitive set � of f is the Hausdorff limit of a sequence of
hyperbolic periodic orbits of f .

Proof. Let � be a transitive set of any diffeomorphism f . By Lemma 3.5, it
suffices to prove that � is a fundamental limit. We may assume there is a ∈ �

such that ω(a) = �. By the C1 closing lemma, for any C1 neighborhood U of
f in Diff(M), any neighborhood U of � in M , and any neighborhood V of a

in M , there is g ∈ U that has a periodic orbit Q ⊂ U such that Q intersects
V . Up to an arbitrarily small perturbation we may assume that Q is hyperbolic.
Thus there is a sequence of diffeomorphisms gn together with a sequence Qn,
where Qn is a hyperbolic periodic orbit of gn, such that gn converges to f in
the C1 topology and Qn converges to a nonempty compact subset � ⊂ � in the
Hausdorff metric with a ∈ �. By construction � is f -invariant, hence � = �.
This proves Lemma 3.6.

The heart of the proof for Theorem B is the following elegant selecting lemma
of Liao [L2]. Recall from §2 that an invariant splitting �s ⊕ �u on a compact
invariant set � is called (ι, λ)-dominated of index i, where ι ∈ IN and 0 < λ < 1,
if dim �s = i, and if

‖Df ι|�s(x)‖ · ‖Df −ι|�u(f ι(x))‖ ≤ λ

for all x ∈ �.

Proposition 3.7 (Liao). Let � be a compact invariant set of f with (ι, λ)-
dominated splitting �s ⊕ �u of index i, 1 ≤ i ≤ d − 1. Assume

(1) There is a point b ∈ � satisfying

n−1∏
j=0

‖Df ι|�s(f jιb)‖ ≥ 1

for all n ≥ 1.

(2) (The tilda condition) There are λ1 and λ2 with λ < λ1 < λ2 < 1 such
that for any x ∈ � satisfying

n−1∏
j=0

‖Df ι|�s(f jιx)‖ ≥ λn
2
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for all n ≥ 1, ω(x) contains a point c ∈ � satisfying

n−1∏
j=0

‖Df ι|�s(f jιc)‖ ≤ λn
1

for all n ≥ 1.

Then for any λ3 and λ4 with λ2 < λ3 < λ4 < 1, and any neighborhood U of
�, there exists a hyperbolic periodic orbit Q of f of index i contained entirely
in U with a point q ∈ Q such that

m−1∏
j=0

‖Df ι|Es(f jιq)‖ ≤ λm
4 ,

[π(q)/ι]−1∏
j=m−1

‖Df ι|Es(f jιq)‖ ≥ λ
[π(q)/ι]−m+1
3 ,

for m = 1, · · · , [π(q)/ι]. Here, as usual, π(q) denotes the period of q, and Es

denotes the stable subbundle over Q.
Similar assertions for �u hold respecting f −1.

Let us make some informal illustrations. We take the case of �s . The selecting
lemma concerns the (product of) norms of iterates of Df ι restricted to �s , a
quantity that measures the contraction on �s . We may briefly refer to it below as
�s-rate. Of course smaller rates give better contractions. Roughly, the selecting
lemma says if there is a point b ∈ � of very bad �s-rate (≥ 1) and if things
are turning back in the sense that every x ∈ � of nearly bad �s-rate (≥ λ2)
is approaching to a point c ∈ � of a good �s-rate (≤ λ1), then there must
be hyperbolic periodic orbits Q of f of index dim �s arbitrarily near � with
Es-rates between any λ3 and λ4 in (λ2, 1) (ignoring the tip). We will use the
selecting lemma in two ways. One is to fix some λ3 and λ4 to get periodic orbits
Q with Es-rates of contraction not too weak (for instance in the proof of Lemma
3.8 below). The other way is to choose λ3 and λ4 arbitrarily close to 1, that is, to
get periodic orbits Q with arbitrarily weak Es-rates of contraction (for instance
in the proof of Proposition 3.11 below).

The selecting lemma is the combination of the sifting lemma and a generalized
shadowing lemma of Liao. The sifting lemma first appears in [L3] (in English)
for the flow version, and then in [L2] for the discrete version. The generalized
shadowing lemma can be found in [L4], also see [G]. The reference [L5] is the
English translation of a Chinese book that collects some papers of Liao (including
among others the papers [L1], [L2] and [L3]). The term “tilda” for condition (2)
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comes from the proof of the selecting lemma where condition (2) gives rise to a
portion of a graph of shape tilda.

A direct consequence of the selecting lemma is about homoclinic classes.

Lemma 3.8. Let � be a compact invariant set of f with (ι, λ)-dominated
splitting �s ⊕ �u of index i, 1 ≤ i ≤ d − 1. If the two conditions in the
selecting lemma are satisfied, then � intersects an i-homoclinic class H(P ) (for
fome P) of f . Likewise for �u respecting f −1.

Proof. We only prove for �s . Assume for some λ < λ1 < λ2 < 1, the two
conditions in the selecting lemma are satisfied. Fix any λ3 < λ4 in (λ2, 1). By
the selecting lemma, for any k ≥ 1, there is a hyperbolic periodic orbit Qk of
f of index i contained in the 1/k-neighborhood of � with a point qk ∈ Qk

such that

m−1∏
j=0

‖Df ι|Es(f jι(qk))
‖ ≤ λm

4 ,

[π(qk)/ι]−1∏
j=m−1

‖Df ι|Es(f jι(qk))
‖ ≥ λ

[π(qk)/ι]−m+1
3 ,

for m = 1, · · · , [π(qk)/ι]. Since ι and λ4 are fixed, and since the first inequality
holds for consecutive iterates from m = 1 to m = [π(qk)/ι], it is easy to see
the size of the local stable manifolds of qk are uniformly (respecting k) bounded
from below. On the other hand, since �s is (ι, λ)-dominated by �u, when k is
large, Es(Qk) will be (ι, λ1)-dominated by Eu(Qk), where Eu is the expanding
subbundle over Qk. Hence the second inequality gives

[π(qk)/ι]−1∏
j=m−1

‖Df −ι|Eu(f (j+1)ι(qk))
‖ ≤ (λ1/λ3)

[π(qk)/ι]−m+1,

for m = 1, · · · , [π(qk)/ι]. Then the size of the local unstable manifolds of qk

are also bounded from below. We may assume there are infinitely many distinct
Qk, because otherwise � will contain a hyperbolic periodic orbit of index i of
f , which is a trivial i-homoclinic class anyway. Then there are infinitely many
distinct qk. By taking subsequence if necessary, we assume qk → q ∈ �. Then
there is k0 such that for all k ≥ k0, Qk are mutually H -related. Let H(P ) be the
i-homoclinic class that contains these Qk. Then H(P ) ∩ � �= ∅. Likewise for
�u respecting f −1. This proves Lemma 3.8.

The following general fact gives a situation when a point of bad rate occurs.
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Lemma 3.9. Let � be a compact invariant set of f , and E be a Df -invariant
subbundle of T�M . If E is not contracting, then there is b ∈ � such that
‖Df n|E(b)‖ ≥ 1 for all n ≥ 1. Likewise, if E is not expanding, then there is
b′ ∈ � such that ‖Df −n|E(b′)‖ ≥ 1 for all n ≥ 1.

Proof. The proof is straightforward by compactness of �, hence omitted.

For the rest of the paper we will always assume that f can not be C1 approxi-
mated by systems with homoclinic tangencies (to remind ourselves we will state
this assumption each time). In particular, we fix the C1 neighborhood V of f

and the four constants

K ≥ 2, δ > 0, 0 < λ < 1, ι ∈ IN

provided by Lemma 3.4. The next lemma ensures some points of good rate when
we have a fundamental limit.

Lemma 3.10. Assume f can not be C1 approximated by systems with ho-
moclinic tangencies. Let � = lim (Pk, gk) be a fundamental i-limit of f ,
1 ≤ i ≤ d − 1, and �s ⊕ �u be the (ι, λ)-dominated splitting of index i on �,
guaranteed by item (4) of Lemma 3.4.

(1) If there is pk ∈ Pk for arbitrarily large k such that

[π(pk)/ι]−1∏
j=0

‖Dgι
k|Es(g

jι
k (pk))

‖ ≤ Kλ[π(pk)/ι],

where Es is the stable subbundle over Pk, then for any µ ∈ (λ, 1), there
is c ∈ � such that

n−1∏
j=0

‖Df ι|�s(f jι(c))‖ ≤ µn

for all n ≥ 1.

(2) If the assumption in item (1) is not satisfied, then �s splits into a dominated
splitting V s ⊕ V c on � with dim V c = 1 such that for any µ ∈ (λ, 1),
there is c′ ∈ � such that

n−1∏
j=0

‖Df ι|V s(f jι(c′))‖ ≤ µn

for all n ≥ 1.
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Likewise for �u respecting f −1.

Proof. Note that �s ⊕�u is just the limit of Es(Pk, gk)⊕Eu(Pk, gk), as k → ∞.

We assume the periods π(pk) are unbounded, for otherwise the conclusion holds
automatically. Note that each Pk is by definition hyperbolic.

For item (1), there is pk ∈ Pk for arbitrarily large k such that

[π(pk)/ι]−1∏
j=0

‖Dgι
k|Es(g

jι
k (pk))

‖ ≤ Kλ[π(pk)/ι],

where Es is the stable subbundle over Pk. Take any µ ∈ (λ, 1). We adopt the
argument of Liao [L2]. For large integers q, let ik,q be the maximal non-negative
integer such that

ik,q−1∏
j=0

‖Dgι
k|Es(gk

jι(pk))
‖ ≥ (λ + 1/q)ik,q .

Denote pik,q
= (gι

k)
ik,q (pk). Then

[π(pk)/ι]−1∏
j=ik,q

‖Dgι
k|Es(gk

jι(pik,q
))‖ ≤ (λ + 1/q)[π(pk)/ι]−ik,q

by the definition of ik,q . Clearly

limk→∞([π(pk)/ι] − ik,q) = ∞
for fixed q. Letting k → ∞, and taking subsequence if necessary, we assume
pik,q

→ cq ∈ �. Letting q → ∞ and taking subsequence we may assume
cq → c ∈ �. Then

n−1∏
j=0

‖Df ι|�s(f jι(c))‖ ≤ µn

for all n ≥ 1.
For item (2), the assumption of item (1) does not hold. By (2) of Lemma

3.4, pk must have a (unique) δ-neutral eigenvalue (though Pk is hyperbolic) and,
by (3) of Lemma 3.4, Es(pk, gk) contains the 1-dimensional δ-neutral direction
Gc(pk, gk). Being the stable subspace, Es(pk, gk) must contain the contract-
ing part Gs(pk, gk), but can not intersect the expanding part Gu(pk, gk). Thus
Es(pk, gk) equals exactly Gs(pk, gk) ⊕ Gc(pk, gk) in the partially hyperbolic
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splitting given in item (3) of Lemma 3.4. Taking limit again gives a three ways
dominated splitting V s ⊕ V c ⊕ �u on �, as well as a point c′ ∈ �, such that

n−1∏
j=0

‖Df ι|V s(f jι(c′))‖ ≤ µn

for all n ≥ 1. This proves Lemma 3.10.
A compact f -invariant set � is called (ι, λ)-sole-neutral dominated of index

i, 0 ≤ i ≤ d − 1, if there is a three ways continuous Df -invariant splitting
T�M = �s ⊕ �c ⊕ �u on � with dim �s = i and dim �c = 1 such that �c

is neither contracting nor expanding, and such that �s is (ι, λ)-dominated by
�c, and �c is (ι, λ)-dominated by �u. If � is a periodic orbit, then � is sole-
neutral dominated if and only if it is sole-neutral partially hyperbolic. Hence
�s and �u are in this case contracting and expanding respectively, and hence
there can be no more than one sole-neutral dominated splitting on the periodic
orbit �. For a general compact invariant set �, being sole-neutral dominated is
not equivalent to being sole-neutral partially hyperbolic and, generally, � may
admit more than one sole-neutral dominated splittings. Nevertheless for fixed i,
sole-neutral dominated splitting of index i is unique.

Proposition 3.11. Assume f can be C1 approximated neither by systems that
exhibit a homoclinic tangency nor by systems that exhibit a heterodimensional
cycle. Also, assume f satisfies the C1 generic conditions stated in Propositions
2.3, 2.4 and Lemma 3.6. Then every non-simple type minimally non-hyperbolic
set � of f is the Hausdorff limit of a sequence of non-hyperbolic periodic orbits
(Pk, gk), where gk → f . In particular, � has a sole-neutral (ι, λ)-dominated
splitting �s ⊕ �c ⊕ �u of some index 0 ≤ i ≤ d − 1, respecting f .

Proof. Let � be a non-simple type minimally non-hyperbolic set of f . We
prove for any C1 neighborhood W of f in Diff(M) and any neighborhood W

of � in M , there is g ∈ W with a non-hyperbolic periodic orbit P contained
entirely in W .

Suppose for the contrary there is a C1 neighborhood W of f in Diff(M) and
a neighborhood W of � in M , such that every periodic orbit P of every g ∈ W
contained entirely in W is hyperbolic. LetU0,V , and the constants K , λ, δ and
ι ∈ IN be determined as in Lemma 3.2 through 3.4 above. The only thing to
notice is that we can, and we do, assume U0 ⊂ W . Thus, in particular, with
δ-stretching or depressing along any single periodic orbit P of g ∈ V , one will
never get out ofW . Then, any hyperbolic periodic point p of any g ∈ V whose
orbit is entirely contained in W will have no δ-neutral eigenvalue. By item (2)
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of Lemma 3.4,

m−1∏
j=0

‖Dgι|Es(gjι(p))‖ ≤ Kλm, (*)

m−1∏
j=0

‖Dg−ι|Eu(g−j ι(p))‖ ≤ Kλm, (**)

where m = [π(p)/ι]. In particular, using the standard arguments of Pliss [Pl],
there are only finitely many (hyperbolic) periodic sinks or sources of g that are
contained entirely in W .

Claim 1. � is not minimal. Indeed, � contains a hyperbolic subset, say H1 of
index m1.

We follow the argument of Liao in [L2]. Note that being a non-simple type
minimally non-hyperbolic set, � is transitive. By Lemma 3.6, � is the Hausdorff
limit of a sequence of hyperbolic periodic orbits Pk of f . Taking subsequence if
necessary, we assume all Pk have the same index, say l. Note that 1 ≤ l ≤ d − 1
because, otherwise, either every Pk would be a hyperbolic periodic sink, or every
Pk would be a hyperbolic periodic source. Sincef has only finitely many periodic
sinks (or sources) contained entirely in W , � itself would be a hyperbolic periodic
sink or source, contradicting that � is non-hyperbolic. Thus 1 ≤ l ≤ d − 1.
By item (4) of Lemma 3.4, � has (ι, λ)-dominated splitting �s

l ⊕ �u
l of index

l, respecting f . (We will concern more than one dominated splittings, to avoid
confusion we put on the indices. Note that here by definition dim �u

l = d − l.)
Since � is non-hyperbolic, either �s

l is not contracting, or �u
l is not expanding.

We assume �s
l is not contracting. The other case can be proved similarly. Then

by lemma 3.9, there is b ∈ � with

n−1∏
j=0

‖Df ι|�s
l (f

jι(b))‖ ≥ 1

for all n ≥ 1. If the tilda condition for �s
l is satisfied, by the selecting lemma,

there will be a periodic orbit Q of f of index l contained entirely in W with Es-
rate arbitrarily mild, contradicting the inequality (*) in the previous paragraph.
Thus the tilda condition for �s

l is not satisfied. Hence, for any µ ∈ (λ, 1), which
we fix in the proof of this proposition, there is x1 ∈ � such that H1 = ω(x1)

contains no point c ∈ � satisfying

n−1∏
j=0

‖Df ι|�s
l (f

jι(c))‖ ≤ µn
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for all n ≥ 1. On the other hand, since � is the Hausdorff limit of a sequence
of hyperbolic periodic orbits Pk of f of index l, by the above inequality (∗) and
item (1) of Lemma 3.10, there do exist such a point c ∈ �. Thus H1 is a proper
subset of �, hence hyperbolic, say of index m1. This proves Claim 1.

Note that 1 ≤ m1 ≤ d −1 because, otherwise, � would reduce to a hyperbolic
periodic sink (or source), contradicting that � is non-hyperbolic. Also note that �
is non-trivial because, otherwise, � would reduce to a hyperbolic periodic saddle,
contradicting that � is non-hyperbolic. By Proposition 2.4, � is contained in
a homoclinic class H(P ) for a hyperbolic periodic orbit P of f of index m1,
1 ≤ m1 ≤ d − 1, hence contained in P m1(f ). By item (4) of Lemma 3.4,
there is an (ι, λ)-dominated splitting �s

m1
⊕�u

m1
of index m1 on �. (That is, the

hyperbolic splitting of index m1 on H1 spreads out to a dominated splitting of
index m1 on the whole �.)

We analyze this splitting similarly as in Claim 1, with some refinement. Since
� is non-hyperbolic, either �s

m1
is not contracting, or �u

m1
is not expanding. We

assume �s
m1

is not contracting. The other case is proved similarly. Then by
lemma 3.9 there is b′ ∈ � with

n−1∏
j=0

‖Df ι|�s
m1

(f jι(b′))‖ ≥ 1

for all n ≥ 1. If the tilda condition for �s
m1

is satisfied, the same contradiction as
discussed in Claim 1 for �s

l would occur. Therefore the tilda condition for �s
m1

is not satisfied. Then there is x2 ∈ � such that H2 = ω(x2) contains no point
c′ ∈ � satisfying

n−1∏
j=0

‖Df ι|�s
m1

(f jι(c′))‖ ≤ µn

for all n ≥ 1. On the other hand, since H1 is a hyperbolic set of f of index m1,
there is always a sequence of hyperbolic periodic orbits Qk of f of index m1

that converges to a compact invariant set 	1 ⊂ H1 in the Hausdorff metric (For
instance, taking 	1 to be any minimal set in H1 and using the usual shadowing
lemma). This gives by Lemma 3.4 an (ι, λ)-dominated splitting �s

m1
⊕ �u

m1
of

index m1 on 	1. (Of course it coincides with the m1-hyperbolic splitting of H1

restricted to 	1, of which the hyperbolic rates are however unknown. We will
hence use Lemma 3.10 as follows.) By the above inequality (∗) and item (1) of
Lemma 3.10, there is c′ ∈ 	1 ⊂ � with

n−1∏
j=0

‖Df ι|�s
m1

(f jι(c′))‖ ≤ µn
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for all n ≥ 1. Thus H2 = ω(x2) is a proper subset of �, hence hyperbolic of f ,
say of index m2.

Claim 2. m2 < m1.

Since H2 is a hyperbolic set of f of index m2, there is always a sequence
of hyperbolic periodic orbits Q′

k of f of index m2 that converges to a compact
invariant set 	2 ⊂ H2 in the Hausdorff metric. This gives an (ι, λ)-dominated
splitting �s

m2
⊕�u

m2
of index m2 on 	2. By the above inequality (∗) and item (1)

of Lemma 3.10, there is z ∈ 	2 ⊂ � with

n−1∏
j=0

‖Df ι|�s
m2

(f jι(z))‖ ≤ µn

for all n ≥ 1. Note that the splitting �s
m1

⊕ �u
m1

is on the whole �. If m2 ≥ m1,
then �s

m1
(z) ⊂ �s

m2
(z) by Lemma 2.6, hence

n−1∏
j=0

‖Df ι|�s
m1

(f jι(z))‖ ≤ µn

for all n ≥ 1, contradicting that H2 does not contain any such point z. Thus
m2 < m1, proving Claim 2.

Thus � contains two hyperbolic subsets H1 and H2 of different indices m1

and m2. By Proposition 2.3, a heterodimensional cycle can be created, a con-
tradiction. This proves that for any C1 neighborhood W of f in Diff(M) and
any neighborhood W of � in M , there is g ∈ W with a non-hyperbolic periodic
orbit P contained entirely in W .

Then there is a sequence of non-hyperbolic periodic orbits (Rk, hk) that con-
verge in the Hausdorff metric to a compact f -invariant set 	 ⊂ � as hk → f .
Clearly 	 will be non-hyperbolic of f . Since � is minimally non-hyperbolic,
	 = �. By (3) of Lemma 3.4, every Rk is (ι, λ)-sole-neutral partially hyper-
bolic of hk for large k. Taking subsequences if necessary we assume every Rk is
(ι, λ)-sole-neutral partially hyperbolic of index i, for some 0 ≤ i ≤ d − 1. This
gives an (ι, λ)-sole-neutral dominated splitting �s ⊕ �c ⊕ �u on � of index i,
and proves Proposition 3.11.

In the proof of Proposition 3.11, we did not really verify the tilda condition of
the selecting lemma. We treated the tilda condition just as one logical case. We
also considered the opposite case when the tilda condition is not satisfied. The
next lemma concerns the second case without assuming simultaneously the two
inequalities (∗) and (∗∗) in the proof of Proposition 3.11. We state the result for
minimally non-hyperbolic sets only.
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Lemma 3.12. Assume f can not be C1 approximated by systems with homo-
clinic tangencies. Let � be a minimally non-hyperbolic set of f with (ι, λ)-
dominated splitting �s ⊕ �u of index i, 1 ≤ i ≤ d − 1. Assume

(1) There is a constant µ ∈ (λ, 1) and a point c ∈ � satisfying

n−1∏
j=0

‖Df ι|�s(f jι(c))‖ ≤ µn,

for all n ≥ 1.

(2) The tilda condition of the selecting lemma is not satisfied.

Then � contains a hyperbolic subset of index ≤ i. Likewise for �u respecting
f −1.

Proof. Since the tilda condition is not satisfied, for the number µ ∈ (λ, 1)

given in condition (1), there is x ∈ � such that H = ω(x) does not contain any
point c ∈ � satisfying

n−1∏
j=0

‖Df ι|�s(f jι(c))‖ ≤ µn

for all n ≥ 1. Since � contains such a point by condition (1), H is a proper
subset of �. Since � is minimally non-hyperbolic, H is hyperbolic, say of index
m, 1 ≤ m ≤ d − 1. We prove m ≤ i. Note that, as in the proof of Proposition
3.11, there is a sequence of hyperbolic periodic orbits Pn of f of index m that
converge in the Hausdorff metric to a compact f -invariant set 	 ⊂ H . This gives
an m-dominated splitting �s

m ⊕ �u
m on 	 that coincides with the m-hyperbolic

splitting on H . By Lemma 3.10, either there is c′ ∈ 	 such that

n−1∏
j=0

‖Df ι|�s
m(f jι(c′))‖ ≤ µn

for all n ≥ 1, or �s
m splits into a dominated splitting V s ⊕ V c on 	 with

dim V c = 1, and there is c′′ ∈ 	 such that

n−1∏
j=0

‖Df ι|V s(f jι(c′′))‖ ≤ µn
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for all n ≥ 1. If m > i, then m − 1 ≥ i. By Lemma 2.6, in the first case we will
have �s

m(c′) ⊃ �s(c′), and in the second case we will have V s(c′′) ⊃ �s(c′′).
In both cases �s would have contraction rate no greater than µ at some point
of 	 ⊂ H , contradicting that H does not contain any such point. This proves
m ≤ i. Likewise for �u respecting f −1. This proves Lemma 3.12.

Proposition 3.13. Assume f can be C1 approximated neither by systems that
exhibit a homoclinic tangency nor by systems that exhibit a heterodimensional
cycle. Also, assume f satisfies the C1 generic conditions stated in Proposi-
tions 2.2 and 2.3. Let � be a non-simple type minimally non-hyperbolic set f

with a three ways (ι, λ)-dominated splitting �s ⊕�c ⊕�u such that each of the
three summands is nontrivial and that �c is neither contracting nor expanding.
Then either �s is contracting, or �u is expanding.

We remark that by a three ways (ι, λ)-dominated splitting A⊕B ⊕C we mean
A is (ι, λ)-dominated by B, and B is (ι, λ)-dominated by C. Also note that in
this proposition �c is not necessarily 1-dimensional.

Proof. Denote dim �s = i. Note that 1 ≤ i ≤ d − 2, since each of the three
subbundles is non-trivial. Suppose for the contrary neither �s is contracting, nor
�u is expanding.

Since �s is not contracting, by Lemma 3.9, there is y1 ∈ � such that

n−1∏
j=0

‖Df ι|�s(f jι(y1))‖ ≥ 1

for all n ≥ 1. On the other hand, since �c is not expanding, by Lemma 3.9,
there is y2 ∈ � such that

n−1∏
j=0

‖Df −ι|�c(f −j ι(y2))‖ ≥ 1

for all n ≥ 1. That is,

n−1∏
j=0

m(Df ι|�c(f (n−j)ι(y2))
) ≤ 1

for all n ≥ 1. Taking a limit point of {f nι(y2)} gives a point y3 ∈ � such that

n−1∏
j=0

m(Df ι|�c(f −j ι(y3))) ≤ 1
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for all n ≥ 1. Since �s is (ι, λ)-dominated by �c,

n−1∏
j=0

‖Df ι|�s(f jι(y3))‖ ≤ λn

for all n ≥ 1. Take µ ∈ (λ, 1). Then condition (1) of the selecting Lemma and
condition (1) of Lemma 3.12 both hold for (�s , f ), respecting the dominated
splitting �s ⊕ (�c ⊕ �u). Likewise, these two conditions both hold for (�u,
f −1), respecting the dominated splitting (�s ⊕ �c) ⊕ �u. There are three cases
to consider, each of which will lead to a contradiction.

Case 1. The tilda condition for (�s , f ) and (�u, f −1) are both satisfied.

In this case, by Lemma 3.8, � intersects an i-homoclinic class 	1 which,
by definition, contains hyperbolic periodic orbits of index i. Likewise, by
Lemma 3.8, � intersects an (i + ic)-homoclinic class 	2 which, by definition,
contains hyperbolic periodic orbits of index i + ic, where ic = dim(�c) ≥ 1.
Since all the three sets �, 	1 and 	2 are transitive and the first intersects both of
the other two, they are contained by Proposition 2.2 in the same weakly transitive
component C. By Proposition 2.3, a heterodimensional cycle can be created via
C1 perturbation, a contradiction.

Case 2. The tilda condition for (�s , f ) and (�u, f −1) are both not satisfied.

In this case, by Lemma 3.12, � contains two hyperbolic subsets of different
indices (one is of index ≤ i, and the other one is of index ≥ i + ic). By
Proposition 2.3, a heterodimensional cycle can be created via C1 perturbation, a
contradiction.

Case 3. The tilda condition is satisfied for either (�s , f ) or (�u, f −1), but not
both.

We may assume the tilda condition is satisfied for (�s , f ), but not for (�u,
f −1). In this case, as discussed in case 1 and 2, � intersects an i-homoclinic
class 	 which, by definition, contains hyperbolic periodic orbits of index i, and
� contains a hyperbolic set H ⊂ � of index ≥ i + ic. Since � and 	 are both
transitive, they are contained by Proposition 2.2 in the same weakly transitive
component C. By Proposition 2.3, a heterodimensional cycle can be created via
C1 perturbation, a contradiction. This proves Proposition 3.13.

Theorem B. There is a C1 residual subset R in the complement of the C1

closure of diffeomorphisms exhibiting either a homoclinic tangency or a het-
erodimensional cycle, such that any non-simple type minimally non-hyperbolic
set � of any f ∈ R has the following feature:
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(1) � is the common Hausdorff limit of two sequences of hyperbolic periodic
orbits of different indices. More precisely, there are two sequences of
hyperbolic periodic orbits {Pk} and {Qk} of f that both converge to �

in the Hausdorff metric, such that ind(Qk) = ind(Pk) + 1 and Wu(P )

intersects Ws(Q) transversely. In particular, � can not be contained in
any normally hyperbolic arc or circle of f .

(2) � is partially hyperbolic with central bundle at most 2-dimensional. More
precisely, either there is a three-ways Df -invariant splitting T�M = Es ⊕
Ec ⊕ Eu, where Es is dominated by Ec, and Ec is dominated by Eu, such
that Es is contracting, Eu is expanding, and Ec is 1-dimensional and is
neither contracting nor expanding, or, there is a four-ways Df -invariant
splitting T�M = Es ⊕ Ecs ⊕ Ecu ⊕ Eu, where Es is dominated by Ecs ,
Ecs is dominated by Ecu, and Ecu is dominated by Eu, such that Es is
contracting, Eu is expanding, and Ecs and Ecu are each 1-dimensional
and neither contracting nor expanding.

Proof. LetRbe the set of diffeomorphisms in the complement of the C1 closure
of diffeomorphisms exhibiting either a homoclinic tangency or a heterodimen-
sional cycle that are Kupka-Smale and satisfy the C1 generic conditions stated
in Propositions 2.2 through 2.4, as well as Lemmas 3.5 and 3.6. Let f ∈ R. We
prove f satisfies Theorem B. By Proposition 3.11, � is the Hausdorff limit of a
sequence of non-hyperbolic periodic orbits Rk of gk, where gk → f in the C1

topology. By item (3) of Lemma 3.3, Rk has exactly one eigenvalue of absolute
value 1, for k large. It is then easy to see through a saddle-node bifurcation that
� is the Hausdorff limit of two sequences of hyperbolic periodic orbits Ak and
Bk of g′

k, where g′
k → f in the C1 topology, such that ind(Bk) = ind(Ak) + 1,

and Wu(Ak, g
′
k) intersects Ws(Bk, g

′
k) transversely. By Lemma 3.5, there are

two sequences of hyperbolic periodic orbits Pk and Qk of f itself, both converg-
ing to � in the Hausdorff metric, such that ind(Qk) = ind(Pk) + 1. In fact, a
slight refinement of the proof of lemma 3.5 shows that, in this case, Wu(P, f )

intersects Ws(Q, f ) transversely.

It is easy to see � can not be contained in any normally hyperbolic arc or
circle of f . We take the case of a circle. Suppose � is contained in a normally
hyperbolic circle C of f . There is k0 ≥ 1 such that Pk, Qk ⊂ C for all k ≥ k0. By
the well known properties of circle diffeomorphisms, all periodic orbits of f |C
have the same period. Being the Hausdorff limit of Pk (of the same period), �

will be a periodic orbit. Since f is Kupka-Smale, � is hyperbolic, contradicting
that � is a (minimally) non-hyperbolic set.

To prove (2), note that by Proposition 3.11 � has at least one sole-neutral (ι, λ)-
dominated splitting. We prove � has at most two different sole-neutral (ι, λ)-
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dominated splittings. Suppose for the contrary � has three different sole-neutral
(ι, λ)-dominated splittings of indices 0 ≤ i1 < i < i2 ≤ d − 1. For explicity we
put on the index by writing the second sole-neutral (ι, λ)-dominated splitting on
� as �s

i ⊕ �c
i ⊕ �u

i , where dim �s
i = i, dim �c

i = 1 and dim �u
i = d − i − 1.

Note that �c
i is neither contracting nor expanding, and that �s

i and �u
i are both

nontrivial. By Proposition 3.13, either �s
i is contracting, or �u

i is expanding.
But this is impossible because �s

i contains �c
i1

hence is not contracting, and �u
i

contains �c
i2

hence is not expanding. This proves that � has at most two different
sole-neutral (ι, λ)-dominated splittings.

Case 1. � has exactly two different sole-neutral (ι, λ)-dominated splittings, say
�s

i ⊕ �c
i ⊕ �u

i and �s
j ⊕ �c

j ⊕ �u
j with 0 ≤ i < j ≤ d − 1.

This gives a five ways (ι, λ)-dominated splitting

�s
i ⊕ �c

i ⊕ (�u
i ∩ �s

j ) ⊕ �c
j ⊕ �u

j

such that �c
i and �c

j are each neither contracting nor expanding, and dim(�c
i ) =

1, dim(�c
j ) = 1. It is easy to see �u

i ∩�s
j = {0}. In fact, if �u

i ∩�s
j is non-trivial,

it would be neither contracting nor expanding because it dominates �c
i and is

dominated by �c
j . Treating �s

i ⊕ �c
i , �u

i ∩ �s
j and �c

j ⊕ �u
j as �s , �c and �u

in Proposition 3.13, respectively, this would contradict Proposition 3.13. Thus
�u

i ∩ �s
j = {0}. That is, it is actually a four ways dominated splitting

�s
i ⊕ �c

i ⊕ �c
j ⊕ �u

j ,

and actually j = i + 1.
It is easy to see that �s

i is contracting and �u
j is expanding because, suppose

for instance �s
i is not contracting (hence non-trivial), then treating �s

i as �s , �c
i

as �s , and �c
j ⊕ �u

j as �u would contradict Proposition 3.13. Rewriting �s
i as

Es , �c
i as �cs , �c

j as �cu, and �u
j as Eu then gives the required splitting

Es ⊕ �cs ⊕ �cu ⊕ Eu,

hence completes the proof in Case 1.

Case 2. � has exactly one sole-neutral dominated splitting �s
i ⊕ �c

i ⊕ �u
i .

It remains to prove that�s
i is contracting and�u

i is expanding. By Lemma 3.12,
either �s

i is contracting, or �u
i is expanding. We may assume �u

i is expanding
and proceed to prove �s

i is contracting.
Suppose �s

i is not contracting of f . By Lemma 3.9, there is y1 ∈ � such that

n−1∏
j=0

‖Df ι|�s
i (f

jι(y1))‖ ≥ 1
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for all n ≥ 1. Since �c
i is not expanding, there is y2 ∈ � such that

n−1∏
j=0

‖Df −ι|�c
i (f

−j ι(y2))‖ ≥ 1

for all n ≥ 1.As shown in the proof of Proposition 3.13, this gives a point y3 ∈ �

such that

n−1∏
j=0

‖Df ι|�s
i (f

jι(y3))‖ ≤ λn

for all n ≥ 1. Fix µ ∈ (λ, 1). Then condition (1) of the selecting lemma
and condition (1) of Lemma 3.12 both hold for �s

i , respecting the dominated
splitting �s

i ⊕ (�c
i ⊕ �u

i ). There are two subcases. We prove that each leads to
a contradiction.

Subcase 2.1. The tilda condition for �s
i is satisfied.

By the selecting lemma, there is a periodic orbit Q of f of index i contained in
an arbitrarily small neighborhood of � with Es-rate arbitrarily mild. By item (2)
of Lemma 3.4, Es(Q) contains a δ-neutral eigenvalue. Since δ → 0 when the
size of perturbation → 0, taking limit gives a compact invariant set 	 ⊂ � with
a 1-dimensional neutral subbundle �c ⊂ �s

i on 	. Hence 	 is non-hyperbolic
and hence coincides with �. Thus � would have two different neutral directions,
contradicting the hypothesis of Case 2.

Subcase 2.2. The tilda condition for �s
i is not satisfied.

Take a sequence λk ∈ (λ, 1) with λk → 1. Since the tilda condition for �s
i is

not satisfied, there is a sequence xk ∈ � such that Hk = ω(xk) contains no point
c ∈ � with

n−1∏
j=0

‖Df ι|�s
i (f

jι(c))‖ ≤ λn
k

for all n ≥ 1. That is, for any x ∈ Hk,

n−1∏
j=0

‖Df ι|�s
i (f

jι(x))‖ > λn
k (#)

for all n ≥ 1. Due to the existence of the point y3 ∈ �, Hk is a proper subset of
�, hence hyperbolic, say of index mk. By (the proof of) Lemma 3.12, mk ≤ i
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for all k. We claim that mk = i for all k. To this end we look at the same splitting
�s

i ⊕ (�c
i ⊕ �u

i ), but respecting f −1. Note that the splitting �s
i ⊕ (�c

i ⊕ �u
i )

is (ι, λ)-dominated for f −1 as well. We hence argue in the same way as we just
did for �s

i respecting f before subcase 2.1: Since the subbundle (�c
i ⊕ �u

i ) is
clearly not contracting respecting f −1, by Lemma 3.9, there is z1 ∈ � such that

n−1∏
j=0

‖Df −ι|(�c
i ⊕�u

i )(f −j ι(z1))‖ ≥ 1

for all n ≥ 1. Since �s
i is assumed not contracting respecting f , there is z2 ∈ �

such that

n−1∏
j=0

‖Df ι|�s
i (f

jι(z2))‖ ≥ 1

for all n ≥ 1.As shown in the proof of Proposition 3.13, this gives a point z3 ∈ �

such that

n−1∏
j=0

‖Df −ι|(�c
i ⊕�u

i )(f −j ι(z3))‖ ≤ λn

for all n ≥ 1. Thus condition (1) of the selecting lemma and condition (1) of
Lemma 3.12 both hold for the subbundle (�c

i ⊕ �u
i ), respecting the dominated

splitting �s
i ⊕ (�c

i ⊕�u
i ) for f −1. If the tilda condition for (�c

i ⊕�u
i ) respecting

f −1 is satisfied, then � intersects an i-homoclinic class (here the index i is
respecting f ). If the tilda condition for (�c

i ⊕�u
i ) respecting f −1 is not satisfied,

then � contains a hyperbolic set with index ≥ i (here the index is respecting f ).
In either case, if mk < i for some k, a heterodimensional cycle would be created,
giving a contradiction. This proves the claim that mk = i for all k.

Now we adopt an argument of Mañé [M3], with a slight modification (we will
be using the shadowing lemma, rather than the ergodic closing lemma). Let µk

be a limit point of the sequence of measures

1

n

n−1∑
i=0

δf i(xk)
.

Then µk is f -invariant. The above inequality (#) for the �s
i -rates of points of

Hk then gives
∫

Hk

φ(x)dµk ≥ λk,
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where

φ(x) = log ‖Df ι|�s
i (x)‖.

Since the set Rec(f ) of recurrent points of f has the full measure,
∫

Hk∩Rec(f )

φ(x)dµk ≥ λk.

By Birkhoff theorem,
∫

Hk∩Rec(f )

φ(x)dµk ≥ λk,

where

φ(x) = limn→∞
1

n

n−1∑
i=0

φ(f i(x)).

Thus there is zk ∈ Hk ∩ Rec(f ) such that

φ(z) ≥ λk.

That is,

n−1∏
j=0

‖Df ι|�s
i (f

jι(zk))
‖ ≥ ((1 − δ)λk)

n

for all n ≥ 1 large, where δ > 0 can be arbitrarily small. Since zk ∈ Hk is
recurrent, for any ε > 0, there is nk ≥ 1 with the distance d(zk, f

nk (zk)) small
enough so that the periodic pseudo-orbit zk, f (zk), . . . , f nk (zk), zk, f (zk), . . .

fits the ε-shadowing condition of the hyperbolic set Hk. By the shadowing
lemma, there is a periodic orbit Qk of f of index i, ε-close to Hk, with Es-
rate close to 1. Then similar argument as in Subcase 2.1 shows � would have
two different neutral directions, contradicting the hypothesis of Case 2. This
completes the proof for Case 2 and proves Theorem B.
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