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Hopf hypersurfaces in space forms
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Abstract. Some geometrical properties of Hopf hypersurfaces of Kähler manifolds
are introduced and a special attention is given to the case of hypersurfaces in complex
projective spaces.
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1 Introduction

We consider real hypersurfaces of complex projective spaces and also hypersur-
faces of more general spaces. A complex structure of the ambient space yields
in each of their oriented hypersurfaces a special tangent vector field which is ob-
tained by applying the complex structure of the ambient space to a unit normal
vector field defined on the hypersurface. Throughout this article, we name this
special vector field as the Hopf vector field of the hypersurface.

A hypersurface of a Kähler manifold is said to be a Hopf hypersurface when
the foliation given by its Hopf vector field is geodesic, in other words, when the
integral curves of its Hopf vector field are geodesics of the hypersurface.

Some beautiful and elegant studies of these hypersurfaces have already been
carried out throughout the last twenty years and to the best of my knowledge it
was Yoshiaki Maeda [8] who in 1976 published the first results concerned with
these hypersurfaces for the case of the complex projective spaces. In 1982, Cecil
and Ryan [4], assuming the constancy of the rank of the focal map of the hyper-
surface, characterized the Hopf hypersurfaces of the complex projective spaces
as open subsets of tubes around complex submanifolds. In 1986, Kimura [7]
used the result of Cecil and Ryan and the work of Takagi [10] on homogeneous
hypersurfaces of the complex projective spaces to characterize the Hopf hyper-
surfaces of constant principal curvatures as tubes around some special complex
submanifolds of this complex space form. In 1989, Berndt [1] has obtained sim-
ilar characterizations for the Hopf hypersurfaces of complex hyperbolic space
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forms. Finally, in 1995 Berndt, Bolton and Woodward [2] gave a complete char-
acterization of the Hopf hypersurfaces of the 6-sphere as tubular hypersurfaces
around almost complex curves, these curves being fully classified in [3].

In this article, we investigate Hopf hypersurfaces in more general Riemannian
manifolds. We do this in section 2, whereby we start characterizing the complex
space forms as the Kähler manifolds all of whose geodesic hyperspheres are Hopf
hypersurfaces. We also consider the reflection map and the push maps induced
by a hypersurface of a Kähler manifold and then we determine necessary and
sufficient conditions to be satisfied by these maps in order that the hypersurface
be a Hopf hypersurface.

In section 3, we obtain some geometrical properties of Hopf hypersurfaces
of CP n which as well as being relevant on their own also strongly suggest that
the assumption used by Cecil-Ryan to characterize Hopf hypersurfaces as tubes
can actually be proved. This is exactly what is done in section 3, that is, we
use all the geometrical understanding achieved about Hopf hypersurfaces of this
complex space form in order to prove that if we assume that every continuous
principal curvature function defined on the hypersurface admits a correspond-
ing continuous principal vector field then the rank of the focal map of a Hopf
hypersurface is indeed constant. We prove this by means of a special construc-
tion of vector fields along geodesics normal to the hypersurface. Therefore, our
approach to this problem is to deal with the Hopf hypersurface from a quite
extrinsic geometrical viewpoint.

Ogur main purpose in this article is to replace the assumption used by Cecil-
Ryan in the following theorem by the more natural condition mentioned above.

Theorem 1 ([4]). Let M be a connected orientable Hopf hypersurface of CP n

with Hopf principal curvature µ = −2 cot(2r). Assume that the focal map �r

of M has constant rank k on M . Then k is even and each point q ∈ M has a
neighbourhood V such that �r(⊥1 V ) is a complex submanifold of CP n and V

lies on the tube of radius r over �r(⊥1 V ). Furthermore, if M is compact then
its focal set N = �r(⊥1 M) is a complex submanifold of CP n and M lies on the
tube of radius r around N . Conversely, every open subset of a tube of constant
radius over a complex submanifold of CP n is a Hopf hypersurface.

2 Hopf hypersurfaces of Kähler manifolds

The geodesic hyperspheres of complex space forms are the simplest examples of
Hopf hypersurfaces (cf. [1],[2],[4]). Next, we actually show that these examples
are typical of complex space forms.

We shall be considering the following terminology throughout this article.
Given a Kähler manifold M of any dimension greater or equal to two, with metric
〈, 〉 and complex structure J , let M be a real hypersurface of M , which we shall
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simply call hypersurface, and let ξ denote a unit normal vector field defined on
a neighbourhood O ⊂ M of a point q ∈ M . We can use the exponential map
of M to extend ξ to a local unit vector field γ̇(p,ξ)(s) on M , where p ∈ O and
γ(p,ξ)(s) = expp(sξp). The notation γ(p,X) shall always mean the geodesic starting
at the point p in the direction of X.

Remark 1. It is important at this point, to call the reader’s attention to the use
of the notations ξ and and γ that we shall be considering throughout this article.
If we denote by Mε a tubular neighbourhood of an open subset O ⊂ M of a
point q ∈ M , diffeomorphic to O × (−ε, ε), we can extend the local normal
vector field ξ in such a way that it yields the mapping with the same notation
ξ : Mε → �(Mε), thus the map ξ = ξ(p, s) when restricted to O ⊂ M has
two variables. In this context when we use the notation γ(p,ξ)(s), we need to be
careful with the case when we want to consider the point p fixed. In this situation
instead of γ = γ (p, s) being a function of two variables, it is just a function of
one variable that we shall simply denote by γ = γ (s).

Definition 1. Let M be a hypersurface of a Riemannian manifold M . Then for
some ε > 0 and locally on M , we can define the reflection map � on a tubular
neighbourhood Mε of an open subset O of M by putting

�(γ(q,ξ)(s)) = γ(q,ξ)(−s), (1)

where q ∈ O, s ∈ (−ε, ε) and ξ is a unit normal vector field on O. For each
s ∈ (−ε, ε), we also define the push map �s by

�s(q) = γ(q,ξ)(s). (2)

We will denote the parallel hypersurfaces of Mε by Ms so that Mε = ∪|s|<ε
Ms

and the restriction �s of � maps Ms into M−s , whilst �s maps M into Ms .

Remark 2. A parallel hypersurface Ms , as above, is also a level hypersurface
with respect to the function π2 ◦ γ −1 where π2 is the projection onto the second
variable and γ is the map mentioned in Remark 1.

When M is a hypersurface of a nearly Kähler manifold M then on each level
hypersurface Ms we can define locally the vector field Us given by Us(γ(p,ξ)(s))

= J γ̇ .
If we fix a point p ∈ M then we shall think of this vector field just as a vector

field along γ (s) and in this case we shall use the notation U(s) instead of Us . It
is easy to see that U(s) is a parallel vector field along γ (s). Indeed,

∇ γ̇ U(s) = J (∇ γ̇ γ̇ ) = 0. (3)
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Theorem 2. Let (M, J ) be a Kahler manifold. Then M is a complex space
form if and only if every geodesic hypersphere of M is a Hopf hypersurface.

Proof.
(
⇒)
It is clear from the results on Hopf hypersurfaces of complex space forms stated
in the first chapter that every geodesic hypersphere of these spaces is indeed a
Hopf hypersurface.
(⇐
)

Given q ∈ M and a unit vector X ∈ TqM , let γ (s) = expq(sX) be the
geodesic of M starting at q in the direction X. Then U(s) = J γ̇ (s) is the Hopf
vector at γ (s) of the geodesic hypersphere Gs centred at q and radius s. Thus, if
As denotes the shape operator of the hypersurface Gs , we have

As(U(s)) = αsU(s), (4)

where αs is the Hopf principal curvature of Gs .
Now, we show that the rate of change, in a radial direction, of the shape oper-

ators of tubular hypersurfaces satisfies a Riccati differential equation, namely:

(∇ γ̇ As)(Z) = A2
s (Z) + R(Z, γ̇ )γ̇ , (5)

where Z is a vector field, orthogonal to γ̇ , defined along γ and (∇ γ̇ As)(Z) =
∇ γ̇ (AsZ) − As(∇ γ̇ Z). Indeed, equation (5) follows from the definition of the
curvature tensor

R(Z, γ̇ )γ̇ = ∇Z∇ γ̇ γ̇ − ∇ γ̇ ∇Zγ̇ − ∇[Z,γ̇ ]γ̇

= ∇ γ̇ (AsZ) − ∇ (−AsZ−∇γ̇ Z)γ̇

= ∇ γ̇ (AsZ) − A2
sZ − As(∇ γ̇ Z).

By using (3), (4) and (5), we obtain

R(U(s), γ̇ )γ̇ = (α̇s − α2
s )U(s). (6)

Given a tangential vector Y ∈ TqM such that Y is orthogonal to both vectors
X and JX, let Ys denote the parallel transport of Y along γ . Then (6) implies
〈R(U(s), γ̇ )γ̇ , Ys〉 = 0 for any s = 0 and hence by continuity we have

〈R(JX, X)X, Y 〉 = 0. (7)

However, it is well known (see for example [9] or [11]) that the condition (7) on
the curvature tensor characterizes the complex space forms. �
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It is convenient to point out here that the Riccati equation (5) for the second
fundamental forms of the tubular hypersurfaces around a submanifold P , en-
compasses essentially the same information as the Jacobi differential equation
which defines Jacobi fields on M . This equation has been useful to study the
geometry of tubular hypersurfaces in general. (c.f. [6] and references mentioned
there.)

We remark that in [12], the authors used Jacobi fields to show that the complex
space forms are characterized by the fact that their geodesic hyperspheres are
quasi-umbilical with respect to their Hopf vector field. Thus the result we have
just proved improves this characterization in the sense that, being Hopf hyper-
surfaces, the geodesic hyperspheres of complex space forms satisfy some further
geometrical properties.

Remark 3. The theorem above can be proved also using Jacobi fields instead
of the Riccati equation, however, the proof would be less elegant.

Lemma 1. Let σ(t) be a smooth curve of a hypersurface M in CP n. Let ξ

denote a unit normal vector field on M . Then the variational vector field W(s)

defined along γ(σ(t),ξ)(s) by W(s) = d
dt

(γ(σ(t),ξ)(s)) satisfies

�∗(W(s)) = W(−s) (8)

�s∗(σ
′
(t)) = W(s). (9)

Proof. Indeed, the lemma follows from direct application of (1) and (2). �

Remark 4. Note that M is the fixed point set of � and so if � is an isometry
then M is a totally geodesic submanifold of M .

Indeed, this is just a consequence of the well known fact that a connected com-
ponent of the fixed point set of an isometry of M is a totally geodesic submanifold
of M . But we should note that particularly for the reflection map we can also
prove this directly. Although the proof we give below is assuming that M is a
hypersurface, it can be similarly applied to submanifolds of higher codimension.

We shall make an extensive use of Jacobi fields throughout this work. These
have been a powerful tool employed by differential geometers to approach a
large range of mathematical issues. It is very easy to find a good wealth of
the basic theory about these fields in the literature, however, we shall use here
the characterization of a Jacobi field as a variational vector field defined by a
geodesic variation and we shall also use the following property.
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Lemma 2. Given p ∈ M , let η denote a local normal vector field defined on M

and let Aη be the shape operator of M with respect η. Then a Jacobi vector field
W(s) defined along a geodesic γ = γ(p,η)(s) of M , shall satisfy the conditions

W(0) ∈ TpM and Ẇ (0) + Aη(W(0)) ∈⊥pM, (10)

if and only if W(s) is the variational vector field corresponding to a geodesic
variation f : (−ε, ε) × [0, r] −→ M of γ complying with the following condi-
tions

f (t, 0) ∈ M for each t ∈ (−ε, ε) and
∂f

∂s
(t, 0) ∈⊥f (t,0) M. (11)

In this case, we shall say that W is a M-Jacobi field of M .

In addition, it is important to highlight here the following facts. Since the M-
Jacobi field W is orthogonal to γ , the variation given in the lemma yields locally
a surface of M , which implies D

∂s

∂f

∂t
= D

∂t

∂f

∂s
and consequently [γ̇ , W ] = 0.

Therefore, if ξ denotes a local unit normal field on the tubular hypersurface Mr

around M then the corresponding shape operator Aξ of Mr satisfies:

(AξW)(r) = −(∇ γ̇ W)(r). (12)

A proof for Lemma (2) can be found for instance in [5].
Given q ∈ M , let ξ be a local unit normal vector field on M and let X ∈ TqM

be an eigenvector of Aξ . Let us consider a curve σ on M with σ(0) = q and
σ

′
(0) = X. Then the geodesic variation γ(σ,ξ) of the geodesic γ(q,ξ) gives the

variational vector field W(s) along γ(q,ξ)(s) which is a Jacobi field satisfying
conditions (10) and so the shape operator Aξ of M satisfies (12), so that Ẇ (0) =
−Aξ(W(0)) = −λW(0). Now, if � is an isometry then it follows from (8)
that the function |W(s)|2 is even. Thus, its derivative is an odd function which
implies Ẇ (0) = 0 and hence λ = 0.

Theorem 3. If M is a hypersurface of a nearly Kähler manifold M satisfying
condition (�) then M is a Hopf hypersurface.

(�) : for each s ∈ (−ε, ε), � maps the Hopf vector field of Ms

to a scalar multiple of the Hopf vector field of M−s .

Proof. Let M be a hypersurface of M satisfying the condition in the Theorem.
Then in order to prove that M is a Hopf hypersurface, we will just verify that the
Hopf vector field U of M is a principal vector field.
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Given q ∈ M , consider a local unit normal vector field ξ of M defined around
q. Let A = Aξ denote the second fundamental form of M . It follows from (1)
that

�∗|γ(q,ξ)(s) (γ̇(q,ξ)(s)) = −γ̇(q,ξ)(−s). (13)

By assumption there exists a smooth function g(s) = g(q, s) such that

�∗|γ(q,ξ)(s) (Us) = g(s)U−s . (14)

We can fix the point q because in what follows we shall be considering the rate
of change of the function g only in the radial direction. Since � is a smooth
map, using (3), we have

�∗[γ̇ , Us] = [
�∗γ̇ , �∗Us

]

⇒ �∗(∇ γ̇ Us) − �∗(∇Us

γ̇ ) = ∇�∗γ̇ �∗Us − ∇�∗Us
�∗γ̇ (15)


⇒ ∇�∗Us
�∗γ̇ = ∇�∗γ̇ �∗Us + �∗(∇Us

γ̇ ).

Now, let As denote the shape operator of the level hypersurface Ms with respect
to the normal field γ̇ (s) Then if we substitute (13) and (14) in (15) we obtain

g(s)A−sU−s = −ġ(s)U−s − �∗(AsUs), (16)

so that by taking the limit when s goes to zero and recalling that the reflection
restricts to the identity map on M , we finally have

AU(q) = −1

2
ġ(0)U(q). (17)

And hence M is a Hopf hypersurface. �

Theorem 4. If a hypersurface M of a nearly Kahler manifold M satisfies the
condition (��) then each level hypersurface Ms is a Hopf hypersurface.

(��) : for each s ∈ (−ε, ε), �s maps the Hopf vector field of

M to a scalar multiple of the Hopf vector field of Ms.

Proof. Let us use the same notation and terminology as in the proof of Theo-
rem (2). Here we can give a simpler proof since by using the assumption we
see that the push map �s will map the integral curve σ of U to the integral
curve, possibly reparametrised, σs of Us . This fact implies that there exists a
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smooth function f (s) such that the Jacobi field V (s) along γ(q,ξ)(s) defined by
V (s) = d

dt
γ(σ,ξ)(s) can be expressed by:

V (s) = f (s)Us. (18)

Using (3), we obtain V̇ = ḟ Us . Now, observing that V satisfies the conditions
(10), that is, V is a Ms-Jacobi field, we have as a consequence of (12) that

f (s)AsUs = AsV (s) = −V̇ = −ḟ Us, (19)

and hence Ms is a Hopf hypersurface. �

3 Properties of Hopf hypersurfaces in CP n

We give here some further geometrical properties of Hopf hypersurfaces in CP n

which not only point out more evidence that they are indeed tubular but also
highlight some special features of the geometry of such hypersurfaces.

Let M be a Hopf hypersurface of CP n. Let ξ and U = Jξ denote a unit
local normal field and the corresponding Hopf vector field respectively. The
Hopf principal curvature α of M is locally constant ([8]), thus we may consider
α = −2 cot(2r), for some constant r ∈ (0, π

4 ]. Moreover, using Gauss and
Codazzi equations, Maeda ([8]) has shown the following main result known
about the geometry of a Hopf hypersurface of CP n.

Theorem 5. Let M be a Hopf hypersurface of CP n with Hopf principal cur-
vature α. Let A denote the shape operator of M with respect to a unit normal
vector field ξ on M and let φ be the tensor on M induced by the complex structure
J of CP n defined by φ(X) = JX − 〈JX, ξ〉ξ . Then these tensors satisfy the
following relation

AφA = φ + α

2
(Aφ + φA). (20)

Remark 5. As Maeda observed, the result above shows, in particular, that if X

is a principal vector field of M with principal curvature λ and X is orthogo-
nal to the Hopf vector field U then the vector field φX is also principal with
corresponding principal curvature λ̃, where

λ̃ = αλ + 2

2λ − α
. (21)
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If we consider the principal curvature λ given in terms of a new function
θ : M → R by λ = − cot(r + θ), where the function θ is chosen so that
−r < θ < π − r , then it follows from (21) that λ̃ = − cot(r − θ).

The local constancy of the Hopf principal curvature α of M is not an isolated
fact in the sense that by using the Codazzi equation for M we can actually prove
the following

Proposition 1. Let X be a unit smooth principal vector field of a Hopf hyper-
surface M ⊂ CP n corresponding to a principal curvature function λ. Then λ is
constant along any integral curve of the Hopf vector field U .

Proof. Using that the Hopf principal curvature α is constant, we have from the
Codazzi equation

U(λ)X = α∇XU − A(∇XU) − λ∇UX + A(∇UX) − φX.

Thus, using that ∇XU = −φAX and (21) we have

U(λ)X = A(∇UX) − λ∇UX − (1 + αλ − λλ̃)φX. (22)

Consequently, the inner product of this equation with X yields U(λ) = 0. �

Remark 6. Let X be a unit smooth principal vector field with corresponding
principal curvature λ. If α = 0, equation (22) shows that ∇UX is a principal
vector field corresponding to the same principal curvature λ and if α = 0, this
fact is true if and only if λ = λ̃ and hence, using (21), if and only if λ = − cot(r)
or λ = tan(r).

We shall see now that, in general, almost every principal vector of a level
hypersurface of a Hopf hypersurface M in CP n is obtained simply by doing the
parallel transport of the principal vectors of M along normal geodesics.

Theorem 6. Let M be a Hopf hypersurface of CP n. Let X be a unit principal
vector at q ∈ M corresponding to an eigenvalue λ such that X is either equal or
orthogonal to the Hopf eigenvector U at q. Then for each s, the parallel transport
X(s) of X along the normal geodesic γ = γ(q,ξ)(s) (that is, ξ = γ̇ (0) ∈⊥q M)
starting at q, is a principal vector of the level hypersurface Ms .
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Proof. Let us consider a curve σ of M such that σ(0) = q and σ
′
(0) = X. Then

the 2-parameter family of curves in CP n F(s, t) = γ(σ,ξ)(s) yields the Jacobi field
W(s) = ∂F

∂t
(s, 0), defined along the geodesic γ (s). Then W satisfies the initial

conditions W(0) = X and Ẇ (0) = −A0X = −λX.
On the other hand, let f : R → R denote either the solution of the differential

equation f̈ = −f if X is orthogonal to U , or the solution of f̈ = −4f if
X = U , satisfying the initial conditions f (0) = 1 and ḟ (0) = −λ. Then using
the curvature tensor R for CP n we obtain R(f X(s), γ̇ )γ̇ = −f̈ X(s).Therefore,
f X(s) is also a Jacobi field along γ having the same initial conditions as W and
hence W = f X(s). However, by construction, W is a Ms-Jacobi field for each
s and so As(W(s)) = −Ẇ (s), which implies AsX(s) = − ḟ

f
X(s). If we denote

the Hopf principal curvature by α = −2 cot(2r) and if we write the principal
curvature as λ = − cot(r + θ) then for the case when X is orthogonal to U , the
function f is given by

f (s) = sin(r + θ + s)

sin(r + θ)
. (23)

�
Note that by applying this result to the Hopf vector field, we have also proved

the following

Corollary 1. The level hypersurfaces of a Hopf hypersurface in CP n are also
Hopf hypersurfaces.

Theorem 7. A hypersurface of CP n satisfies either the condition (�) or (��) if
and only if it is a Hopf hypersurface.

Proof. One direction has already been proved in accordance with Theorems
(3) and (4). So if M is a Hopf hypersurface, let us show firstly that the push maps
�s satisfy (��). Indeed, given q ∈ M , let σ be the integral curve of the Hopf
vector field U which passes through q, say σ(0) = q. Then it follows from (9)
that

�s∗ |q (Uq) = d

dt
|t=0 �s(σ (t))

= ∂F

∂t
(s, 0)

= f (s)Us,

(24)

From which (��) follows.

Bull Braz Math Soc, Vol. 35, N. 3, 2004



HOPF HYPERSURFACES IN SPACE FORMS 463

Now, for the reflection map we set up W(s) = f X(s) in (8), which yields

�∗(Us) = f (−s)

f (s)
U−s . (25)

Therefore, M also satisfies (�). �

4 Tubular hypersurfaces in CP n

We recall here Theorem (1), where Cecil-Ryan, under the assumption of con-
stancy of the rank of the focal map of a hypersurface, characterize the Hopf
hypersurfaces of CP n as open subsets of tubes around complex submanifolds.
The calculation for the derivative of the focal map done by Cecil-Ryan (see [4]
Proposition 2.5 for details) shows that this assumption is equivalent to the con-
stancy of the multiplicity of the principal curvature − cot(r), whenever this value
is a principal curvature for the hypersurface. Here we shall denote by G the focal
map of a hypersurface M of CP n whose notation in Cecil-Rayn article is �r .
They have proved the following

Lemma 3. Let M be a Hopf hypersurface of CP n. Let U = Jξ be the Hopf
vector field of M and let α = −2 cot(2r) be the Hopf principal curvature of M .
Then given q ∈ M , we have

(i ) G∗ |(q,rξ) (U) = 0

(ii ) G∗ |(q,rξ) (X) = 0 whenever X ∈ TqM is a principal vector of
(M, ξ) corresponding to the principal value − cot(r).

(iii ) G∗ |(q,rξ) (X) = 0 otherwise.

It is worthwhile highlighting here that from the intrinsic point of view the best
geometrical property that we know about a Hopf hypersurface in CP n is the
elegant result of Maeda stated in Theorem (5). However, this result does not
seem to be sufficient to evaluate the behaviour of − cot(r) as an eigenvalue of
the shape operator of the hypersurface.

Now, to determine the integral curve σ of U through a given point q ∈ M , we
first note from the lemma above that the focal map of M is constant along the
integral curves of the Hopf vector field, that is, G(σ, ξ) ≡ p.

Next, we consider a geodesic γ = γ(p,η) of CP n normal to M at q and con-
necting the points q and p, where η denotes the tangent vector to γ at the point
p. We shall assume γ to be parametrized by the arclength s from p to q and so
γ (0) = p and γ (r) = q.

We shall use the Hopf fibration π : S2n+1 → CP n to lift geometrical objects
from CP n to the sphere. Let γ̃ = γ̃(p̃,η̃)(s) denote the horizontal geodesic of the
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sphere obtained as the lift of γ and let σ̃ be the curve in S2n+1 obtained as the
end points of the geodesics γ̃(p̃,δ̃) where

δ̃ = δ̃(t) = cos(t)η̃ + i sin(t)η̃ and t̄ = t

sin(r) cos(r)
,

in other words, σ̃ (t) = γ̃(p̃,δ̃(t))(r). Let us define the vector δ = δ(t) = π∗(δ̃(t))
and the curve σ(t) = π(̃σ (t)). A simple calculation gives the following

Lemma 4. The curve σ(t) is the integral curve through the point q of the Hopf
vector field of the Hopf hypersurface M of CP n.

Our main result shall need the special constructions of tangent vector fields
Xt and Vt that we now start to describe.

In Corollary (1), we showed that the level hypersurfaces Ms of M are also Hopf
hypersurfaces. Thus, we just need to replace r by s in the description above in
order to describe the integral curve σs(t) of the Hopf vector field Us of the level
hypersurface Ms starting at the point γ (s). For a fixed value t , we shall use the
notation γt = γ(t,δ)

Definition 2. Given a vector X0 ∈ TqM orthogonal to the Hopf vector U(q),
let X0(s) denote the parallel transport of X0 from γ (r) to γ (s) along γ . Then
we can construct a smooth vector field Xt along σ(t) in two different manners
which we shall name hereafter as

Case I. The vector field Xt(r) is defined as the parallel transport of X0(0)

along γt (s) from the point p to the point σ(t).

Case II. The vector field Xt(r) is defined as the parallel transport along γt (s)

from the point p to the point σ(t) of the vector

Xt(0) = cos

(
t

2

)
X0(0) + sin

(
t

2

)
JX0(0). (26)

Remark 7. The vectors {X0(0), JX0(0)} are orthogonal to the vectors {η, Jη}
because X0(r) and JX0(r) are both also orthogonal to the vectors {γ̇0(r), U0(q)}.
Therefore, in both constructions above Xt(0) is orthogonal to δt for every t . Thus,
by elementary properties of parallel vector fields we have that Xt(s) is orthogonal
to γ̇t (s) for each value of t and s. In particular, this makes it clear that Xt(s) is
indeed a tangent vector field defined along σs(t) on the level hypersurface Ms .
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Definition 3. Let us denote the induced Riemannian connection of each hyper-
surface Ms by the same symbol ∇. Then for each construction of Xt(s) as given
in Definition (2), we associate the following vector field

Vt(s) = ∇Us
Xt(s) + αs

2
φXt(s). (27)

The constructions of Xt and Vt may appear artificial at first. However, as we
shall see in Theorem (8), they arise quite naturally when considering the case of
tubular hypersurfaces.

In the sequel, we shall need to recall some basic facts about Jacobi fields of
CP n in order to prove our next proposition.

We can use the Hopf fibration π : S2n+1 → CP n to write down Jacobi fields
along a geodesic γ of CP n in terms of Jacobi fields along the horizontal geodesic
γ̃ of the sphere.

Lemma 5. The Jacobi field W(s) along γ (s) satisfying the initial conditions
W(0) = X and Ẇ (0) = Y is determined by

W(s) = cos(s)BX(s) + sin(s)BY (s), (28)

where BZ(s) denotes the image under π∗ of the parallel transport B̃Z̃(s) of Z̃

along γ̃ (s).

Let us first have a close look at tubes around complex submanifolds of CP n.
We shall do this in order to get a good picture of the geometrical relation between
the principal curvatures of a tubular hypersurface around a complex submanifold
and the principal curvatures of this core.

Proposition 2. Let M be an open subset of a tube �r(⊥1 N) of radius r

around a complex submanifold Nm of CP n. The principal vectors of M at a
point q = γ (r) = γ(p,η)(r) are obtained according to the following cases

(i ) AξB = −2 cot(2r)B,
where B(s) = π∗(B̃iη̃) and W(s) = sin(s)B(s) is the Jacobi field
along γ satisfying the initial conditions W(0) = 0 and Ẇ (0) = Jη.
Note that B = Jξ = U .

(ii ) AξB = − cot(r)B,
where B(s) = π∗(B̃X̃) and W(s) = sin(s)B(s) is the Jacobi field
along γ satisfying the initial conditions W(0) = 0 and Ẇ (0) =
X ∈ (⊥p N) ∩ {η}⊥
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(iii ) AξB = − cot(r + θ)B,
where X is a principal vector of the shape operator Aη of N cor-
responding to the principal value cot(θ), B(s) = π∗(B̃X̃) and
W(s) = (

cos(s) − cot(θ) sin(s)
)
B(s) is the Jacobi field along

γ satisfying the initial conditions W(0) = X ∈ TpN and Ẇ (0) =
−AηX = − cot(θ)X.

Proof. The proposition follows immediately from Lemma (5) and the fact that
the Jacobi field W satisfies Ẇ (0) = −AξW(0). �

Remark 8. In the Proposition above we can highlight some useful facts. The
first, being that (i) shows that every tube around a complex submanifold is indeed
a Hopf hypersurface. Secondly, it follows from (ii) that the multiplicity of the
eigenvalue − cot(r) is exactly 2(n − m) at each point of the hypersurface M .

The next theorem points out the geometrical relevance of the vector field Vt

for the study of the principal curvatures in the case of a tubular hypersurface.

Theorem 8. Let M be an open subset of the tube �r(⊥1 N) of radius r around
a complex submanifold N of CP n. Let q = γ(p,η)(r) ∈ M and let X0 ∈ TqM

be a vector orthogonal to U(q). Then the vector fields Xt and Vt , as given in
Definitions (2) and (3) satisfy the following properties

(i ) If X0 is an eigenvector of M corresponding to the eigenvalue
− cot(r) (respectively, − cot(r +θ)). Then for every s ∈ (0, r], the
vector field Xt(s) constructed in case I (case II) is a principal field
along σs corresponding to the eigenvalue − cot(s) (respectively,
− cot(s + θ)).

(ii ) Vt(s) = 0 for every s ∈ (0, r], in Case I.

(iii ) Vt(s) ≡ 0, in case II and consequently ∇Us
Xt = −αs

2 φXt .

Proof. Item (i), for Case I, follows imediately from item (ii) of Proposition (2).
To prove (i) for Case II, we note that from item (iii) of Proposition (2), we have
∇X0(0)η = − cot(θ)X0(0), which implies

∇Xt (0)δt = − cot(θ)Xt(0). (29)

And hence, using again item (iii) of that proposition, (i) follows.
Now, in order to prove (ii) and (iii), we need to consider the geodesic varia-

tion F(s, t) = γ(p,δt )
(s) with its corresponding variational Jacobi field Wt(s) =
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∂F
∂t

(s, t). Then for each t , Wt is a Ms-Jacobi field and hence AsWt = −Ẇt ,
where As denotes the shape operator of the level hypersurface Ms .

Using Proposition (4), we see that Wt satisfies the initial conditions

Wt(r) = U(σ(t)) and Ẇt (r) = 2 cot(2r)U(σ(t)).

Therefore, setting h(s) = sin(2s)

sin(2r)
, we have Wt(s) = h(s)Us because h(s)Us is

also a Jacobi field along γt satisfying the same initial conditions.
Using the definition of the curvature tensor R of CP n we have,

R(γ̇t , Wt)Xt = −2hφXt, (30)

which together with the following fact

[γ̇t , Wt ] = ∇ γ̇t
(hUs) − ∇hUs

(γ̇t ) = (αsh + ḣ)U = 0, (31)

yields

∇ γ̇t
∇Wt

Xt = −2hφXt = ∇ γ̇t

(
cos(2s)

sin(2r)
φXt

)
. (32)

Therefore we have

∇ γ̇t
(hVt) = ∇ γ̇t

(
∇WXt + αsh

2
φXt

)
= 0.

In other words, the vector field h(s)Vt(s) is parallel along the geodesic γt (s).
Therefore, using this parallelism, (ii) follows from the limit

lim
s→0

(hVt) = − 1

sin(2r)
JXt = 0,

and (iii) follows from (26) and the limit lim
s→0

(hVt) = dXt

dt
− 1

sin(2r)
JXt = 0.�

Remark 9. The parallelism of the vector field hVt is equivalent to the property
∇ γ̇t

Vt = αsVt because of h(s) satisfying ḣ(s) = −αsh(s).

In each construction given by Definition (2), the vector field Xt(s) satisfies the
following basic property.

Lemma 6. The vector field Xt(s) is orthogonal to the Hopf vector field Us .
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Proof. Let Wt(s) be the Ms-Jacobi field defined along γt as in Theorem (8).
Then using that Wt(s) = h(s)Us we have

h(s)〈Xt, Us〉 = 〈Xt, Wt〉,
which by differentiation with respect to s yields

ḣ(s)〈Xt, Us〉 = 〈Xt, ∇ γ̇ Wt〉 = 〈Xt, ∇Wt
γ̇ 〉 (33)

Thus, calculating the limit of (33) when s goes to zero we obtain

lim
s→0

〈Xt, Us〉 = lim
s→0

1

ḣ(s)
〈Xt, ∇Wt

γ̇ 〉 = sin(2r)

2

〈
X0(0)

dδt

dt

〉
= 0.

Therefore, using again that Xt and Us are parallel along γt , we have 〈Xt, Us〉 ≡ 0
which proves the Lemma. �

Inspired by the geometrical properties of the tubular hypersurfaces of CP n

described above, we can show now that these properties hold in general for any
Hopf hypersurface of this space form. Thus, we shall be henceforth considering
M as an arbitrary Hopf hypersurface of CP n.

We shall prove next that in the case of a Hopf hypersurface M , the vector fields
Xt and Vt also satisfy properties similar to those obtained in Theorem (8) for
tubular Hopf hypersurfaces.

Theorem 9. Let M be a Hopf hypersurface of CP n. Let q = γ(p,η)(r) ∈ M and
let X0 ∈ TqM be a vector orthogonal to U(q). Then the vector fields Xt and Vt ,
as given in Definitions (2) and (3) satisfy the following properties

(i ) Vt(s) = 0 for every s ∈ (0, r], in Case I.

(ii ) Vt(s) ≡ 0, in case II and consequently ∇Us
Xt = −αs

2 φXt .

(iii ) If in addition we assume that M is analytic and X0 is an eigenvec-
tor of M corresponding to the eigenvalue − cot(r) (respectively,
− cot(r + θ)) then for every s ∈ (0, r], the vector field Xt(s) con-
structed in case I (case II) is a principal field along σs corresponding
to the eigenvalue − cot(s) (respectively, − cot(s + θ)).

Proof. The proof of item (i) and (ii) can be carried out in the same manner as
that given in Theorem (8) for tubular hypersurfaces as far as we can show that
the vector field h(s)Vt here is also parallel. According to the Remark (9), this
parallelism is equivalent to ∇ γ̇t

Vt = αsVt , which can be proved as follows.
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The vector field Xt is orthogonal to γ̇t by Remark (7) and is also orthogonal
to Us by Lemma (6). Thus, we have

∇Us
Xt = ∇Us

Xt . (34)

We have proved in Theorem (1) that Ms is a Hopf hypersurface and so

[ γ̇t , Us ] = ∇ γ̇t
Us − ∇Us

γ̇t = αsUs. (35)

Thus using the results above we obtain

∇ γ̇t
∇Us

Xt = ∇Us
∇ γ̇t

Xt + ∇[ γ̇t ,Us ]Xt + R(γ̇t , Us)Xt

= −2φXt + αs∇Us
Xt .

(36)

Now, applying (34),(35) and (36) to (27), we have

∇ γ̇t
Vt =

(
α̇s

2
− 2

)
φXt + αs∇Us

Xt = αsVt , (37)

where for the last equality we have used α̇s = 4+α2
s . The last part of the theorem

shall be proved by showing that the following vector field Zt(s) defined along
σs(t) is identically zero.

Zt = AsXt − λXt, (38)

where As denotes the shape operator of the level hypersurface Ms .
First, we notice that the analyticity of the ambient space CP n and of the

hypersurface M imply that we can construct a local analytic unit normal field on
M . Thus, the field Zt is also analytic and it is identically zero if and only if all
the derivatives of Zt with respect to t vanish at t = 0.

In order to simplify our notation we shall omit any subscript s since it is clear
that we are considering all the geometrical objects involved as defined on each
level hypersurface Ms .

It follows from the Codazzi equation and the fact that Ms is a Hopf hypersur-
face that

∇U(AXt) = ∇Xt
(AU) − A(∇Xt

U) + A(∇UXt) − φXt . (39)

Using the following property of the tensor φ

(∇Xφ)Y = 〈AX, Y 〉U − 〈Y, U〉AX, (40)

we can also differentiate φAXt obtaining

∇U(φAXt) = φ∇U(AXt). (41)
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We shall first consider the situation when AX0 = − cot(r + θ)X0 and Xt is
constructed as in Case II. Then recalling that the Hopf principal curvature α is
constant, we have from (39), item (ii) and (20) that

∇U(AXt) = −αφAXt + AφAXt − α

2
AφXt − φXt

= −α

2
φAXt

(42)

and hence (41) can be simplified to

∇U(φAXt) = α

2
AXt. (43)

Thus, it follows from (42) and (43) that the n-th derivative of AXt is given by

∇n
U (AXt) =

{
(−1)m+1(α

2 )nφAXt if n = 2m + 1.

(−1)m(α
2 )nAXt if n = 2m.

(44)

On the other hand, it follows from item (ii) and (40) that the n-th derivative of
Xt is given by

∇n
U (Xt) =

{
(−1)m+1(α

2 )nφXt if n = 2m + 1.

(−1)m(α
2 )nXt if n = 2m.

(45)

Therefore, it follows from (44), (45) and the assumption AX0 = λX0, that all
the derivatives of Zt at t = 0 vanish.

The proof for the situation when AX0 = − cot(r)X0 and Xt is constructed as
in Case I, is now just a consequence of the previous case. Indeed, in accordance
with Theorem (5), if Y0 is any eigenvector at q corresponding to a principal
curvature cot(r + θ) with θ = 0 then X0 is orthogonal to both vectors Y0 and
JY0 since the eigenvalues are all distinct. Consequently, the parallel transport
Xt along γt remains orthogonal to the parallel transport Yt of the rotated vector

Yt(0) = cos

(
t

2

)
Y0(0) + sin

(
t

2

)
JY0(0).

Thus, the vector Xt(s) must lie in the eigenspace V− cot(r). �

Theorem 10. Let M be a connected Hopf hypersurface of CP n with Hopf
principal curvature being −2 cot(2r). Let X be a continuous principal vector
field on M corresponding to a continuous principal curvature function λ : M →
R. If λ assumes the value − cot(r) at a particular point q0 ∈ M then λ is
constant.
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Proof. The set of points where the function λ assumes the value − cot(r) is
certainly closed and so because of M being connected we can obtain our theorem
by proving that this set is also open. Next, we shall prove this by contradiction.

Let us assume the existence of a sequence of points qn ∈ M converging to
q0 ∈ M such that at each of these points we have λn = λ(qn) = − cot(r). Thus,
if we define λ in terms of a new function θ by putting λ = − cot(r + θ), our
assumption can be read as lim θn = 0.

For each n ∈ {0, 1, . . .} we shall denote the integral curve of the Hopf vector
field starting at the point qn by σn(t). Along each of these curves we can apply
the construction given in Definition (2) to obtain a vector field Xn

t satisfying the
initial condition Xn

t (r) = X(qn).
Thus, using Definition (3), we have vector fields Xn

t and V n
t satisfying the

properties stated in Theorem (9), that is, for each t we have V 0
t = 0 and for each

n = 0 we have V n
t ≡ 0.

Now, since the vector field V n
t depends continuously on the initial condition

given for the vector field Xn
t , we must have

lim
n→∞ V n

t (qn) = V 0
t (q),

which contradicts the properties satisfied by these vector fields that we have
just mentioned. �

Corollary 2. Let M be a connected Hopf hypersurface of CP n such that ev-
ery continuous principal curvature function on M corresponds to a continuous
principal vector field. If − cot(r) is an eigenvalue at a point of M then it will be
an eigenvalue at any point of M with the same multiplicity.

Proof. If we order the principal curvatures of M at each point as

λ1 ≤ λ2 ≤ . . . ≤ λ2n−1,

then each λj is a continuous principal curvature function and using the theorem
above we see that if λj assumes the value − cot(r) at some point then it must be
constant and hence − cot(r) must have constant multiplicity. �

Corollary 3. Let M be a connected Hopf hypersurface of CP n such that to
every continuous principal curvature function there corresponds a continuous
principal vector field. Then M lies in a tube around a complex submanifold
of CP n.
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Proof. The result follows from Corollary (2) and Theorem (1). �
We also note the important fact that the lift of Hopf hypersurfaces under a holo-

morphic Riemannian submersionπ : W̃ → W are also Hopf hypersurfaces. This
can provide us with a means to obtain examples of Hopf hypersurfaces in more
general Kähler manifolds which could possibly be non-tubular hypersurfaces.
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