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Eventually minimal curves

Paulo H. Viana and Jaime E. A. Rodriguez

Abstract. A curve defined over a finite field is maximal or minimal according to
whether the number of rational points attains the upper or the lower bound in Hasse-
Weil’s theorem, respectively. In the study of maximal curves a fundamental role is
played by an invariant linear system introduced by Rück and Stichtenoth in [6]. In this
paper we define an analogous invariant system for minimal curves, and we compute its
orders and its Weierstrass points. In the last section we treat the case of curves having
genus three in characteristic two.
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1 Zeta functions of eventually minimal curves

The study of an algebraic curve C defined over finite field Fq is centered around
its zeta function, introduced by Emil Artin in analogy with the classical Riemann
zeta function. It may be defined as the enumerating function of the set of positive
divisors of C/Fq counted by degree,

ZC/Fq
(t) =

∑
n≥0

An,Fq
tn, where An,Fq

:= card Dn
Fq

,

Dn
Fq

denoting the set of positive divisors of degree n defined over Fq . For the
function field of the curve the function ζC/Fq

(s) := ZC/Fq
(q−s) is the analogue

of the classical zeta function ζ(s) = ∑
n≥1 n−s .

It is known that ZC/Fq
(t) is a rational function given by

ZC/Fq
(t) = LC/Fq

(t)

(1 − t)(1 − qt)
,
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where LC/Fq
(t) is a polynomial with integer coefficients having degree twice

the genus g of the curve. The theorem of Riemann-Roch is expressed as the
functional equation

ZC/Fq
(t) = qg−1t2g−2ZC/Fq

(
1

qt

)
or also

LC/Fq
(t) = qgt2gLC/Fq

(
1

qt

)
.

(1.1)

The analogue of the Riemann hypothesis for the function ζC/Fq
(s) was proved

by Helmut Hasse in case of genus 1 and in general by André Weil, and may be
stated as

Theorem 1.2 (Hasse-Weil).

If LC/Fq
(t) =

2g∏
i=1

(1 − αit) then
∣∣ αi√

q

∣∣ = 1. (1.2)

As a consequence one has the bound of Hasse-Weil

|A1,Fq
− (q + 1)| ≤ 2g

√
q. (1.3)

All this is established in a quite elementary and elegant setup in [7]. The curve
C is maximal or minimal if

A1,Fq
− (q + 1) = 2g

√
q or A1,Fq

+ (q + 1) = 2g
√

q,

respectively. It is immediate that C/Fq is maximal or minimal according to
whether

LC/Fq
(t) = (1 + √

qt)2g or LC/Fq
(t) = (1 − √

qt)2g, (1.4)

respectively.

Maximal curves were used in the construction of good Goppa codes, and their
study was renewed on account of this surprising source of applications. Minimal
curves have had much less attention. But from the constant field extension
formula [7, Theo. V.1.15, p. 166]: with notations as in (1.2)

LC/Fqr (t) =
2g∏
i=1

(1 − αr
i t), (1.5)
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it follows that for a maximal curve C/Fq the constant field extensions C/Fqr are
maximal or minimal according to whether r is even or odd, while for a minimal
curve C/Fq the constant field extensions C/Fqr are always minimal. If one plans
to use the tool of constant field extensions it seems thus unwise to study only
maximal curves. A curve C/Fq is eventually minimal or eventually maximal if
for some integer r it happens that C/Fqr is minimal or maximal; from what was
just seen, a eventually maximal curve is eventually minimal. Examples below
show that the converse is not true.

Equations (1.4) and (1.5) have other easy consequences. For instance,

Proposition 1.6. Let C be a curve defined over Fq . The curve C/Fq2 is maximal
if and only if

LC/Fq
(t) = (1 + qt2)g.

If q is not a perfect square then the curve C/Fq2 is minimal if and only if

LC/Fq
(t) = (1 − qt2)g.

Proof. Sufficiency is a direct application of (1.5). For necessity, if the numera-
tor of the zeta function of C/Fq is given as in (1.2) then C/Fq2 is maximal (resp.
minimal) only if for all i = 1, · · · , 2g one has αi = ±√−q (resp., αi = ±√

q),
with, say, N choices of + and 2g − N choices of −. Hence,

LC/Fq
(t) = (1 − √−qt)N(1 + √−qt)2g−N,

(resp., LC/Fq
(t) = (1 − √

qt)N(1 + √
qt)2g−N). Now the coefficient of t2g−1,

(−1)N2(N − g)(
√−q)2g−1, (resp., (−1)N2(N − g)(

√
q)2g−1),

is an integer, and thus one certainly has N = g in the maximal case or in the
minimal case if q is not a perfect square.

Corollary 1.7. Let C be a minimal curve of odd genus g defined over Fq . If
C/Fq2 is minimal then q is a square.

Proof. This is a consequence of the fact that

(1 − qt2)g = 1 − · · · + (−q)gt2g,

and the fact that the coefficient of t2g is always qg.
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Corollary 1.8. Let C be a curve defined over Fq . Then C/Fq2 is maximal if
and only if

LC/F
q2r

(t) =
{

(1 + qr t)2g for odd r

(1 − (−q)r/2t)2g for even r.

If q is not a perfect square then the curve C/Fq2 is minimal if and only if

LC/F
q2r

(t) =
{

(1 − qr t)2g for odd r

(1 − qr/2t)2g for even r.

Proof. Direct consequence of (1.5).

A consequence of the Riemann hypothesis (1.2) is that the essential information
of a zeta function LC/Fq

(t) is contained in the arguments θj of the inverses
αj = √

qeiθj of its roots. It seems natural then to consider, through the change
of variables u = √

qt , the normalized polynomial

�C/Fq
(u) = LC/Fq

(q−1/2u);
now Riemann-Roch duality is expressed as

�C/Fq
(u) = u2g�C/Fq

(u−1),

and �C/Fq
(u) has all roots in the complex unitary circle {|u| = 1}. The normal-

ized polynomial for maximal and minimal curves C/Fq are given by

�C/Fq
(u) = (1 + u)2g and �C/Fq

(u) = (1 − u)2g,

respectively. The constant field extension formula for normalized polynomials
states that

�C/Fq
(u) =

∏
(u − ui) implies �C/Fqr (u) =

∏
(u − ur

i ).

Theorem 1.9. Suppose q is a perfect square. For a curve C/Fq the following
are equivalent:

(a) C/Fq is eventually minimal.

(b) Any root of �C/Fq
(u) is cyclotomic.

(c) The normalized polynomial has integer coefficients:

�C/Fq
(u) ∈ Z[u].
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Proof. As q is a square by hypothesis, the normalized polynomial �C/Fq
(u)

has rational coefficients.

A curve C/Fq is eventually minimal if and only if �C/Fqr (u) = (1 − u)2g for
some r , and from the constant field extension formula this implies that any root
of its normalized polynomial is cyclotomic. That any algebraic integer which,
along with all of its conjugates, lies on the unit circle, is a cyclotomic root is a
standard fact (for example, [10]). This establishes the equivalence of (a) and (b).

That (c) implies (b) is clear. If �C/Fq
(u) does not have integer coefficients

then in its prime factorization in Q[u] there will be some prime factor not in
Z[u], whose roots will not be algebraic integers, and hence not cyclotomic. This
finishes the proof.

2 The invariant system of minimal curves

Let C be a curve of genus g and D = gr
d be a base-point-free system on C.

Then associated to a point P ∈ C we have the Hermitian P -invariants j0(P ) =
0 < j1(P ) < . . . < jr(P ) ≤ d of D (also called the (D, P )-orders). This
sequence is the same for all but finitely many points. These finitely points P ,
where exceptional (D, P )-orders occur, are called theD-Weierstrass points of C.
The Weierstrass points of the curve are those exceptional points obtained from
the canonical linear system. A curve is called nonclassical if the generic order
sequence (for the canonical linear system) is different from {0, 1, . . . , g − 1}.

Associated to the linear system D there exists a divisor R supporting exactly
the D-Weierstrass points. Let ε0 < ε1 < . . . < εr denote the (D, Q)-orders for
a generic point Q ∈ C. Then we have εi ≤ ji(P ), for each i = 0, 1, 2, . . . , r

and for any point P , and also that

deg(R) = (ε1 + · · · + εr)(2g − 2) + (r + 1)d.

Now, in the study of a maximal curve C/Fq2 a decisive role is played by the
invariant linear system, defined as:

D := |(q + 1)P0|.
Here P0 ∈ C(Fq2) is any rational point: it is an important fact thatD is indepen-
dent of P0. See, for instance, [6], [2], [3], [1]. The importance of this system is
a consequence of the following linear equivalence

qP +Fq2(P ) ∼ (q + 1)P0,
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valid for any point P in the maximal curve C/Fq2 . Here Fq2 denotes the Frobe-
nius on the curve. This comes from the fact [6, proof of lemma 1, p. 185] that
the Frobenius (relative to Fq2 ) acts on the Jacobian JC of C as multiplication by
−q. It follows that in any maximal curve the Hasse-Witt invariant vanishes.

For a minimal curve C/Fq2 one has, mutatis mutandis, perfect analogues of
these concepts: the Frobenius (relative to Fq2 ) acts on the Jacobian JC of C as
multiplication by q, one has the fundamental linear equivalence

qP −Fq2(P ) ∼ (q − 1)P0,

valid for any point P in the minimal curve C/Fq2 , and the linear system

Eq2 := |(q − 1)P0|
is an invariant of the minimal curve C/Fq2 in the sense that it does not depend
on P0. As a consequence, in any minimal curve the Hasse-Witt invariant also
vanishes.

This section is modelled on the theory developped in [2], where the authors
apply the Stöhr-Voloch theory of Weierstrass points ([8]) to the invariant system
of a maximal curve. Here we fix a minimal curve C/Fq2 and consider the above
invariant system Eq2 = |(q − 1)P0|.

The study of possible genera of maximal curves is very rich: for instance, it is
known that for C/Fq2 maximal its genus g is bounded by g ≤ q(q − 1)/2, with
equality only for the Hermitian curves ([4], [6]).

For minimal curves the following genus bound was found by Arnaldo Garcia.

Theorem 2.1. Let C/Fq2 be a minimal curve having genus g. Then

g ≤ q

2
.

The invariant system Eq2 is non-special, i.e, the index of speciality is zero.

Proof. A minimal curve C/Fq2 has necessarily at least one rational point over
Fq2 , as

card(C(Fq2)) = q2 + 1 − 2gq = q(q − 2g) + 1 > 0

as follows from taking the remainder mod q. The upper bound then follows,
and as it implies 2g − 1 ≤ q − 1, the statement about the invariant system is a
consequence of the Riemann-Roch theorem. This finish the proof.
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This bound is sharp, as the hyperelliptic curve y2 +y+x5+δ3 = 0 has genus 2
and is minimal over Fq2 = F16, having just one rational point over F16 = F2[δ],
for δ4 = δ+1. The unique rational point is the place corresponding to the unique
branch at the singular infinite point.

In [3] the case of maximal curves with classical Weierstrass gaps is treated;
because of the Prop. 1.7 (i) in [2, p. 37], in this case the invariant system D is
non-special.

On what follows let
l = q − g

be the dimension of the invariant system Eq2 .

Theorem 2.2. Let C/Fq2 be a minimal curve having positive genus g > 0. Any
rational point over Fq2 is a Weierstrass point for Eq2 .

Proof. Denoting by {j0, . . . , jl−1} the orders of Eq2 at the rational point P0, it
follows from the fundamental linear equivalence that jl−1 = q − 1.

Denote by {ε0, . . . , εl−1} the generic orders of Eq2 . If P0 were a generic point
of Eq2 then εl−1 = jl−1 = q − 1, and as q = pm any integer ε < q − 1 is
p-adically smaller than

q − 1 = pm − 1 = (p − 1)pm−1 + (p − 1)pm−2 + · · · + (p − 1)p + (p − 1),

and the corollary 1.9 in [8, p. 7] assures that εi = i for i = 0, . . . , l − 1, and
hence that

q − 1 = εl−1 = l − 1 = q − g − 1,

but then it follows that g = 0, a contradiction. The theorem is proved.

The notation in the proof will be used on what follows. Also, the Weierstrass
semigroup, or semigroup of non-gaps, at a point P ∈ C is defined to be

WP := { m ∈ N | there is a function f ∈ Fq2(C) such that div∞(f ) = mP }
= { 0 = m0(P ) < m1(P ) < m2(P ) < · · · },

so that

dimL(dP ) = card{ i ≥ 0 | mi(P ) ≤ d }.
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As a consequence of the fundamental linear equivalence the invariant system
Eq2 = |(q − 1)P0| has no base point. The system |qP0| may have P0 as a base
point. Define

s := dimL(qP0) =
{

l if q is a gap at P0,

l + 1 if q is a non-gap at P0.

Then

0 < m1(P0) < · · · < ms−1(P0) ≤ q < ms(P0),

with ms−1(P0) = q = ml(P0) if and only if q is a non-gap at P0. In any case, if
m(P0) ∈ WP0 is a non-gap at P0 satisfying m(P0) < q then

m(P0) ∈ { 0, m1(P0), · · · , ml−1(P0) }.
By definition of a non-gap there is a positive divisor E not having P0 in its support
such that E ∼ m(P0)P0.

Adding the divisor (q − m(P0) − 1)P0 to this linear equivalence yields

E + (q − m(P0) − 1)P0 ∼ (q − 1)P0,

and thus the following are orders of Eq2 at P0:

0 ≤ q − ml−1(P0) − 1 < · · · < q − m1(P0) − 1 < q − 1.

As there are exactly l orders of Eq2 at any point, the following are exactly the
orders of Eq2 at P0:

{j0, · · · , jl−1} = {q − ml−1(P0) − 1, · · · , q − m1(P0) − 1, q − 1}.
From the fact that P0 is not a base point of Eq2 it follows that j0 = 0, and thus

ml−1(P0) = q − 1.

As a result,

Theorem 2.3. Let C/Fq2 be a minimal curve, and let P0 be a rational point.
The canonical sequence of orders at P0 determines the order sequence of Eq2 at
P0 in the following way: if

0 < m1(P0) < · · · < ml−1(P0)

Bull Braz Math Soc, Vol. 36, N. 1, 2005



EVENTUALLY MINIMAL CURVES 47

are the first non-gaps then the orders of Eq2 at P0 are

0 = q − ml−1(P0) − 1 < · · · < q − m1(P0) − 1 < q − 1.

If j is an order of Eq2 at a rational point then q − j − 1 is a non-gap at this
point, and in particular q − 1 is a non-gap at the point.

Now let P be a non rational point. The space L(qP ) always has a function f

which does not vanish at Fq2(P ), so that the inclusion

L(qP −Fq2(P )) ⊂ L(qP )

is proper, and hence

dimL(qP ) = l + 1.

Thus,

Theorem 2.4. Let C/Fq2 be a minimal curve and let P �∈ C(Fq2) be a non-
rational point. The first l + 1 non-gaps at P satisfy

0 < m1(P ) < · · · < ml(P ) ≤ q < ml+1(P ).

For a non-gap m(P ) ∈ WP at P there exists, by definition of gap, a positive
divisor E not having P in its support such that

E ∼ m(P ) · P.

As for any positive non-gap one has dimL(m(P )P ) > 1, it is possible to choose
the positive divisor E havingFq2(P ) in its support, and then, adding to the above
linear equivalence relation the divisor (q − m(P ))P − Fq2(P ) (as in [2, Prop.
1.5, p. 35]) one has

E + (q − m(P ))P −Fq2(P ) ∼ qP −Fq2(P ) ∼ (q − 1)P0,

where the divisor at the left-hand side is positive, and therefore q − m(P ) is an
order of Eq2 at P . As there are exactly l orders of Eq2 at any point, these are
precisely the orders of Eq2 at P . This may be stated as
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Theorem 2.5. Let C/Fq2 be a minimal curve and let P �∈ C(Fq2) be a non-
rational point. The order sequence of Eq2 at P is

{ j0, · · · , jl−1 } = { q − ml(P ), · · · , q − m1(P ) }.
In particular, from j0 = 0 it follows that ml(P ) = q. So if j is an order of Eq2

at P then q − j is a non-gap at P .

The Theorems 2.2–2.5 give a description of the Weierstrass points for the
invariant system Eq2 of a minimal curve which is more complete than the corre-
sponding available for a maximal curve ([2, Theo. 1.4 and Prop. 1.5]).

Theorem 2.6. Let C/Fq2 be a minimal curve of genus g. Then the Weierstrass
points of Eq2 are exactly the rational points over Fq2 and the canonical Weier-
strass points. The invariant system Eq2 is classical if and only if the canonical
system is so.

If the canonical system is classical then there will be a non-rational point P

which is a generic point for the canonical system, and then

mi(P ) = g + i for i ≥ 1,

and thus

ji−1 = q − g − i for i = 1, . . . , l,

from Theorem 2.5, so that the invariant system is classical.

For a point P ∈ C(Fq4) \ C(Fq2), applying the Frobenius morphism Fq2 , as
in [2, Prop. 1.5 (iv), p. 35], to the fundamental linear equivalence relation yields

qFq2(P ) −F2
q2(P ) ∼ (q − 1)P0 ∼ qP −Fq2(P ),

or

(q + 1)Fq2(P ) ∼ (q + 1)P .

As a consequence,

Proposition 2.7. In any minimal curve C/Fq2 a point P ∈ C(Fq4) \ C(Fq2)

has q + 1 as a non-gap.
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3 The case of genus three and characteristic two

The connections shown above between the invariant and the canonical systems of
a minimal curve suggest that even though minimality and maximality are arith-
metical conditions, they are bound to have strong geometrical consequences. In
this section these arithmetical-geometrical relations are explored in the situation
of curves having genus three and characteristic two. This case is extremely rich,
for a number of reasons: In the first place, it is known that these curves are
canonically classical ([5]). Also, such a curve is canonically a smooth plane
quartic, and the Riemann-Roch duality is just the classical projective duality in
the projective plane. Finally, in characteristic two the theory of theta characteris-
tics is totally different. This theory, given in [9], will be very important on what
follows.

An example of the interplay between Algebra and Geometry in this situation
is given by

Theorem 3.1. An eventually minimal curve C/Fq2 having genus three and
defined over a field of characteristic two is given as a smooth quartic with exactly
one hyperflex.

Proof. The conclusion is a geometrical statement which may be checked over
the algebraic closure of the constant field, and so the curveC/Fq2 may be assumed
already minimal. Canonical order sequences in genus three and characteristic
two may be the classical one 0,1,2 (for a generic point), 0,1,3 (for a simple
flex) or 0,1,4 (for a hyperflex). From the Theorem 1.5 in [8] it follows that the
Weierstrass weight if these points is 0,1 or greater than 2, respectively. The total
number of Weiertrass points, counted with weights, is 24. On the other hand,
the number of bitangents is 7,4,2 and 1 depending on the values 3,2,1 or 0 of the
Hasse-Witt invariant, respectively ([9, Sect. 3]).

For a minimal curve C/Fq2 the Hasse-Witt invariant vanishes, and thus C has
only one bitangent. Also, a hyperflex P has a tangent which has intersection
divisor 4P with the curve, and so it is a bitangent, and thus the uniqueness in
the statement is proved. If the minimal curve C has no hyperflex then C has a
unique bitangent whose intersection divisor has the form

2(P0 + Q0) with P0 �= Q0.

The curve will then have 24 Weierstrass points, all of them with order sequence
0,1,3. Using a minimality preserving constant field extension, if necessary,
P0, Q0 and all Weierstrass points may be assumed rational.

Bull Braz Math Soc, Vol. 36, N. 1, 2005



50 PAULO H. VIANA and JAIME E. A. RODRIGUEZ

For a minimal curve the numerator of the zeta function is given by

LC/F
q2 (t)=(1 − qt)6 =1 − 6qt + 15q2t2 − 20q3t3 + 15q4t4 − 6q5t5 + q6t6,

and it follows from the constant field extension formula (1.5) that

A1,F
q2 = q2 − 6q + 1

A2,F
q2 = q4 − 6q3 + 16q2 − 6q + 1.

Now each of the q4 + q2 + 1 lines L of the projective plane P(Fq2) falls into
ten exclusive types according to the intersection divisor C · L. These ten types
are labelled and counted as follows: κ1,1,1,1 is the number of positive canonical
divisors K of the form

∑
i Pi for P ∈ C(Fq2) rational and distinct:

κ1,1,1,1 := card
{ ∑

i

Pi | Pi rational, distinct and collinear
}
.

Similarly,

κ2,1,1 := card
{

2P1 + P2 + P3 | Pi rational, distinct and collinear
}
,

κ3,1 := card
{

3P1 + P2 | Pi rational, distinct and collinear
}
,

and

κ4 := card
{

4P | P rational
}
.

Here it is undestood that in the divisors 3P1 + P2 counted by κ3,1 the rational
point P1 is a flex, and similarly for the other cases. Also,

κd,1,1 := card{ D + P2+P3 |Pi rational, distinct and

D = P +Fq2(P ) for P ∈ C(Fq4) \ C(Fq2) },

κ2,2 := card{ 2(P1 + P2) | Pi rational, distinct },

κ2,d := card{ D + 2P | P rational and

Di = Pi +Fq2(Pi) for Pi ∈ C(Fq4) \ C(Fq2) },
κd,d := card{ D1 + D2 | Di distinct and

Di = Pi +Fq2(Pi) for Pi ∈ C(Fq4) \ C(Fq2) },
κt,1 := card{ D + P | P rational and

D = Q+Fq2(Q)+F2
q2(Q) for Q ∈ C(Fq6)\C(Fq2)},

Bull Braz Math Soc, Vol. 36, N. 1, 2005



EVENTUALLY MINIMAL CURVES 51

and finally,

κq := card
{
D | D = Q +Fq2(Q) +F2

q2(Q) +F3
q2(Q)

for Q ∈ C(Fq8) \ C(Fq2)
}
.

(The subscripts d, t, q should recall double, triple and quadruple). By way of
contradiction it is assumed

κ4 = 0, κ2,2 = 1, and κ3,1 = 24.

Denote by Dn
C/F

q2
the set of positive divisors having degree n defined over

Fq2 , so that D1
C/F

q2
= C(Fq2). The application

δ : D1
C/F

q2
= C(Fq2) −→ D2

C/F
q2

P 
→ DP for 2P + DP canonical

defines an injection. Similarly, for D ∈ D2
C/F

q2
let LD be the unique line of

P(Fq2) such that KD = C · LD is the unique positive canonical divisor greater
than D:

KD = C · LD = D + ED, with KD ≥ ED ≥ 0.

Now residuation

ι : D2
C/F

q2
−→ D2

C/F
q2

D 
→ KD − D = ED

defines an involution satisfying

ι(2P) = δ(P ) for P ∈ D1
C/F

q2
= C(Fq2).

The divisor P0 + Q0 is the unique fixed point of this involution:

ι(D) = D implies D = P0 + Q0.

It follows that there are exactly

A2,F
q2 − 1

2
+ 1 = q4 − 6q3 + 16q2 − 6q

2
+ 1 (C2+2)

Bull Braz Math Soc, Vol. 36, N. 1, 2005



52 PAULO H. VIANA and JAIME E. A. RODRIGUEZ

ordered pairs of divisors of degree two D, ι(D) = E with D + E canonical.
Geometrically such a pair of divisors determines a unique line L with intersection
divisor

C · L = D + E with D, E ∈ D2
C/F

q2
.

This value counts

q4 − 6q3 + 16q2 − 6q

2
+ 1 = (R2,2)

3κ1,1,1,1 + 2κ2,1,1 + κ2,d + κd,d + κd,1,1 + κ2,2 + κ3,1.

For example, the coefficient 3 = 1

2

(
4
2

)
of κ1,1,1,1 counts the possible ways of

forming an ordered pair of order two divisors out of four distinct rational points.

Among the A3,F
q2 positive divisors of degree three there are exactly A1,F

q2 ·
(q2 + 1) which are special. This is seen as such a divisor D is special exactly
when there is a canonical divisor (necessarily uniquely determined) KD with
KD ≥ D, that is, geometrically a line LD such that

KD = C · LD = D + PD.

Then clearly PD ∈ D1
C/F

q2
= C(Fq2). On the other hand the association D 
→

PD has degree q2 + 1, which is the number of lines passing through PD. As a
consequence there are exactly

A1,F
q2 · (q2 + 1) = (q2 − 6q + 1) · (q2 + 1)

= q4 − 6q3 + 2q2 − 6q + 1
(C3+1)

lines L with intersection divisor of the form C · L = D + P with D ∈ D3
C/F

q2
.

This value counts

q4 − 6q3 + 2q2 − 6q + 1 = 4κ1,1,1,1 + 3κ2,1,1 + 2κd,1,1 + κt,1

+ 2 · κ3,1 + 2κ2,2 + κ2,d

= 4κ1,1,1,1 + 3κ2,1,1 + 2κd,1,1 + κt,1

+ 2 · 24 + 2 + κ2,d .

(R3,1)

As each rational point has a unique tangent,

A1,F
q2 = q2 − 6q + 1 = κ3,1 + κ2,1,1 + κ2,d + 2κ2,2

= 24 + κ2,1,1 + κ2,d + 2.
(R2)
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As for each pair of distinct rational points there is a unique secant,(
A1,F

q2

2

)
= (q2 − 6q)(q2 − 6q + 1)

2
= q4 − 12q3 + 37q2 − 6q

2

=
(

4

2

)
κ1,1,1,1 + κ3,1 +

(
3

2

)
κ2,1,1 + κd,1,1 + κ2,2

= 6κ1,1,1,1 + 24 + 3κ2,1,1 + κd,1,1 + 1.

(R1,1)

As for each point rational over Fq4 but not over Fq2 there is a unique secant,

A1,F
q4 − A1,F

q2

2
= q4 − 7q2 + 6q

2
= κd,1,1 + 2κd,d + κ2,d . (Rd)

From having taking, without repetition or omission, each line in the projective
plane P(Fq2) it follows that

q4 + q2 + 1 = κ1,1,1,1 + κ2,1,1 + κ2,d + κd,1,1 + κd,d + κ2,2

+ κ3,1 + κt,1 + κq + κ4

= κ1,1,1,1 + κ2,1,1 + κ2,d + κd,1,1 + κd,d

+ 1 + 24 + κt,1 + κq.

(R0)

Taking these relations mod 2 yields

(R2,2) 1 ≡ κ1,1,1,1 + κ2,d + κd,d + κd,1,1 + 1

(R3,1) 1 ≡ κ2,1,1 + κt,1 + κ2,d

(R2) 1 ≡ κ2,1,1 + κ2,d

(R1,1) 0 ≡ κ2,1,1 + κd,1,1 + 1

(Rd) 0 ≡ κd,1,1 + κ2,d

(R0) 1 ≡ κ1,1,1,1 + κ2,1,1 + κ2,d + κd,1,1 + κd,d + 1 + κt,1 + κq.

It follows from this that

κt,1 ≡ 0 κ2,d ≡ κd,1,1 �≡ κ2,1,1 ≡ κq and κ1,1,1,1 ≡ κd,d mod 2.

Taking these relations mod 4, and using that a minimal curve C/Fq2 having
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odd genus is possible only if q is a square, and hence a multiple of 4, yields

(R2,2) 1 ≡ 3κ1,1,1,1 + 2κ2,1,1 + κ2,d + κd,d + κd,1,1 + 1

(R3,1) 1 ≡ 3κ2,1,1 + 2κd,1,1 + κt,1 + 2 + κ2,d

(R2) 1 ≡ κ2,1,1 + κ2,d + 2

(R1,1) 0 ≡ 2κ1,1,1,1 + 3κ2,1,1 + κd,1,1 + 1

(Rd) 0 ≡ κd,1,1 + 2κd,d + κ2,d

(R0) 1 ≡ κ1,1,1,1 + κ2,1,1 + κ2,d + κd,1,1 + κd,d + 1 + κt,1 + κq.

On the other hand, taking (R2) in (R1,1) yields

0 ≡ 2κ1,1,1,1 + 3(3 + 3κ2,d) + κd,1,1 + 1

≡ 2κ1,1,1,1 + 2 + κ2,d + κd,1,1 mod 4

and, using (Rd),

2 ≡ 2(κ1,1,1,1 + κd,d) mod 4.

It follows that κ1,1,1,1 �≡ κd,d mod 2, which contradicts the relations obtained
with p = 2, and the Theorem is proved.

It follows that κ4 = 1 and κ2,2 = 0. It may be proved that κ3,1 = 4 or 16.
From Komiya’s Theorem [5] the canonical system is classical, and from The-

orem 2.6 above the invariant system Eq2 is also classical. After an eventual
minimality preserving constant field extension it may be assumed that all canon-
ical Weierstrass points are rational over Fq2 , and then there are four possible
situations of points with respect to the invariant system Eq2 :

(a) Non-rational points of C are by hypothesis canonically generic, and they
are also generic for Eq2 because of Theorem 2.6 above. They have the
classical sequence:

{ ε0, · · · , εl−1 } = {0, · · · , q − 4}.

(b) Rational points of C/Fq2 which are canonically generic have from Theo-
rem 2.3 the order sequence:

{ j0, · · · , jl−1 } = {0, · · · , q − 5, q − 1}.
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(c) Canonical Weierstrass points of C with canonical orders 0,1,3 are rational,
and have from Theorem 2.3 the order sequence:

{ j0, · · · , jl−1 } = {0, · · · , q − 6, q − 4, q − 1}.

(d) Canonical Weierstrass points of C with canonical orders 0,1,4 are rational,
and have from Theorem 2.3 the order sequence:

{ j0, · · · , jl−1 } = {0, · · · , q − 7, q − 5, q − 4, q − 1}.

From the Stöhr-Voloch theory it is known that Weierstrass points of Eq2 con-
tribute for the ramification divisor RE

q2 with weight given by

vRE
q2

≥
∑

0≤i≤l−1

(ji − εi),

where equality holds if and only if

det(

(
ji

εi

)
) �≡ 0 mod p.

See [8, Theo. 1.5, p. 6]. For canonically generic rational points (the situation in
(b)), and with q = 2m, this determinant is

det

⎛
⎜⎜⎜⎜⎜⎝

(0
0

) (0
1

) · · · ( 0
q−4

)(1
0

) (1
1

) · · · ( 1
q−4

)
· · · ·(

q−5
0

) (
q−5

1

) · · · (
q−5
q−4

)(
q−1

0

) (
q−1

1

) · · · (
q−1
q−4

)

⎞
⎟⎟⎟⎟⎟⎠ =

(
q − 1

q − 4

)
≡ q − 2

2
= 2m−1 − 1 mod 2

and so it is odd, and these points have weight vRE
q2

(P ) = ∑
0≤i≤l−1(ji −εi) = 3.

For canonical Weierstrass points with canonical orders 0,1,3. This determinant
is

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0
0

) (0
1

) · · · ( 0
q−4

)(1
0

) (1
1

) · · · ( 1
q−4

)
· · · ·(

q−6
0

) (
q−6

1

) · · · (
q−6
q−4

)(
q−4

0

) (
q−4

1

) · · · (
q−4
q−4

)(
q−1

0

) (
q−1

1

) · · · (
q−1
q−4

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= det

(
q − 4 1(

q−1
4

) (
q−1

3

)) ≡ 2m−2 − 1 mod 2,
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and so it is odd, and these points are have weight

vRE
q2

(P ) =
∑

0≤i≤l−1

(ji − εi) = 4.

The unique point P with canonical orders 0,1,4 has greater Weierstrass weight,
which can be computed as the total Weierstrass weight is known to be ([8], p. 6):

deg(RE
q2 ) = (2g − 2)

∑
i≤l−1

εi + l(q − 1) = 3(q − 3)2.

This yields

vRE
q2

(P ) = 3(q − 3)2 − 3(q2 − 6q − κ3,1) − 4κ3,1 = 27 − κ3,1.

As a result one has the following equality of divisors

RE
q2 = 3

∑
P∈C(F

q2 )

P + RKC
,

where KC is the canonical divisor of C.
This equality should be compared to the equality conjectured in [3]

SD = (n + 1)
∑

P∈C(F
q2 )

P + RKC
,

for maximal curves which are canonically classical.
We conclude with some examples. From the Theorem 3.1 there is exactly one

hyperflex Q0. That 4 is a canonical order at Q0 means that the intersection divisor
of the curve C with the tangent L at Q0 is 4P , that is, L is a bitangent, and it
is necessarily the bitangent associated to the canonical theta characteristic ([9],
p. 59). Geometrically it is interesting to know if there are Weierstrass points Q1

and Q2 — which from the theorem have to be necessarily simple flexes — such
that their tangents intersect the curve along the divisors 3Qi + Q0, for i = 1, 2.

This simple moduli problem is easily solved: the existence of these two points
Q1 and Q2 implies that the curve is given by

Ca,b,c : f = x + y + ax3y + bx2y2 + cxy3 = 0, abc �= 0.

One can easily show that these curves are smooth iff a + b + c �= 0, that the
origin Q0 is the hyperflex and that the four distinct points Q1, Q2, Q3, Q4 in the
infinite line are Weierstrass points. Incidentally, the points Q3 and Q4 also have
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tangents cutting the curve along divisors 3Qi + Q0. The Hasse-Witt invariant
of Ca,b,c is 2 or 0 according to whether a �= c or a = c, so that among curves of
this type only curves Ca,b,a can be minimal (or maximal).

The curve C1,1,1/F8 has zeta function

ZC1,1,1/F8(t) = 1 + 24t2 + 192t4 + 512t6

(1 − t)(1 − 8t)
,

and as a consequence of the constant field extension formula for zeta functions
C1,1,1/F64 is maximal and C1,1,1/F4096 is minimal. Its invariant system has
ramification divisor

RE
q2 = 20Q0 + Q1 + Q2 + Q3 + Q4 + 3

∑
P∈C1,1,1(Fq2 )

P .

Given that F8 = F2(β) with β3 = β + 1 the curve Cβ,1,β/F8 has zeta function

ZCβ,1,β/F8(t) = 1 + 24t2 + 192t4 + 512t6

(1 − t)(1 − 8t)
,

and thus it is maximal over F82 and minimal over F84 . The curve Cβ3,1,β3/F8 has
zeta function

ZC
β3,1,β3/F8(t) = 1 + 512t6

(1 − t)(1 − 8t)

and thus it is maximal over F86 and minimal over F812 .
If α ∈ F4 \ F2 then the curve Cα,1,α/F4 has normalized polynomial

�Cα,1,α/F4(u) = LCα,1,α/F4(u/2) = 1 − u + 2u2 − u3 + 2u4 − u5 + u6

=
[(

u − 1 + √−3

2

)(
u − 1 − √−3

2

)]2

(
u − −1 + √−3

2

)(
u − −1 − √−3

2

)
.

The last two roots do not satisfy xn + 1 = 0 for any value of n, and thus no
constant field extension of this curve is maximal. However, from Theorem 1.9
this curve is eventually minimal, and indeed Cα,1,α/F212 is minimal.
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