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c-Graded filiform Lie algebras
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Abstract. In this paper we generalize naturally graded filiform Lie algebras as well as
filiform Lie algebras admitting a connected gradation of maximal length, by introducing
the concept of c-graded complex filiform Lie algebras. We deal with the particular
case of 3-graded filiform Lie algebras and we obtain their classification in arbitrary
dimension. We finally show a link among derived algebras, graded filiform and rigid
solvable Lie algebras.
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Introduction

Vergne introduced in [12] the concept of naturally graded filiform Lie algebras as
those admitting a gradation associated with the lower central series. In that paper,
she also classified them, up to isomorphism. Apart from that, several authors
have studied algebras which admit a connected gradation of maximal length,
this is, whose length is exactly the dimension of the algebra. So, Y. Hakimjanov
started this study in [8], Reyes, in this Ph. D. Thesis [11] (later published in [3]),
continued this research by giving an induction classification method and finally,
Millionschikov in [10] gave the full list of these algebras (over an arbitrary field
of zero characteristic).

The main goal of this paper is to introduce and study a kind of graded filiform
Lie algebras, the c-graded ones, which generalizes both concepts recalled above.
So, 1-graded filiform Lie algebras are naturally graded filiform Lie algebras
and 2-graded filiform Lie algebras are the algebras by Hakimjanov. Although
general results related c-graded filiform Lie algebras are obtained, these are
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particularized to establish the classification of 3-graded filiform Lie algebras in
arbitrary dimension.

For several reasons, we think that this classification can suppose a step forward
in getting the classification of Lie algebras in general. Indeed, by considering
the usual gradation of the second space of Chevalley-Eilenberg’s cohomology
of the model filiform Lie algebra Pn, given byH 2(Pn, Pn) = ⊕c≥0H

2
c+1(Pn, Pn)

and by taking into account that every filiform Lie algebra is isomorphic to (Pn)ψ,
where ψ ∈ H 2(Pn, Pn) [12], it is possible to consider c-graded Lie algebras as
algebras isomorphic to (Pn)ψc , with ψc ∈ H 2

c+1(Pn, Pn) (see [7]).
Therefore, the classification of c-graded Lie algebras allows, for one thing,

to settle the classification of filiform Lie algebras of the type (Pn)ψc+ψk and,
for another, to progress in the knowledge of the structure of (Pn)ψ , because by
considering the graduation,ψ = ψc+ψc+1 +· · ·+ψk thenψc andψk have to be
cocycles such that (Pn)ψc and (Pn)ψk are c-graded Lie algebras (see Remark 4.1).

Note also that c-graded Lie algebras are related with sill algebras introduced
by Goze and Hakimjanov in [6], although they do not give any gradation for
them.

Finally, by virtue of a result seen in [1], we obtain that for fixed c ≥ 2, there
exists m = m(c) ∈ N such that every c-graded Lie algebra of dimension n ≥ m

is a derived algebra of a rigid solvable Lie algebra of dimension n+ 1.

1 Definitions and notations

In this paper, we will consider complex Lie algebras of finite dimension with
laws denoted by [ , ].

In a Lie algebra A, one can consider the lower central series: C1(A) = A,
C2(A) = [A,A], . . . , Ck(A) = [Ck−1(A),A], . . . It is said thatA is filiform
if dim Ck(A) = n − k, for k ≥ 2, with n = dim A. Note that filiform Lie
algebras are a subset of nilpotent Lie algebras.

As a consequence of Engel’s Theorem, it is possible to obtain a basis
{e1, . . . , en} of every filiform Lie algebra such that,

[e1, en] = 0, [e1, eh] = eh+1 (h = 2, . . . , n− 1), [e2, en−1] = 0.

Such a basis is called adapted basis and with respect to it, it is verified that
Ck(A) = 〈ek+1, . . . , en〉, 2 ≤ k ≤ n− 1.

According to a result by M. Vergne ([12]) there are two filiform Lie algebras
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A = Pn whatever n is, and A = Qn for n ≥ 4 even, defined, respectively, by:

Pn : [e1, ek] = ek+1 2 ≤ k ≤ n− 1

Qn : [e1, ek] = ek+1 2 ≤ k ≤ n− 1
[ek, en+1−k] = (−1)k+1en 3 ≤ k ≤ n

2[e2, ek] = ek+1 3 ≤ k ≤ n− 2

which are both isomorphic to the graded algebra obtained when considering the
lower central series, this is the gradation defined with respect to an adapted basis
{e1, . . . , en}: {

H1 = 〈e1, e2〉
Hk = 〈ek+1〉 2 ≤ k ≤ n− 1.

So, A = H1 ⊕H2 ⊕ · · · ⊕Hn−1.

A Lie algebra A is said to be derived if there exists a Lie algebra L such that
A = C2(L).

2 c-graded Lie algebras

Definition 2.1. A gradation {Gi}i≥1 of a Lie algebraA of dimension n is called
a c-gradation if

A = G1 ⊕ 0 ⊕ · · · ⊕ 0 ⊕ Gc ⊕ . . .⊕ Gn+c−2,

where there are n one-dimensional nonzero homogeneous spaces, if c > 2 or

A = G1 ⊕ G2 ⊕ . . .⊕ Gn+c−2,

if c = 2.

Definition 2.2. A filiform Lie algebraA is called c-graded for c ≥ 2 if it admits
a c-gradation.

Note that for c = 2,we obtain a connected gradation, this is, a gradation with-
out zero homogeneous elements. However if c > 2, we obtain a disconnected
gradation with c − 2 zero homogeneous elements in it.

Proposition 2.1. The filiform Lie algebra A of dimension n is c-graded if and
only if there exists an adapted basis B = {e1, . . . , en} of A such that:

[eh, ek] = ah,keh+k+c−2

where ah,k ∈ C, h + k + c − 2 ≤ n, for all eh, ek ∈ B, with 1 < h, k < n. In
this case, the basis B is called a c-graded basis of A.
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Proof. Let consider the following c-gradation

A = G1 ⊕ 0 ⊕ · · · ⊕ 0 ⊕ Gc ⊕ · · · ⊕ Gn+c−2,

then we can take z1 ∈ G1, zk ∈ Gk+c−2 for 2 ≤ k ≤ n.AsA is filiform, we have
[z1, zk] �= 0, for all k. So, by a suitable choice of αl ∈ C, 1 ≤ l ≤ n, we can
consider el = αl zl and thus {e1, . . . , en} is a c-graded basis satisfying brackets
above.

Conversely, let A be a filiform Lie algebra whose brackets with respect to an
adapted basis {e1, . . . , en} are [eh, ek] = ah,keh+k+c−2. Then we can consider
the gradation in A defined by:

{
G1 = 〈e1〉
Gk = 〈ek−c+2〉 c ≤ k ≤ n+ c − 2.

We haveA = G1 ⊕ 0 ⊕ · · · ⊕ 0 ⊕Gc ⊕ . . .⊕Gn+c−2. It completes the proof. �

Lemma 2.2. If A is a c-graded Lie algebra of dimension n, then

2 ≤ c ≤ n− 3.

Proof. Since A is c-graded filiform, if {e1, . . . , en} is a c-graded basis, we
have that:

[eh, ek] ∈ [A,C2(A)] = C3(A)
for 1 < h, k ≤ n. So,

eh+k+c−2 ∈ 〈e4, . . . , en〉.
Therefore, h+ k+ c− 2 ≤ n.As 1 �= h �= k �= 1 then c will be maximun when
h = 2, k = 3. �

Remark 2.1. According to previous definitions, the Lie algebras Pn, one for
each dimension, are c-graded for all c. This is immediate if we consider ah,k =
0, ∀h, k > 1. From now on, these algebras will be called model Lie algebras.

Moreover, by taking into account the following lemma, this condition charac-
terizes the model algebras.

Lemma 2.3. If a non-model Lie algebra is c1-graded and c2-graded, then c1 =
c2.
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Proof. Let suppose c1 < c2. Let B = {e1, . . . , en} and B ′ = {e′1, . . . , e′n}
be c1-graded and c2-graded bases of A respectively. Since A is a non-model
algebra, there exist i, j ∈ {2, . . . , n}, i < j such that [ei, ej ] �= 0, and then
[ei, ej ] = ai,j ei+j+c1−2.

By considering the adapted basis change between both base:

eh =
n∑
k=1

Ch,ke
′
k, 1 ≤ h ≤ n,

we have by filiformity that [e1, eh] = eh+1 for 2 ≤ h ≤ n − 1, therefore
Ch,k = 0 for k < h, and 3 ≤ h ≤ n. So, en = Cn,ne

′
n which implies Cn,n �= 0.

By a recurrence way it is easy to check that Ch,h �= 0 for 3 ≤ h ≤ n. So we
have:

eh =
n∑
k=1

Ch,ke
′
k, h = 1, 2

eh =
∑
k≥h

Ch,ke
′
k, Ch,h �= 0, h ≥ 3

As B and B ′ are adapted, by considering [e2, en−1] = 0, we deduce:

eh =
∑
k≥h

Ch,ke
′
k, Ch,h �= 0, 1 ≤ h ≤ n.

As a consequence, we obtain that the matrix (Ch,k) of the change between two
c-graded base is upper-triangular.

Note that:

[ei, ej ] = ai,j ei+j+c1−2 = ai,j
∑

k≥i+j+c1−2

Ci+j+c1−2,ke
′
k =

=
⎡
⎣∑
k≥i

Ci,ke
′
k,

∑
h≥j

Cj,he
′
h

⎤
⎦ = Ci,i Cj,j a

′
i,j e

′
i+j+c2−2 +

∑
p>i+j+c2−2

λpe
′
p

where λp ∈ C and a′
i,j are structure constants of A with respect to B ′.

Therefore ai,j �= 0 and i+j +c1 −2 < i+j +c2 −2,which is contradictory.
Finally we get a similar conclusion if we suppose that c2 < c1. �
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3 Rank of c-graded filiform Lie algebras

Let us recall that the rank of a nilpotent Lie algebra is the dimension of a maximal
exterior torus of derivations. If the nilpotent Lie algebra is filiform, then its rank
is strictly smaller than 3 (see [4]). Let G be a filiform Lie algebra. In [4] is also
proved that r(G) = 2 (where r(G) denotes the rank of G) if and only if G = Pn
or G = Qn. Moreover, it can be checked that the torus of derivations if G = Pn
is generated by:

g1 = IdPn g2(e1) = e1, g2(ei) = i ei, 2 ≤ i ≤ n

and if G = Qn, the torus is generated by:

h1(z1) = 0, h1(zi) = zi, 2 ≤ i ≤ n− 1 h1(zn) = 2 zn

h2(z1) = z1, h2(zi) = (i − 2) zi, 2 ≤ i ≤ n− 1 h2(zn) = (n− 3) zn

where {z1, . . . , zn} is a basis of Qn such that z1 = e1 + e2, zi = ei, i > 1
and brackets are defined by [z1, zi] = zi+1 2 ≤ i ≤ n − 2, [z1, zn−i+1] =
(−1)i+1zn.

If A is a non model c-graded filiform Lie algebra with c ≥ 2, then we can
consider the following non nilpotent derivation:

d(e1) = e1, d(e2) = c e2, . . . , d(en) = (n− 2 + c) en

where {e1, . . . , en} is a c-graded basis of A. Moreover, as A is not isomorphic
to Qn, then r(A) = 1.

Recall that characteristically nilpotent Lie algebras are those in which every
derivation is nilpotent. For a general overview of these algebras, the reader can
consult [5]. In [9] we have also proved that c-graded filiform Lie algebras are not
characteristically nilpotent. So, as a consequence of these results, the following
is true:

Proposition 3.1. For c ≥ 2, every c-graded filiform Lie algebra is derived from
any solvable Lie algebra L, of the form L = A⊕〈U〉, of dimension n+ 1, with
ad U = d (ad U is the adjoint mapping x 
→ [U, x]). �

4 Structure of c-graded filiform Lie algebras

Let A be a c-graded filiform Lie algebra, with c ≥ 2, and B = {e1, . . . , en} be
a c-graded basis of A.We will denote by tq−1 ∈ C the coefficient of e2q−1+c in
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the brackets [eq, eq+1], with 2 ≤ q ≤ [n−c+1
2 ], ([x] denotes the integer part of

x), that is:

[e2, e3] = t1 e3+c
[e3, e4] = t2 e5+c
[e4, e5] = t3 e6+c

...

[e[ n−c+1
2 ], e[ n−c+1

2 ]+1] = t[ n−c+1
2 ]−1 e2[ n−c+1

2 ]+c−1.

If we know these brackets, it is possible to determine the rest of brackets inA
by considering, in a recurrent way, Jacobi identities associated with the elements
e1, eq, ep, for q = [n−c+1

2 ], . . . , 2 and p = q + 1, . . . , n+ 2 − c − q. These
identities will be denoted by J (e1, eq, ep) = 0.

Then, according to this notation the following result is verified:

Theorem 4.1. The structure of A is the following:

[e1, eq ] = eq+1 2 ≤ q ≤ n− 1

[eq , eq+1] = tq−1 e2q+c−1 2 ≤ q ≤ [n− c + 1

2
]

[eq , eq+2] = tq−1 e2q+c 2 ≤ q ≤ [n− c + 1

2
]

2q + c ≤ n

[eq , ep] =
([ p−q−1

2 ]∑
l=0

(−1)l
(
p − 1 − q − l

l

)
tq−1+l

)
eq+p+c−2 q + 2 < p ≤ n− q + 2 − c

2 ≤ q ≤ [n− c + 1

2
]

Moreover, as A is a Lie algebra, the rest of Jacobi identities are verified, that
is:

J (eq, ep, er) = 0

with 2 ≤ q < p < r ≤ n− 2c − 1 and p + q + r − 4 + 2c ≤ n. �

Remark 4.1. By considering the second space H 2(Pn, Pn) of Chevalley-Eilen-
berg’s cohomology of the model filiform Lie algebra, it is easy to observe that
the c-graded filiform Lie algebras are Lie algebras (Pn)ψc (see [7]), where ψc ∈
H 2
c+1(Pn, Pn), this is, ψc belongs to one of the elements of the usual gradation

H 2(Pn, Pn) = ⊕c≥0H
2
c+1(Pn, Pn).

In order to classify c-graded filiform Lie algebras, c ≥ 2, we will consider
the general c-graded algebra of dimension n defined by Theorem 4.1, where ti

Bull Braz Math Soc, Vol. 36, N. 1, 2005



66 F.J. ECHARTE, M.C. MÁRQUEZ and J. NÚÑEZ

are parameters in C. The solution of the polynomial equations Pq,p,r = 0 (in
C[t1, . . . , t[ n−c+1

2 ]−1]), associated with Jacobi identities J (eq, ep, er) = 0, with
2 ≤ q < p < r ≤ n− 2c − 1 and p + q + r − 4 + 2c ≤ n, allows in the first
place to determine the c-graded filiform Lie algebras and secondly to get their
classification.

Taking it into account, we will denote by Ac
n(t1, t2, . . . , t[ n−c+1

2 ]−1) a Lie al-
gebra whose law is defined as in Theorem 4.1, where ti are the corresponding
coefficients in [ei+1, ei+2].
Proposition 4.2.

Pq,p,r = Pq,p,r−1 − Pq,p+1,r−1 − Pq+1,p,r−1

for q < p < r and p + q + r − 4 + 2c = n.

Proof. Denoting the structure constants in Ac
n(t1, t2, . . . , t[ n−c+1

2 ]−1) by aq,p,
it is easily checked from Theorem 4.1, that:

aq,p = aq+1,p + aq,p+1

for q < p, q + p + c − 2 ≤ n− 1.As

Pq,p,r = aq,paq+p+c−2,r − aq,raq+r+c−2,p + ap,rap+r+c−2,q ,

it completes the proof. �
As a consequence of these relations among polynomial equations associated

with Jacobi equations, it is possible (as the following theorem affirms) to obtain
a smaller number of such polynomial equations, which constitute a generator
system of the rest of equations.

Remark 4.2. It is clear that if {e1, . . . , en} is a c-graded basis of a c-graded Lie
algebra, c ≥ 2,Ac

n(t1, t2, . . . , t[ n−c+1
2 ]−1), then the ideal center is:

Z(Ac
n(t1, t2, . . . , t[ n−c+1

2 ]−1)) = 〈en〉.
According to Theorem 4.1, it can be proved that:

Ac
n(t1, t2, . . . , t[ n−c+1

2 ]−1)/〈en〉

is a c-graded filiform Lie algebra of dimension n− 1 and {e′1 = e1 + 〈en〉, e′i =
ei + 〈en〉, 2 ≤ i ≤ n− 1} is a c-graded basis of it.
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Moreover,

Ac
n(t1, t2, . . . , t[ n−c+1

2 ]−1)/〈en〉 = Ac
n−1(t1, t2, . . . , t[ n−c2 ]−1).

This comes from the following fact: if we denote by aq,p the structure constants
in the algebra Ac

n(t1, t2, . . . , t[ n−c+1
2 ]−1) and āq,p denote the structure constants

in the algebra Ac
n−1(t1, t2, . . . , t[ n−c2 ]−1), it is verified that:

aq,p = āq,p

for p + q + c − 2 ≤ n− 1. Then, if we denote by P̄q,p,r the Jacobi polynomial
equations in Ac

n−1(t1, t2, . . . , t[ n−c2 ]−1), we have that:

Pq,p,r = P̄q,p,r

for q < p < r and q + p + r − 4 + 2c ≤ n− 1.

Recall that to obtain c-graded filiform Lie algebras, c ≥ 2, of dimension n we
need to solve the polynomial equations system Pq,p,r = 0, for 2 ≤ q < p <

r ≤ n − 2c − 1, p + q + r − 4 + 2c ≤ n. By using Remark 4.2, it is possible
to determine these algebras by recurrence on the dimension. So, if we know
the c-graded filiform Lie algebras of dimension n− 1,Ac

n−1(λ1, . . . , λ[ n−c2 ]−1),

then λi verify Pq,p,r = 0, for q + p + r − 4 − 2c ≤ n − 1. Hence the c-
graded filiform Lie algebras A = Ac

n(t1, . . . , t[ n−c+1
2 ]−1), of dimension n, are

such that ti = λi for 1 ≤ i ≤ [n−c2 ] − 1 and ti only must verify Pq,p,r = 0, for
q + p + r − 4 + 2c = n.

Under these conditions, fixed the coefficients λ1, . . . , λ[ n−c2 ]−1 such that
Ac
n−1(λ1, . . . , λ[ n−c2 ]−1) is a c-graded filiform Lie algebra of dimension n − 1,

the two following results are verified:

Theorem 4.3. If n− c is even, Ac
n(λ1, . . . , λ[ n−c2 ]−1) is a c-graded filiform Lie

algebra if and only ifλ1, . . . , λ[ n−c2 ]−1 satisfy the following polynomial equations:

• J (e2+2k, e n+1−2c
2 −k, e n+3−2c

2 −k) = 0, if n is odd, where 0 ≤ 3k ≤ n−2c−5
2 .

• J (e3+2k, e n−2c
2 −k, e n−2c+2

2 −k) = 0, if n is even, where 0 ≤ 3k ≤ n−2c−8
2 .

Theorem 4.4. If n−c is odd,Ac
n(λ1, . . . , λ[ n−c2 ]−1, t[ n−c2 ]) is a c-graded filiform

Lie algebra if and only ifλ1, . . . , λ[ n−c2 ]−1, t[ n−c2 ], satisfy the following polynomial
equations:

• J (e2+2k, e n+1−2c
2 −k, e n+3−2c

2 −k) = 0, if n is odd, where 0 ≤ 3k ≤ n−2c−5
2 .
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• J (e3+2k, e n−2c
2 −k, e n−2c+2

2 −k) = 0, if n is even, where 0 ≤ 3k ≤ n−2c−8
2 .

To prove both results, according to Proposition 4.2, we have:

Pq,p,r = −Pq,p+1,r − Pq+1,p,r

for q < p < r, and q + p + r − 4 + 2c = n, since Pq,p,r−1 = 0, because
q + p + r − 1 − 4 + 2c = n − 1. Then, by recurrence on q, p, r, we obtain
that any Jacobi polynomial equation is a linear combination of Pq,p,p+1 with
q + 2p + 1 − 4 + 2c = n. �

Theorem 4.5. Two c-graded filiform Lie algebras of dimension n, c ≥ 2,
Ac
n(t1, . . . , t[ n−c+1

2 ]−1) and Ac
n(t

′
1, . . . , t

′
[ n−c+1

2 ]−1
), are isomorphic if and only

if there exists a complex λ �= 0 such that t ′h = λ th for 1 ≤ h ≤ [n−c+1
2 ] − 1.

Proof. Let Ac
n(t1, . . . , t[ n−c+1

2 ]−1) and Ac
n(λt1, . . . , λt[ n−c+1

2 ]−1), λ �= 0, be
two filiform Lie algebras and B = {e1, . . . , en}, B ′ = {e′1, . . . , e′n}, c-graded
bases of them, respectively. The basis change e′1 = e1, e

′
i = λei, 2 ≤ i ≤ n

proves that these two algebras are isomorphic.

Conversely, if we consider two c-graded bases B and B ′ of the algebras
Ac
n(t1, . . . , t[ n−c+1

2 ]−1) andAc
n(t

′
1, . . . , t

′
[ n−c+1

2 ]−1
) respectively, satisfying the hy-

pothesis of the theorem, we assume that there exists a basis change:

e′h =
∑
k≥h

Ch,kek, Ck,k �= 0, 1 ≤ h ≤ n.

Starting from [e′1, e′k] = e′k+1, 2 ≤ k ≤ n− 1, we obtain that:

Ck,k = (C1,1)
n−kC2,2, 3 ≤ k ≤ n.

Moreover, if we denote by a′
q,p the structure constants in Ac

n(t
′
1, . . . , t

′
[ n−c+1

2 ]−1
)

with respect to B ′ and by considering [e′q, e′p] the ones with respect to B, we
conclude that:

aq,pCp,pCq,q = a′
q,pCp+q−2+c,p+q+c−2

for 1 ≤ q < p ≤ n, p + q + c − 2 ≤ n. Consequently,

t ′q−1 = a′
q,q+1 = Cq,qCq+1,q+1

C2q+c−1,2q+c−1
tq−1 = C2,2(C1,1)

n+c−1tq−1

for 2 ≤ q ≤ [n−c+1
2 ]. Hence λ = C2,2(C1,1)

n+c−1 �= 0 verifies required condi-
tions. �
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Remark 4.3. Note that, if we have two c-graded filiform Lie algebras Ac
n,

A′c
n such that Ac

n/Z(Ac
n) is not isomorphic to A′c

n/Z(A′c
n), then Ac

n is not
isomorphic to A′c

n.

5 Classification of 3-graded filiform Lie algebras

By using the notation of Theorem 4.1 and by taking into consideration the pre-
vious theorem, we have that every 3-graded filiform Lie algebra is isomorphic
to one of the following Lie algebras. Note that for dimension less than 6, the
unique 3-graded Lie algebra in each dimension is the model algebra.

• In dimA = 6 : g1
6 := A3

6(0) , g2
6 := A3

6(1).

• In dimA = 7 : g1
7 := A3

7(0) , g2
7 := A3

7(1).

• In dimA = 8 : g1
8 := A3

8(0, 0), g2
8 := A3

8(λ, 1), g3
8 := A3

8(1, 0).

• In dimA = 9 : g1
9 := A3

9(0, 0), g2
9 := A3

9(λ, 1), g3
9 := A3

9(1, 0).

• In dimA = 10 : g1
10 := A3

10(0, 0, 0), g2
10 := A3

10(λ, 1, 0),

g3
10 := A3

10(1, 0, 0), g4
10 := A3

10(α, β, 1) with λ, α, β ∈ C.

• In dimA = 11 : g1
11 := A3

11(0, 0, 0) , g2
11 := A3

11(1, 0, 0),

g3
11 := A3

11(
4λ2−3λ

3 , λ, 1) with λ ∈ C.

• In dimA = 12 : g1
12 := A3

12(0, 0, 0, 0) , g2
12 := A3

12(1, 0, 0, λ),

g3
12 := A3

12(0, 0, 0, 1), g4
12 := A3

12(
4λ2−3λ

3 , λ, 1, µ) with λ, µ ∈ C.

• In dimA = 13 : g1
13 := A3

13(0, 0, 0, 0), g2
13 := A3

13(1, 0, 0, 0),

g3
13 := A3

13(0, 0, 0, 1), g4
13 := A3

13(
4λ2−3λ

3 , λ, 1, 5λ−10
4λ2−5λ−4) for λ ∈ C such

that 4λ2 − 5λ− 4 �= 0.

• In dimA = 14 : g1
14 := A3

14(0, 0, 0, 0, 0),

g2
14 := A3

14(0, 0, 0, 0, 1), g3
14 := A3

14(1, 0, 0, 0, α),

g4
14 := A3

14(0, 0, 0, 1, α) α ∈ C

g5
14 := A3

14(
4λ2−3λ

3 , λ, 1, 5λ−10
4λ2−5λ−4 ,

15λ−40
8λ3−6λ2−13λ−4) for λ ∈ C such that

4λ2 − 5λ− 4 �= 0 and 8λ3 − 6λ2 − 13λ− 4 �= 0.
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• In dimA = 15 : g1
15 := A3

15(0, 0, 0, 0, 0),

g2
15 := A3

15(0, 0, 0, 0, 1), g3
15 := A3

15(1, 0, 0, 0, 0),

g4
15 := A3

15(0, 0, 0, 1, 4),

g5
15 := A3

15(42, 6, 1, 2
11 ,

5
11·13), g6

15 := A3
15(

10
3 , 2, 1, 0,−1),

g7
15 := A3

15(
21+7

√
11

12 , 5+√
11

4 , 1, −3+√
11

−1+√
11
, −17+3

√
11

2+3
√

11
),

g8
15 := A3

15(
21−7

√
11

12 , 5−√
11

4 , 1, 3+√
11

1+√
11
, 17+3

√
11

−2+3
√

11
).

• In dimA = 16 : g1
16 := A3

16(0, 0, 0, 0, 0, 0) ,

g2
16 := A3

16(0, 0, 0, 0, 0, 1), g3
16 := A3

16(0, 0, 0, 0, 1, λ),

g4
16 := A3

16(42, 6, 1, 2
11 ,

5
11·13 ,

1
11·13), g5

16 := A3
16(1, 0, 0, 0, 0, λ),

g6
16 := A3

16(0, 0, 0, 1, 4, 25), g7
16 := A3

16(
10
3 , 2, 1, 0,−1, −5

3 ),

g8
16 := A3

16(
21+7

√
11

12 , 5+√
11

4 , 1, −3+√
11

−1+√
11
, −17+3

√
11

2+3
√

11
, 6−52+17

√
11

−31+√
11
),

g9
16 := A3

16(
21−7

√
11

12 , 5−√
11

4 , 1, 3+√
11

1+√
11
, 17+3

√
11

−2+3
√

11
, 6 52+17

√
11

31−√
11
), λ ∈ C.

We show now in detail some examples of c-graded Lie algebras which allow
to check the classification above indicated. We use dimension 6 and 13 due to in
each of these cases the computations are different. Later, we will continue with
the classification for dimA ≥ 17.

Example 5.1. Let A be a 3-graded Lie algebra of dimension 6.
In this case, according to Theorem 4.1 we have an one-parametric family of

algebras:
A3

6(t1) : [e1, ek] = ek+1 for 2 ≤ k ≤ 5
[e2, e3] = t1 e6

where the parameter t1 ∈ C. So, according to Theorem 4.5, we distinguish:

• If t1 = 0, we obtain the model algebra L6,

A3
6(0) : [e1, ek] = ek+1 for 2 ≤ k ≤ 5.

• If t1 �= 0, all the algebras A3
6(t1) with t1 �= 0 are isomorphic to:

A3
6(1) : [e1, ek] = ek+1 for 2 ≤ k ≤ 5

[e2, e3] = e6.
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Then, a 3-graded filiform Lie algebra of dimension 6 is isomorphic to A3
6(0)

or A3
6(1).

The classification of 3-graded Lie algebras up dimension 12 can be obtained
in a similar way.

To classify 3-graded Lie algebras of dimension greater or equal than 13 we
use an inductive method based on Theorems 4.1, 4.3, 4.4 and 4.5 and Remarks
4.2 and 4.3.

Example 5.2. We start from the four-parametric family A3
12(t1, t2, t3, t4) of

algebras in dimension 12, (see Theorem 4.1), where the parameters t1, t2, t3
and t4 have to verify the condition p1 = P2,3,4:

p1 = 3t2t3 + 3t1t3 − 4t22 = 0,

and we obtain that a 3-graded filiform Lie algebra of dimension 12 is isomor-
phic to one of the following: A3

12(0, 0, 0, 0),A3
12(0, 0, 0, 1),A3

12(1, 0, 0, α) or

A3
12(

4λ2−3λ
3 , λ, 1, µ), where α, λ, µ ∈ C.

Now, for dimension 13, starting from the four-parametric family of algebras:

A3
13(t1, t2, t3, t4) : [e1, ek] = ek+1 for 2 ≤ k ≤ 12

[e2, e10] = (t1 − 6t2 + 10t3 − 4t4) e13

[e2, e9] = (t1 − 5t2 + 6t3 − t4) e12

[e2, e8] = (t1 − 4t2 + 3t3) e11

[e2, e7] = (t1 − 3t2 + t3) e10

[e2, e6] = (t1 − 2t2) e9

[e2, e5] = (t1 − t2) e8

[e2, e4] = t1 e7

[e2, e3] = t1 e6

[e3, e9] = (t2 − 4t3 + 3t4) e13

[e3, e8] = (t2 − 3t3 + t4) e12

[e3, e7] = (t2 − 2t3) e11

[e3, e6] = (t2 − t3) e10

[e3, e5] = t2 e9

[e3, e4] = t2 e8

[e4, e8] = (t3 − 2t4) e13

[e4, e7] = (t3 − t4) e12

[e4, e6] = t3 e11

[e4, e5] = t3 e10

[e5, e7] = t4 e13

[e5, e6] = t4 e12
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where the parameters t1, t2, t3 and t4 have to verify conditions p1 = 0 (see
Remark 4.2) and p2 = P 13=0

2,4,5 , which is reduced to:

p2 = −5t2t3 + 10t23 − 4t3t4 + 3t1t4 − 2t2t4 = 0 (1)

by taking into account Theorem 4.3.
Hence, from classification for dimension 12 and Remark 4.3, we conclude:

• From 〈(0, 0, 0, 0)〉 we obtain the model algebra A3
13(0, 0, 0, 0), because

(0, 0, 0, 0) verifies (1).

• From ∪λ∈C〈(1, 0, 0, λ)〉 we obtain A3
13(1, 0, 0, 0), since λ = 0 is neces-

sary for (1, 0, 0, λ) to verify (1).

• From 〈(0, 0, 0, 1)〉we haveA3
13(0, 0, 0, 1),because (0, 0, 0, 1) verifies(1).

• From ∪λ,µ∈C〈( 4λ2−3λ
3 , λ, 1, µ)〉 we obtain A3

13(
4λ2−3λ

3 , λ, 1, 5λ−10
4λ2−5λ−4),

since µ = 5λ−10
4λ2−5λ−4 , for λ ∈ C with 4λ2 − 5λ − 4 �= 0 is necessary

for ( 4λ2−3λ
3 , λ, 1, µ) to verify (1).

Next, we prove that for dimA ≥ 17, only five 3-graded filiform Lie algebras
(up to isomorphism) are obtained in the case of even dimension, whereas, four
algebras and two one-parametric families of 3-graded filiform Lie algebras (up
to isomorphism) are obtained in the case of odd dimension.

Theorem 5.1. Let A be a 3-graded filiform Lie algebra of dimension n, with
n ≥ 17. Then they are verified:

• If n is odd, the Lie algebra A3
n(t1, . . . , t n−5

2
) is isomorphic to one of the

following algebras:

– A3
n(0, 0, . . . , 0)

– A3
n(1, 0, . . . , 0)

– A3
n(0, . . . , 0, 1)

– A3
n(0, . . . , 0, 1, (n−3)(n−7)

24 )

– A3
n(λ1, . . . , λ n−5

2
), where λk+1 = k+1

2(2k+5)λk for k ≥ 1 and λ1 = 42.

• If n is even, the Lie algebra A3
n(t1, . . . , t n−4

2
) is isomorphic to one of the

following algebras:
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– A3
n(0, 0, . . . , 0)

– A3
n(1, 0, . . . , 0, λ) with λ ∈ C

– A3
n(0, . . . , 1, λ) with λ ∈ C

– A3
n(0, . . . , 0, 1)

– A3
n(0, . . . , 0, 1, (n−4)(n−8)

24 , (n−6)2(n−8)(n−4)
3·32·4 )

– A3
n(λ1, . . . , λ n−4

2
), where λk+1 = k+1

2(2k+5)λk for k ≥ 1 and λ1 = 42.

Proof. We proceed by induction on n = dimA. Note that some details of the
induction will be omitted, due to the proof could be lengthy.

• For dimA = 17 we obtain:

g1
17 := A3

17(0, 0, 0, 0, 0, 0), g2
17 := A3

17(0, 0, 0, 0, 0, 1),

g3
17 := A3

17(0, 0, 0, 0, 1, 35
6 ) g4

17 := A3
17(1, 0, 0, 0, 0, 0),

g5
17 := A3

17(42, 6, 1, 2
11 ,

5
11·13 ,

1
11·13).

• For dimA = 18 :
g1

18 := A3
18(0, 0, 0, 0, 0, 0, 0), g2

18 := A3
18(0, 0, 0, 0, 0, 0, 1),

g3
18 := A3

18(0, 0, 0, 0, 0, 1, λ), g4
18 := A3

18(0, 0, 0, 0, 1, 35
6 ,

105
2 ),

g5
18 := A3

18(42, 6, 1, 2
11 ,

5
11·13 ,

1
11·13 ,

7
11·13·17·2 ),

g6
18 := A3

18(1, 0, 0, 0, 0, 0, λ), λ ∈ C.

Let suppose the result proved for dimA = n− 1.We will show that it is also
true for dimA = n. Indeed:

• If n es odd. By using Theorem 4.3 we have that the parameters t1, . . . , t n−5
2

of any 3-graded filiform Lie algebra A3
n(t1, . . . , t n−5

2
) have to satisfy:

J (e2+2r , e n−5
2 −r , e n−3

2 −r ) = 0

where 0 ≤ 3r ≤ n−11
2 . From Theorem 4.1, it is equivalent to:

− t n−7−2r
2

[e2r+2, en−2r−3] −

−
[ n−6r−9

4 ]∑
l=0

(−1)l
(n−6r−9

2 − l

l

)
t2r+1+l[en+2r+3

2
, e n−5−2r

2
] +

+
[ n−6r−11

4 ]∑
l=0

(−1)l
(n−6r−11

2 − l

l

)
t2r+1+l[en+2r+1

2
, e n−3−2r

2
] = 0.

(2)
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By hypothesis, the algebra A3
n−1(t1, . . . , t n−5

2
) is isomorphic to one of

the following: A3
n−1(0, . . . , 0),A3

n−1(1, . . . , 0, λ),A3
n−1(0, . . . , 0, 1),

A3
n−1(0, . . . , 0, 1, λ), A3

n−1(0, . . . , 0, 1, (n−5)(n−9)
24 , (n−7)2(n−9)(n−5)

32·4·3 ) or
A3
n−1(λ1, . . . , λ n−5

2
), where λk+1 = k+1

4k+10λk, for k ≥ 1 and λ1 = 42.
Then:

– From the first four algebras previously mentioned, we obtain, re-
spectively: A3

n(0, . . . , 0), A3
n(0, . . . , 0, 1), A3

n(1, 0, . . . , 0) and
A3
n(0, . . . , 0, 1, (n−3)(n−7)

24 ).

– From A3
n−1

(
0, . . . , 0, 1, (n−5)(n−9)

24 , (n−7)2(n−9)(n−5)
32·4·3

)
we do not ob-

tain any Lie algebra, because

(
0, . . . , 0, 1,

(n− 5)(n− 9)

24
,
(n− 7)2(n− 9)(n− 5)

32 · 4 · 3

)

does not satisfy J (e4, e n−7
2
, e n−5

2
) = 0.

– From A3
n−1(λ1, . . . , λ n−5

2
), where λk+1 = k+1

2(2k+5)λk for k ≥ 1 and

λ1 = 42, we obtain A3
n(λ1, . . . , λ n−5

2
), since it is isomorphic to a

finite quotient algebra of the infinite dimensional Witt Lie algebra:

W∞ : [xi, xj ] = (j − i)xi+j for 1 ≤ i, j

defined by:
W∞/〈x2, xn+2, . . . 〉.

So, with respect to the basis {x1, x3, x4, . . . , xn+1}, the quotient al-
gebra is defined by [xi, xj ] = (j − i)xi+j for i + j ≤ n + 1. And
the isomorphism is defined by e1 = x1, ei = 6 (i − 1)! 420 xi+1 for
i ≥ 2.

• Ifn is even, by taking into account the Theorem 4.4 we have that the param-
eters t1, . . . , t n−4

2
of any 3-graded filiform Lie algebra A3

n(t1, . . . , t n−4
2
)

have to satisfy:
J (e3+2r , e n−6

2 −r , e n−4
2 −r ) = 0
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where 0 ≤ 3r ≤ n−14
2 . Then,

tn− n−8−2r
2

[en−4−2r , e3+2r ] −

−
[ n−6r−12

4 ]∑
l=0

(−1)l
(n−6r−12

2 − l

l

)
t2r+2+l[en+

2 +r , e n−6
2 −r ] +

+
[ n−6r−14

4 ]∑
l=0

(−1)l
(n−6r−14

2 − l

l

)
t2r+2+l[en+2

2 +r , e n−4
2 −r ] = 0.

(3)

By hypothesis, the algebraA3
n−1(t1, . . . , t n−6

2
) is isomorphic to one of the

following algebras:

A3
n−1(0, . . . , 0), A3

n−1(1, . . . , 0), A3
n−1(0, . . . , 0, 1),

A3
n−1

(
0, . . . , 0, 1,

(n− 4)(n− 8)

24

)
or A2

n−1(λ1, . . . , λ n−5
2
),

where λk+1 = k+1
4k+10λk, for k ≥ 1 and λ1 = 42. Then:

– From A3
n−1(0, . . . , 0) we obtain A3

n(0, . . . , 0, t n−4
2
), t n−4

2
∈ C.

Hence, we can distinguish:

∗ If t n−4
2

= 0, then

A3
n(0, . . . , 0).

∗ If t n−4
2

�= 0, then all algebrasA3
n(0, . . . , 0, t n−4

2
) are isomorphic

to:
A3
n(0, . . . , 0, 1).

And (0, . . . , 0), (0, . . . , 1) satisfy Jacobi equations (3).

– From the three algebras A3
n−1(1, 0, . . . , 0),A3

n−1(0, . . . , 0, 1) and
A3
n−1(0, . . . , 0, 1, (n−4)(n−8)

24 ) we now obtain

A3
n(1, 0, . . . , 0, λ), A3

n(0, . . . , 0, 1, λ),

and A3
n

(
0, . . . , 0, 1,

(n− 4)(n− 8)

24
,
(n− 6)2(n− 4)(n− 8)

32 · 4 · 3

)
,

respectively.
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– From A3
n−1(λ1, . . . , λ n−6

2
), where λk+1 = k+1

2(2k+5)λk for k ≥ 1 and

λ1 = 42, we obtain A3
n(λ1, . . . , λ n−4

2
), where λk+1 = k+1

2(2k+5)λk for
k ≥ 1 and λ1 = 42, since similarly to the case n odd, it is a quotient
algebra of the infinite Witt Lie algebra. �

6 Rigid solvable Lie algebras whose nil-radical is 3-graded filiform

Let Mn be the algebraic variety of Lie algebras of dimension n imbedded in

C
n3−n2

2 . A Lie algebra L of dimension n is called rigid if its orbit is a Zariski
open set ofMn. For a general overview of these algebras, the reader can consult
[5].

According to a result by Carles [2], it follows that every solvable rigid Lie
algebra L is decomposable in the sense:

L = N ⊕ T

where N is the nil-radical of L and T is an exterior torus of derivations.
In [1] authors study solvable rigid Lie algebras whose nil-radical is filiform.

Particularly, they study algebras whose nil-radical is the c-graded Lie algebra
Ac
n(t1, . . . , t[ n−c+1

2 ]−1).

Then, by using Theorem 3.13 of [1] and our 3-graded filiform Lie algebras
classification, we deduce the following:

Theorem 6.1. Let L = T ⊕ A3
n(t1, . . . , t[ n−c+1

2 ]−1) be a decomposable Lie

algebra of dimension n+ 1, whereA3
n(t1, . . . , t[ n−c+1

2 ]−1) is a 3-graded filiform
Lie algebra. Then:

• L is not rigid if n is odd and 11 ≤ n ≤ 13 or if n is even and 12 ≤ n ≤ 14.

• L is rigid if n ≥ 15 with n odd or n ≥ 16 with n even, andA3
n is neither the

model algebra nor an algebra belonging to the familiesA3
n(1, 0, . . . , 0, λ)

and A3
n(0, . . . , 1, λ). �
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