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Homomorphisms between Poisson JC∗-Algebras

Chun-Gil Park*

Abstract. It is shown that every almost linear mapping h : A → B of a unital
Poisson JC∗-algebra A to a unital Poisson JC∗-algebra B is a Poisson JC∗-algebra
homomorphism when h(2nu ◦ y) = h(2nu) ◦ h(y), h(3nu ◦ y) = h(3nu) ◦ h(y) or
h(qnu ◦ y) = h(qnu) ◦ h(y) for all y ∈ A, all unitary elements u ∈ A and n =
0, 1, 2, · · · , and that every almost linear almost multiplicative mapping h : A → B
is a Poisson JC∗-algebra homomorphism when h(2x) = 2h(x), h(3x) = 3h(x) or
h(qx) = qh(x) for all x ∈ A. Here the numbers 2, 3, q depend on the functional
equations given in the almost linear mappings or in the almost linear almost multiplicative
mappings.

Moreover, we prove the Cauchy–Rassias stability of Poisson JC∗-algebra homomor-
phisms in Poisson JC∗-algebras.

Keywords: Poisson JC∗-algebra homomorphism, Poisson JC∗-algebra, stability, lin-
ear functional equation.
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1 Introduction

A PoissonC∗-algebraA is aC∗-algebra with a C-bilinear map {·, ·} : A×A →
A, called a Poisson bracket, such that (A, {·, ·}) is a complex Lie algebra and

{ab, c} = a{b, c} + {a, c}b
for all a, b, c ∈ A. Poisson algebras have played an important role in many
mathematical areas and have been studied to find sympletic leaves of the cor-
responding Poisson varieties. It is also important to find or construct a Poisson
bracket in the theory of Poisson algebra (see [3, 7, 8, 20]).
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80 C. PARK

The original motivation to introduce the class of nonassociative algebras known
as Jordan algebras came from quantum mechanics (see [19]). Let L(H ) be the
real vector space of all bounded self-adjoint linear operators onH , interpreted as
the (bounded) observables of the system. In 1932, Jordan observed that L(H )

is a (nonassociative) algebra via the anticommutator product x ◦ y := xy+yx
2 .

A commutative algebra X with product x ◦ y is called a Jordan algebra. A
unital Jordan C∗-subalgebra of a C∗-algebra, endowed with the anticommutator
product, is called a JC∗-algebra.

LetX and Y be Banach spaces with norms ||·|| and ‖·‖, respectively. Consider
f : X → Y to be a mapping such that f (tx) is continuous in t ∈ R for each
fixed x ∈ X. Assume that there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖f (x + y)− f (x)− f (y)‖ ≤ θ(||x||p + ||y||p)
for all x, y ∈ X. Rassias [12] showed that there exists a unique R-linear mapping
T : X → Y such that

‖f (x)− T (x)‖ ≤ 2θ

2 − 2p
||x||p

for all x ∈ X. Găvruta [2] generalized the Rassias’ result: Let G be an abelian
group and Y a Banach space. Denote by ϕ : G ×G → [0,∞) a function such
that

ϕ̃(x, y) =
∞∑
j=0

2−jϕ(2j x, 2j y) < ∞

for all x, y ∈ G. Suppose that f : G → Y is a mapping satisfying

‖f (x + y)− f (x)− f (y)‖ ≤ ϕ(x, y)

for all x, y ∈ G. Then there exists a unique additive mapping T : G → Y such
that

‖f (x)− T (x)‖ ≤ 1

2
ϕ̃(x, x)

for all x ∈ G. C. Park [9] applied the Găvruta’s result to linear functional
equations in Banach modules over a C∗-algebra.

Jun and Lee [4] proved the following: Denote byϕ : X\{0}×X\{0} → [0,∞)

a function such that

ϕ̃(x, y) =
∞∑
j=0

3−jϕ(3j x, 3j y) < ∞
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HOMOMORPHISMS BETWEEN POISSON JC∗-ALGEBRAS 81

for all x, y ∈ X \ {0}. Suppose that f : X → Y is a mapping satisfying

‖2f
(x + y

2

) − f (x)− f (y)‖ ≤ ϕ(x, y)

for all x, y ∈ X \ {0}. Then there exists a unique additive mapping T : X → Y

such that

‖f (x)− f (0)− T (x)| ≤ 1

3

(
ϕ̃(x,−x)+ ϕ̃(−x, 3x)

)
for all x ∈ X \ {0}. C. Park and W. Park [11] applied the Jun and Lee’s result to
the Jensen’s equation in Banach modules over a C∗-algebra.

Recently, Trif [18] proved the following: Let q := l(d−1)
d−l , r := − l

d−l . Denote
by ϕ : Xd → [0,∞) a function such that

ϕ̃(x1, · · · , xd) =
∞∑
j=0

q−jϕ(qjx1, · · · , qjxd) < ∞

for all x1, · · · , xd ∈ X. Suppose that f : X → Y is a mapping satisfying

‖d d−2Cl−2f

(
x1 + · · · + xd

d

)
+ d−2Cl−1

d∑
j=1

f (xj )

−l
∑

1≤j1<···<jl≤d
f

(
xj1 + · · · + xjl

l

)
‖ ≤ ϕ(x1, · · · , xd)

for all x1, · · · , xd ∈ X. Then there exists a unique additive mapping T : X → Y

such that

‖f (x)− f (0)− T (x)‖ ≤ 1

l · d−1Cl−1
ϕ̃(qx, rx, · · · , rx︸ ︷︷ ︸

d − 1 times

)

for all x ∈ X. And C. Park [10] applied the Trif’s result to the Trif functional
equation in Banach modules over aC∗-algebra. Several authors have investigated
functional equations (see [1], [13]–[17]).

Throughout this paper, let q = l(d−1)
d−l and r = − l

d−l for positive integers l, d
with 2 ≤ l ≤ d − 1. Let A be a unital Poisson JC∗-algebra with norm || · ||,
unit e and unitary group U(A), and B a unital Poisson JC∗-algebra with norm
‖ · ‖ and unit e′.
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82 C. PARK

Using the stability methods of linear functional equations, we prove that every
almost linear mapping h : A → B is a Poisson JC∗-algebra homomorphism
when h(2nu ◦ y) = h(2nu) ◦ h(y), h(3nu ◦ y) = h(3nu) ◦ h(y) or h(qnu ◦ y) =
h(qnu) ◦ h(y) for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · , and that
every almost linear almost multiplicative mapping h : A → B is a Poisson
JC∗-algebra homomorphism when h(2x) = 2h(x), h(3x) = 3h(x) or h(qx) =
qh(x) for all x ∈ A. We moreover prove the Cauchy–Rassias stability of Poisson
JC∗-algebra homomorphisms in Poisson JC∗-algebras.

2 Homomorphisms between Poisson JC∗-algebras

Definition 2.1. A C-linear mapping H : A → B is called a Poisson JC∗-
algebra homomorphism if H : A → B satisfies

H(x ◦ y) = H(x) ◦H(y),
H({x, y}) = {H(x),H(y)}

for all x, y ∈ A.

We are going to investigate Poisson JC∗-algebra homomorphisms between
Poisson JC∗-algebras associated with the Cauchy functional equation.

Theorem 2.1. Let h : A → B be a mapping satisfying h(0) = 0 and h(2nu ◦
y) = h(2nu)◦h(y) for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · , for which
there exists a function ϕ : A4 → [0,∞) such that

ϕ̃(x, y, z, w) :=
∞∑
j=0

2−jϕ(2j x, 2j y, 2j z, 2jw) < ∞, (2.i)

‖h(µx + µy + {z,w})− µh(x)− µh(y)− {h(z), h(w)}‖
≤ ϕ(x, y, z, w) (2.ii)

for all µ ∈ T
1 := {λ ∈ C | |λ| = 1}, and all x, y, z, w ∈ A. Assume that (2.iii)

limn→∞ h(2ne)
2n = e′. Then the mapping h : A → B is a Poisson JC∗-algebra

homomorphism.

Proof. Put z = w = 0 and µ = 1 ∈ T
1 in (2.ii). It follows from Găvruta’s

Theorem [2] that there exists a unique additive mapping H : A → B such that

‖h(x)−H(x)‖ ≤ 1

2
ϕ̃(x, x, 0, 0) (2.iv)
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HOMOMORPHISMS BETWEEN POISSON JC∗-ALGEBRAS 83

for all x ∈ A. The additive mapping H : A → B is given by

H(x) = lim
n→∞

1

2n
h(2nx) (2.1)

for all x ∈ A.
By the assumption, for each µ ∈ T

1,

‖h(2nµx)− 2µh(2n−1x)‖ ≤ ϕ(2n−1x, 2n−1x, 0, 0)

for all x ∈ A. And one can show that

‖µh(2nx)− 2µh(2n−1x)‖ ≤ |µ| · ‖h(2nx)− 2h(2n−1x)‖
≤ ϕ(2n−1x, 2n−1x, 0, 0)

for all µ ∈ T
1 and all x ∈ A. So

‖h(2nµx)− µh(2nx)‖ ≤‖h(2nµx)− 2µh(2n−1x)‖
+ ‖2µh(2n−1x)− µh(2nx)‖

≤ϕ(2n−1x, 2n−1x, 0, 0)+ ϕ(2n−1x, 2n−1x, 0, 0)

for all µ ∈ T
1 and all x ∈ A. Thus 2−n‖h(2nµx)− µh(2nx)‖ → 0 as n → ∞

for all µ ∈ T
1 and all x ∈ A. Hence

H(µx) = lim
n→∞

h(2nµx)

2n
= lim

n→∞
µh(2nx)

2n
= µH(x) (2.2)

for all µ ∈ T
1 and all x ∈ A.

Now let λ ∈ C (λ 
= 0) and M an integer greater than 4|λ|. Then | λ
M

| < 1
4 <

1 − 2
3 = 1

3 . By [5, Theorem 1], there exist three elements µ1, µ2, µ3 ∈ T
1 such

that 3 λ
M

= µ1 +µ2 +µ3. AndH(x) = H(3 · 1
3x) = 3H( 1

3x) for all x ∈ A. So
H( 1

3x) = 1
3H(x) for all x ∈ A. Thus by (2.2)

H(λx) = H

(
M

3
· 3
λ

M
x

)
= M ·H

(
1

3
· 3
λ

M
x

)
= M

3
H

(
3
λ

M
x

)

= M

3
H(µ1x + µ2x + µ3x) = M

3

(
H(µ1x)+H(µ2x)+H(µ3x)

)
= M

3
(µ1 + µ2 + µ3)H(x) = M

3
· 3
λ

M
H(x)

= λH(x)
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84 C. PARK

for all x ∈ A. Hence

H(ζx + ηy) = H(ζx)+H(ηy) = ζH(x)+ ηH(y)

for all ζ, η ∈ C(ζ, η 
= 0) and all x, y ∈ A. And H(0x) = 0 = 0H(x) for all
x ∈ A. So the unique additive mapping H : A → B is a C-linear mapping.

Since h(2nu ◦ y) = h(2nu) ◦ h(y) for all y ∈ A, all u ∈ U(A) and n =
0, 1, 2, · · · ,

H(u ◦ y) = lim
n→∞

1

2n
h(2nu ◦ y)

= lim
n→∞

1

2n
h(2nu) ◦ h(y) = H(u) ◦ h(y)

(2.3)

for all y ∈ A and all u ∈ U(A). By the additivity of H and (2.3),

2nH(u ◦ y) = H(2nu ◦ y) = H(u ◦ (2ny)) = H(u) ◦ h(2ny)
for all y ∈ A and all u ∈ U(A). Hence

H(u ◦ y) = 1

2n
H(u) ◦ h(2ny) = H(u) ◦ 1

2n
h(2ny) (2.4)

for all y ∈ A and all u ∈ U(A). Taking the limit in (2.4) as n → ∞, we obtain

H(u ◦ y) = H(u) ◦H(y) (2.5)

for all y ∈ A and all u ∈ U(A). Since H is C-linear and each x ∈ A is
a finite linear combination of unitary elements (see [6, Theorem 4.1.7]), i.e.,
x = ∑m

j=1 λjuj (λj ∈ C, uj ∈ U(A)),

H(x ◦ y) = H
( m∑
j=1

λjuj ◦ y) =
m∑
j=1

λjH(uj ◦ y) =
m∑
j=1

λjH(uj ) ◦H(y)

= H
( m∑
j=1

λjuj
) ◦H(y) = H(x) ◦H(y)

for all x, y ∈ A.
By (2.iii), (2.3) and (2.5),

H(y) = H(e ◦ y) = H(e) ◦ h(y) = e′ ◦ h(y) = h(y)

for all y ∈ A. So
H(y) = h(y)
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HOMOMORPHISMS BETWEEN POISSON JC∗-ALGEBRAS 85

for all y ∈ A.
It follows from (2.1) that

H(x) = lim
n→∞

h(22nx)

22n
(2.6)

for all x ∈ A. Let x = y = 0 in (2.ii). Then we get

‖h({z,w})− {h(z), h(w)}‖ ≤ ϕ(0, 0, z, w)

for all z,w ∈ A. So

1

22n
‖h({2nz, 2nw})− {h(2nz), h(2nw)}‖ ≤ 1

22n
ϕ(0, 0, 2nz, 2nw)

≤ 1

2n
ϕ(0, 0, 2nz, 2nw)

(2.7)

for all z,w ∈ A. By (2.i), (2.6), and (2.7),

H({z,w}) = lim
n→∞

h(22n{z,w})
22n

= lim
n→∞

h({2nz, 2nw})
22n

= lim
n→∞

1

22n

{
h(2nz), h(2nw)

} = lim
n→∞

{
h(2nz)

2n
,
h(2nw)

2n

}

= {H(z),H(w)}
for all z,w ∈ A.

Therefore, the mapping h : A → B is a Poisson JC∗-algebra homomorphism,
as desired. �

Corollary 2.2. Let h : A → B be a mapping satisfying h(0) = 0 and h(2nu ◦
y) = h(2nu)◦h(y) for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · , for which
there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy + {z,w})−µh(x)− µh(y)− {h(z), h(w)}‖
≤ θ(||x||p + ||y||p + ||z||p + ||w||p)

for all µ ∈ T
1, and all x, y, z, w ∈ A. Assume that limn→∞ h(2ne)

2n = e′. Then
the mapping h : A → B is a Poisson JC∗-algebra homomorphism.
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86 C. PARK

Proof. Define ϕ(x, y, z, w) = θ(||x||p + ||y||p + ||z||p + ||w||p), and apply
Theorem 2.1. �

Theorem 2.3. Let h : A → B be a mapping satisfying h(0) = 0 and h(2nu ◦
y) = h(2nu)◦h(y) for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · , for which
there exists a function ϕ : A4 → [0,∞) satisfying (2.i) and (2.iii) such that

‖h(µx + µy + {z,w})− µh(x)− µh(y)− {h(z), h(w)}‖
≤ ϕ(x, y, z, w)

(2.v)

forµ = 1, i, and all x, y, z, w ∈ A. Ifh(tx) is continuous in t ∈ R for each fixed
x ∈ A, then the mapping h : A → B is a Poisson JC∗-algebra homomorphism.

Proof. Put z = w = 0 and µ = 1 in (2.v). By the same reasoning as in
the proof of Theorem 2.1, there exists a unique additive mapping H : A → B
satisfying (2.iv). The additive mapping H : A → B is given by

H(x) = lim
n→∞

1

2n
h(2nx)

for all x ∈ A. By the same reasoning as in the proof of [12, Theorem], the
additive mapping H : A → B is R-linear.

Put y = z = w = 0 and µ = i in (2.v). By the same method as in the proof
of Theorem 2.1, one can obtain that

H(ix) = lim
n→∞

h(2nix)

2n
= lim

n→∞
ih(2nx)

2n
= iH(x)

for all x ∈ A. For each element λ ∈ C, λ = s + it , where s, t ∈ R. So

H(λx) = H(sx + itx) = sH(x)+ tH(ix) = sH(x)+ itH(x)

= (s + it)H(x) = λH(x)

for all λ ∈ C and all x ∈ A. So

H(ζx + ηy) = H(ζx)+H(ηy) = ζH(x)+ ηH(y)

for all ζ, η ∈ C, and all x, y ∈ A. Hence the additive mapping H : A → B is
C-linear.

The rest of the proof is the same as in the proof of Theorem 2.1. �
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Theorem 2.4. Let h : A → B be a mapping satisfying h(2x) = 2h(x) for all
x ∈ A for which there exists a function ϕ : A4 → [0,∞) satisfying (2.i), (2.ii)
and (2.iii) such that

‖h(2nu ◦ y)− h(2nu) ◦ h(y)‖ ≤ ϕ(u, y, 0, 0) (2.vi)

for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, . . . . Then the mapping h : A → B
is a Poisson JC∗-algebra homomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.1, there exists a
unique C-linear mapping H : A → B satisfying (2.iv).

By (2.vi) and the assumption that h(2x) = 2h(x) for all x ∈ A,

‖h(2nu ◦ y)− h(2nu) ◦ h(y)‖ = 1

4m
‖h(2m2nu ◦ 2my)− h(2m2nu) ◦ h(2my)‖

≤ 1

4m
ϕ(2mu, 2my, 0, 0)

≤ 1

2m
ϕ(2mu, 2my, 0, 0),

which tends to zero as m → ∞ by (2.i). So

h(2nu ◦ y) = h(2nu) ◦ h(y)
for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · . But by (2.1),

H(x) = lim
n→∞

1

2n
h(2nx) = h(x)

for all x ∈ A.
The rest of the proof is the same as in the proof of Theorem 2.1. �
Now we are going to investigate Poisson JC∗-algebra homomorphisms be-

tween Poisson JC∗-algebras associated with the Jensen functional equation.

Theorem 2.5. Let h : A → B be a mapping satisfying h(0) = 0 and h(3nu ◦
y) = h(3nu)◦h(y) for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · , for which
there exists a function ϕ : (A \ {0})4 → [0,∞) such that

ϕ̃(x, y, z, w) :=
∞∑
j=0

3−jϕ(3j x, 3j y, 3j z, 3jw) < ∞, (2.vii)

‖2h
(µx + µy + {z,w}

2

) − µh(x)− µh(y)−{h(z), h(w)}‖
≤ ϕ(x, y, z, w) (2.viii)
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for all µ ∈ T
1, and all x, y, z, w ∈ A. Assume that limn→∞ h(3ne)

3n = e′. Then
the mapping h : A → B is a Poisson JC∗-algebra homomorphism.

Proof. Put z = w = 0 and µ = 1 ∈ T
1 in (2.viii). It follows from Jun

and Lee’s Theorem [4, Theorem 1] that there exists a unique additive mapping
H : A → B such that

‖h(x)−H(x)‖ ≤ 1

3
(ϕ̃(x,−x, 0, 0)+ ϕ̃(−x, 3x, 0, 0))

for all x ∈ A \ {0}. The additive mapping H : A → B is given by

H(x) = lim
n→∞

1

3n
h(3nx)

for all x ∈ A.
By the assumption, for each µ ∈ T

1,

‖2h(3nµx)− µh(2 · 3n−1x)− µh(4 · 3n−1x)‖ ≤ ϕ(2 · 3n−1x, 4 · 3n−1x, 0, 0)

for all x ∈ A \ {0}. And one can show that

‖µh(2 · 3n−1x)+ µh(4 · 3n−1x)− 2µh(3nx)‖
≤ |µ| · ‖h(2 · 3n−1x)+ h(4 · 3n−1x)− 2h(3nx)‖
≤ ϕ(2 · 3n−1x, 4 · 3n−1x, 0, 0)

for all µ ∈ T
1 and all x ∈ A \ {0}. So

‖h(3nµx)− µh(3nx)‖ =‖h(3nµx)− 1

2
µh(2 · 3n−1x)− 1

2
µh(4 · 3n−1x)

+ 1

2
µh(2 · 3n−1x)+ 1

2
µh(4 · 3n−1x)− µh(3nx)‖

≤1

2
‖2h(3nµx)− µh(2 · 3n−1x)− µh(4 · 3n−1x)‖

+ 1

2
‖µh(2 · 3n−1x)+ µh(4 · 3n−1x)− 2µh(3nx)‖

≤2

2
ϕ(2 · 3n−1x, 4 · 3n−1x, 0, 0)

for all µ ∈ T
1 and all x ∈ A \ {0}. Thus 3−n‖h(3nµx) − µh(3nx)‖ → 0 as

n → ∞ for all µ ∈ T
1 and all x ∈ A \ {0}. Hence

H(µx) = lim
n→∞

h(3nµx)

3n
= lim

n→∞
µh(3nx)

3n
= µH(x)
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for all µ ∈ T
1 and all x ∈ A \ {0}.

By the same reasoning as in the proof of Theorem 2.1, the unique additive
mapping H : A → B is a C-linear mapping.

By a similar method to the proof of Theorem 2.1, one can show that the
mapping h : A → B is a Poisson JC∗-algebra homomorphism. �

Corollary 2.6. Let h : A → B be a mapping satisfying h(0) = 0 and h(3nu ◦
y) = h(3nu)◦h(y) for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · , for which
there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖2h
(µx + µy + {z,w}

2

)−µh(x)− µh(y)− {h(z), h(w)}‖
≤ θ(||x||p + ||y||p + ||z||p + ||w||p)

for all µ ∈ T
1, and all x, y, z, w ∈ A \ {0}. Assume limn→∞ h(3ne)

3n = e′. Then
the mapping h : A → B is a Poisson JC∗-algebra homomorphism.

Proof. Define ϕ(x, y, z, w) = θ(||x||p + ||y||p + ||z||p + ||w||p), and apply
Theorem 2.5. �

One can obtain similar results to Theorems 2.3 and 2.4 for the Jensen functional
equation.

Finally, we are going to investigate Poisson JC∗-algebra homomorphisms
between Poisson JC∗-algebras associated with the Trif functional equation.

Theorem 2.7. Let h : A → B be a mapping satisfying h(0) = 0 and h(qnu ◦
y) = h(qnu)◦h(y) for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · , for which
there exists a function ϕ : Ad+2 → [0,∞) such that

ϕ̃
(
x1, · · · , xd, z, w

) :=
∞∑
j=0

q−jϕ
(
qjx1, · · · , qjxd, qj z, qjw

)
< ∞, (2.ix)

‖d d−2Cl−2h

(
µx1 + · · · + µxd

d
+ {z,w}
d d−2Cl−2

)
+ d−2Cl−1

d∑
j=1

µh(xj )

− l
∑

1≤j1<···<jl≤d
µh

(
xj1 + · · · + xjl

l

)
− {h(z), h(w)}‖ (2.x)

≤ ϕ(x1, · · · , xd, z, w)
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for allµ ∈ T
1, and all x1, · · · , xd, z, w ∈ A. Assume limn→∞ h(qne)

qn
= e′. Then

the mapping h : A → B is a Poisson JC∗-algebra homomorphism.

Proof. Put z = w = 0 andµ = 1 ∈ T
1 in (2.x). It follows from Trif’s Theorem

[18, Theorem 3.1] that there exists a unique additive mappingH : A → B such
that

‖h(x)−H(x)‖ ≤ 1

l · d−1Cl−1
ϕ̃(qx, rx, · · · , rx︸ ︷︷ ︸

d − 1 times

, 0, 0)

for all x ∈ A. The additive mapping H : A → B is given by

H(x) = lim
n→∞

1

qn
h(qnx)

for all x ∈ A.
Put x1 = · · · = xd = x and z = w = 0 in (2.x). For each µ ∈ T

1,

‖d d−2Cl−2(h(µx)− µh(x))‖ ≤ ϕ(x, · · · , x︸ ︷︷ ︸
d times

, 0, 0)

for all x ∈ A. So

q−n‖d d−2Cl−2(h(µq
nx)− µh(qnx))‖ ≤ q−nϕ(qnx, · · · , qnx︸ ︷︷ ︸

d times

, 0, 0)

for all x ∈ A. By (2.ix),

q−n‖d d−2Cl−2(h(µq
nx)− µh(qnx))‖ → 0

as n → ∞ for all µ ∈ T
1 and all x ∈ A. Thus

q−n‖h(µqnx)− µh(qnx)‖ → 0

as n → ∞ for all µ ∈ T
1 and all x ∈ A. Hence

H(µx) = lim
n→∞

h(qnµx)

qn
= lim

n→∞
µh(qnx)

qn
= µH(x)

for all µ ∈ T
1 and all x ∈ A.

By the same reasoning as in the proof of Theorem 2.1, the unique additive
mapping H : A → B is a C-linear mapping.

By a similar method to the proof of Theorem 2.1, one can show that the
mapping h : A → B is a Poisson JC∗-algebra homomorphism. �
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Corollary 2.8. Let h : A → B be a mapping satisfying h(0) = 0 and h(qnu ◦
y) = h(qnu)◦h(y) for all y ∈ A, all u ∈ U(A) and n = 0, 1, 2, · · · , for which
there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖d d−2Cl−2h

(
µx1 + · · · + µxd

d
+ {z,w}
d d−2Cl−2

)
+ d−2Cl−1

d∑
j=1

µh(xj )

−l
∑

1≤j1<···<jl≤d
µh

(
xj1 + · · · + xjl

l

)
− {h(z), h(w)}‖

≤ θ
( d∑
j=1

||xj ||p + ||z||p + ||w||p)
for allµ ∈ T

1, and all x1, · · · , xd, z, w ∈ A. Assume limn→∞ h(qne)

qn
= e′. Then

the mapping h : A → B is a Poisson JC∗-algebra homomorphism.

Proof. Define ϕ(x1, · · · , xd, z, w) = θ(
∑d

j=1 ||xj ||p + ||z||p + ||w||p), and
apply Theorem 2.7. �

One can obtain similar results to Theorems 2.3 and 2.4 for the Trif functional
equation.

3 Stability of homomorphisms in Poisson JC∗-algebras

We are going to show the Cauchy–Rassias stability of homomorphisms in Poisson
JC∗-algebras associated with the Cauchy functional equation.

Theorem 3.1. Let h : A → B be a mapping with h(0) = 0 for which there
exists a function ϕ : A6 → [0,∞) such that

ϕ̃(x, y, z, w, a, b) :=
∞∑
j=0

2−jϕ(2j x, 2j y, 2j z, 2jw, 2j a, 2j b) < ∞, (3.i)

‖h(µx + µy + {z,w} + a ◦ b)− µh(x)− µh(y)− {h(z), h(w)}
− h(a) ◦ h(b)‖ ≤ ϕ(x, y, z, w, a, b) (3.ii)

for all µ ∈ T
1 and all x, y, z, w, a, b ∈ A. Then there exists a unique Poisson

JC∗-algebra homomorphism H : A → B such that

‖h(x)−H(x)‖ ≤ 1

2
ϕ̃(x, x, 0, 0, 0, 0) (3.iii)

for all x ∈ A.
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Proof. Put z = w = a = b = 0 and µ = 1 ∈ T
1 in (3.ii). It follows from

Găvruta’s Theorem [2] that there exists a unique additive mapping H : A → B
satisfying (3.iii). The additive mapping H : A → B is given by

H(x) = lim
n→∞

1

2n
h(2nx)

for all x ∈ A.
The rest of the proof is similar to the proof of Theorem 2.1. �

Corollary 3.2. Let h : A → B be a mapping with h(0) = 0 for which there
exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy + {z,w} + a ◦ b)− µh(x)− µh(y)

− {h(z), h(w)} − h(a) ◦ h(b)‖
≤ θ(||x||p + ||y||p + ||z||p + ||w||p + ||a||p + ||b||p)

for all µ ∈ T
1 and all x, y, z, w, a, b ∈ A. Then there exists a unique Poisson

JC∗-algebra homomorphism H : A → B such that

‖h(x)−H(x)‖ ≤ 2θ

2 − 2p
||x||p

for all x ∈ A.

Proof. Define

ϕ(x, y, z, w, a, b) = θ(||x||p + ||y||p + ||z||p + ||w||p + ||a||p + ||b||p),
and apply Theorem 3.1. �

Theorem 3.3. Let h : A → B be a mapping with h(0) = 0 for which there
exists a function ϕ : A6 → [0,∞) satisfying (3.i) such that

‖h(µx + µy + {z,w} + a ◦ b)− µh(x)− µh(y)

− {h(z), h(w)} − h(a) ◦ h(b)‖
≤ ϕ(x, y, z, w, a, b)

forµ = 1, i, and all x, y, z, w, a, b ∈ A. Ifh(tx) is continuous in t ∈ R for each
fixed x ∈ A, then there exists a unique Poisson JC∗-algebra homomorphism
H : A → B satisfying (3.iii).
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Proof. The proof is similar to the proof of Theorem 2.3. �
We are going to show the Cauchy–Rassias stability of homomorphisms in

Poisson JC∗-algebras associated with the Jensen functional equation.

Theorem 3.4. Let h : A → B be a mapping with h(0) = 0 for which there
exists a function ϕ : (A \ {0})6 → [0,∞) such that

ϕ̃(x, y, z, w, a, b) =
∞∑
j=0

3−jϕ(3j x, 3j y, 3j z, 3jw, 3j a, 3j b) < ∞,

‖2h

(
µx + µy + {z,w} + a ◦ b

2

)
− µh(x)− µh(y)

−{h(z), h(w)} − h(a) ◦ h(b)‖ ≤ ϕ(x, y, z, w, a, b) (3.iv)

for all µ ∈ T
1 and all x, y, z, w, a, b ∈ A \ {0}. Then there exists a unique

Poisson JC∗-algebra homomorphism H : A → B such that

‖h(x)−H(x)‖ ≤ 1

3

(
ϕ̃(x,−x, 0, 0, 0, 0)+ ϕ̃(−x, 3x, 0, 0, 0, 0)

)
(3.v)

for all x ∈ A \ {0}.

Proof. Put z = w = a = b = 0 and µ = 1 ∈ T
1 in (3.iv). It follows from Jun

and Lee’s Theorem [4, Theorem 1] that there exists a unique additive mapping
H : A → B satisfying (3.v). The additive mapping H : A → B is given by

H(x) = lim
n→∞

1

3n
h(3nx)

for all x ∈ A.
The rest of the proof is similar to the proof of Theorem 2.5. �

Corollary 3.5. Let h : A → B be a mapping with h(0) = 0 for which there
exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖2h
(µx + µy + {z,w} + a ◦ b

2

) − µh(x)− µh(y)

−{h(z), h(w)} − h(a) ◦ h(b)‖
≤ θ(||x||p + ||y||p + ||z||p + ||w||p + ||a||p + ||b||p)
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for all µ ∈ T
1 and all x, y, z, w, a, b ∈ A \ {0}. Then there exists a unique

Poisson JC∗-algebra homomorphism H : A → B such that

‖h(x)−H(x)‖ ≤ 3 + 3p

3 − 3p
θ ||x||p

for all x ∈ A \ {0}.

Proof. Define

ϕ(x, y, z, w, a, b) = θ(||x||p + ||y||p + ||z||p + ||w||p + ||a||p + ||b||p),
and apply Theorem 3.4. �

One can obtain a similar result to Theorem 3.3 for the Jensen functional equa-
tion.

Now we are going to show the Cauchy–Rassias stability of homomorphisms
in Poisson JC∗-algebras associated with the Trif functional equation.

Theorem 3.6. Let h : A → B be a mapping with h(0) = 0 for which there
exists a function ϕ : Ad+4 → [0,∞) such that

ϕ̃(x1, · · · , xd, z, w, a, b) :=
∞∑
j=0

q−j ϕ(qj x1, · · · , qj xd, qj z, qjw, qja, qj b) < ∞,

‖d d−2Cl−2h

(
µx1 + · · · + µxd

d
+ {z,w} + a ◦ b

d d−2Cl−2

)
+ d−2Cl−1

d∑
j=1

µh(xj )

− l
∑

1≤j1<···<jl≤d
µh

(
xj1 + · · · + xjl

l

)
− {h(z), h(w)} − h(a) ◦ h(b)‖

≤ ϕ(x1, · · · , xd, z, w, a, b) (3.vi)

for all µ ∈ T
1 and all x1, · · · , xd, z, w, a, b ∈ A. Then there exists a unique

Poisson JC∗-algebra homomorphism H : A → B such that

‖h(x)−H(x)‖ ≤ 1

l · d−1Cl−1
ϕ̃(qx, rx, · · · , rx︸ ︷︷ ︸

d − 1 times

, 0, 0, 0, 0) (3.vii)

for all x ∈ A.
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Proof. Put z = w = a = b = 0 and µ = 1 ∈ T
1 in (3.vi). It follows from

Trif’s Theorem [18, Theorem 3.1] that there exists a unique additive mapping
H : A → B satisfying (3.vii). The additive mapping H : A → B is given by

H(x) = lim
n→∞

1

qn
h(qnx)

for all x ∈ A.
The rest of the proof is similar to the proof of Theorem 2.7. �

Corollary 3.7. Let h : A → B be a mapping with h(0) = 0 for which there
exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖d d−2Cl−2h

(
µx1 + · · · + µxd

d
+ {z,w} + a ◦ b

d d−2Cl−2

)
+ d−2Cl−1

d∑
j=1

µh(xj )

− l
∑

1≤j1<···<jl≤d
µh

(
xj1 + · · · + xjl

l

)
− {h(z), h(w)} − h(a) ◦ h(b)‖

≤ θ

( d∑
j=1

||xj ||p + ||z||p + ||w||p + ||a||p + ||b||p
)

for all µ ∈ T
1 and all x1, · · · , xd, z, w, a, b ∈ A. Then there exists a unique

Poisson JC∗-algebra homomorphism H : A → B such that

‖h(x)−H(x)‖ ≤ q1−p(qp + (d − 1)rp)θ

l d−1Cl−1(q1−p − 1)
||x||p

for all x ∈ A.

Proof. Define

ϕ(x1, · · · , xd, z, w, a, b) = θ

( d∑
j=1

||xj ||p + ||z||p + ||w||p + ||a||p + ||b||p
)
,

and apply Theorem 3.6. �
One can obtain a similar result to Theorem 3.3 for the Trif functional equation.

Bull Braz Math Soc, Vol. 36, N. 1, 2005



96 C. PARK

References

[1] V.A. Faiziev, Th.M. Rassias and P.K. Sahoo, The space of (ψ, γ )-additive map-
pings on semigroups, Trans. Amer. Math. Soc. 354 (2002), 4455–4472.
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