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Stable constant mean curvature hypersurfaces
in Rn+1 and Hn+1(−1)
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Abstract. In this paper, we show that all complete stable hypersurfaces in Rn+1(or
Hn+1 (−1)) (n = 3, 4, 5) with constant mean curvature H > 0 (or H > 1, respectively)
and finite L2 norm of traceless second fundamental form are compact geodesic spheres.
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1 Introduction

The celebrated Bernstein theorem on minimal surface states that a two dimen-
sional entire minimal graph must be planar. In the last forty years much work
has been devoted to generalize it. From the works of Fleming [15], de Giorgi
[12], Almgren [3] and Simons [17], one knows that all complete area-minimizing
graphs in the Euclidean space Rn+1 are hyperplanes when n ≤ 7. Counterex-
amples found by Bombieri-de Giorgi-Giusti [6] show that there are non-planar
entire minimal graphs in Rn+1 for n > 7.

In two dimensional case, Fischer-Colbrie–Schoen [14] and do Carmo-Peng [8]
independently proved that all complete, oriented and immersed stable minimal
surfaces in R3 are planes. Here a complete oriented minimal hypersurface M

in Rn+1 is stable means that the second variation of the volume is non-negative
on any compact subset of M . It is still an open question whether there exist
non-planar complete stable minimal hypersurfaces in Rn+1 for n ≤ 7. Due
to the counterexamples by Bombieri-de Giorgi-Giusti [6], one should expect
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difficulties in proving higher dimensional versions of the generalized Bernstein
problem. In [9], do Carmo and Peng proved that

Theorem 1. Let Mn be a complete stable minimal hypersurfaces in Rn+1 with∫
M

|A|2dv < +∞,

where |A| is the second fundamental form of M . Then Mn is a hyperplane in
Rn+1.

In this paper, we study the Bernstein problem for constant mean curvature
hypersurfaces in space forms Rn+1 and Hn+1(−1). To state our results, we first
recall some notations.

Let x : Mn → Nn+1 be an oriented isometric immersion of a connected man-
ifold Mn in Nn+1. Denote by ∇ and ∇ the Levi-Civita connection of Nn+1

and Mn respectively. Fix a point p ∈ Mn and a local orthonormal frame field
{e1, e2, · · · , en, ν} at p such that {e1, e2, · · · , en} are tangent fields and ν is a
unit normal vector field at p. Define

〈AX, Y 〉 = 〈∇XY, ν
〉
,

where X, Y are tangent vector fields. The mean curvature of Mn is defined as

H = 1

n
trA.

Definition 1. A immersion x : Mn → Nn+1 with constant mean curvature H

(H �= 0) is called strongly stable if for all f ∈ C∞
o (M),∫

M

{|∇f |2 − (
Ric (ν, ν) + |A|2) f 2

}
dv ≥ 0, (1)

where ∇f is the gradient of f in the induced metric and dv is the volume form.
It is called stable if (1) holds only for f ∈ C∞

o (M) satisfying the condition∫
M

f dv = 0. (2)

A minimal immersion x : Mn → Nn+1 is called stable if (1) holds for all
f ∈ C∞

o (M).

In the theory of constant mean curvature hypersurfaces, the latter stability
is more natural, as this class of test functions defines deformation preserving
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STABLE CONSTANT MEAN CURVATURE HYPERSURFACES 101

volumes (see Barbosa and Berard [4] for more discussions). In the rest of the
paper, we will omit the “dv” in integral formulas when it is obvious in the text.

In studying hypersurfaces with constant mean curvature H , it is convenient to
modify A by introducing a new linear map φ : TpM → TpM defined by

〈φX, Y 〉 = − 〈AX, Y 〉 + H 〈X, Y 〉 .

This map φ is traceless and satisfies |A|2 = |φ|2 + nH 2. So we can write (1) as∫
M

|∇f |2 dv ≥
∫

M

(
Ric (ν, ν) + nH 2 + |φ|2) f 2dv. (3)

Using φ, it is proved by Alencar-do Carmo [2] (n ≤ 5) and do Carmo-Zhou
[10] (n ≤ 6) that any complete strongly stable hypersurfaces with constant mean
curvature in Rn+1 with

∫
M

|φ|2 < ∞ must be hyperplanes. In this paper we can
prove a result in stable cases.

Theorem 2. Let Mn be a complete stable hypersurface in Rn+1 (n = 3, 4, 5)

with constant mean curvature H > 0 and
∫
M

|φ|2 < ∞. Then M must be a
round sphere.

When the ambient space is Hn+1(−1), all compact stable hypersurfaces with
constant mean curvature H have been characterized by Barbosa-do Carmo-
Eschenberg in [5]. It is proved by da Silveira [16] that there exist complete
noncompact surfaces with constant mean curvature H in H3(−1) if H < 1. In
this paper we prove the following

Theorem 3. All complete stable hypersurfaces in Hn+1 (−1) (n = 3, 4, 5)

with constant mean curvature H > 1 and
∫
M

|φ|2 < ∞ are compact geodesic
spheres.

We see in the above that Theorem 1 of do Carmo-Peng holds without the
restriction on dimensions. But we do not know now whether the dimension
condition in Theorem 3 is essential. In fact we show in Theorem 4 that the
finiteness of

∫
M

|φ|2 implies the finiteness of
∫
M

|φ|5 if Mn is a complete minimal
(or constant mean curvature H ≥ 1) hypersurfaces of finite index in Rn+1 (or
Hn+1(−1), respectively) when n ≤ 7. Theorem 3 follows by combining the
compactness result of do Carmo-Cheung-Santos [7] which says that complete
finite index hypersurfaces in Hn+1(−1) with constant mean curvature H > 1
and

∫
M

|φ|n < +∞ are compact. So we need 3 ≤ n ≤ 5.
This paper is organized as follows. In Section 2 we study some properties of

the solutions to a certain class of differential inequalities. Some special cases of
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such inequalities are the Simons’ inequalities for constant mean curvature hyper-
surfaces when the coefficients are suitably chosen. We study them in generality,
since they may be of independent interests. In Section 3, we recall some standard
tools for studying constant mean curvature hypersurfaces, such as Simons’ in-
equality for the traceless second fundamental form. After collecting the facts, we
apply the results proved in the Section 2 to complete hypersurfaces with constant
mean curvature in space forms to obtain Theorem 2 and Theorem 3.

2 Some results on differential inequalities

In this section, we consider properties of solutions of a class of Simons’ type
inequality which will be used in Section 3.

Let M be a complete noncompact Riemannian manifold. We consider non-
negative solution of the following inequality

u�u ≥ k|∇u|2 + au4 + bu3 + cu2, (4)

where k, a, b, c are real constants.

Proposition 1. Let u be a nonnegative locally Lipschitz function satisfying (4).
Suppose that for some compact domain D ⊂ M∫

M\D
|∇f |2 ≥

∫
M\D

(u2 + d)f 2, (5)

(where d is a non-negative number) holds for compactly supported function
f ∈ C∞

o (M\D) and k
2 + a + 1 > 0. Then∫

M\D
u2 < +∞

implies ∫
M\D

u4 < +∞.

Proof. Multiplying (1) on both sides by a smooth function ϕ2 compactly sup-
ported in M\D and integrating by parts, we obtain

−
∫

M\D
ϕ2 |∇u|2 − 2

∫
M\D

uϕ 〈∇u, ∇ϕ〉

≥ k

∫
M\D

ϕ2 |∇u|2 + a

∫
M\D

ϕ2u4 + b

∫
M\D

ϕ2u3 + c

∫
M\D

ϕ2u2. (6)
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STABLE CONSTANT MEAN CURVATURE HYPERSURFACES 103

Next we choose f = uϕ as test function in (5),∫
M\D

|∇ (uϕ)|2 ≥
∫

M\D

(
u4ϕ2 + du2ϕ2

)
,

which is the same as∫
M\D

ϕ2 |∇u|2 +
∫

M\D
u2 |∇ϕ|2 + 2

∫
M\D

ϕu 〈∇ϕ, ∇u〉

≥
∫

M\D
u4ϕ2 + d

∫
M\D

u2ϕ2. (7)

Adding to (6), we have∫
M\D

u2 |∇ϕ|2 ≥ k

∫
M\D

ϕ2 |∇u|2

+ (a + 1)

∫
M\D

u4ϕ2 + b

∫
M\D

u3ϕ2 + (d + c)

∫
M\D

u2ϕ2.

Rearranging terms gives

−b

∫
M\D

u3ϕ2 +
∫

M\D
u2 |∇ϕ|2

≥ k

∫
M\D

ϕ2 |∇u|2 + (a + 1)

∫
M\D

u4ϕ2 + (d + c)

∫
M\D

u2ϕ2. (8)

Using the inequality 2xy ≤ x2 + y2 we get from (7)

2
∫

M\D
ϕ2 |∇u|2 + 2

∫
M\D

u2 |∇ϕ|2 ≥
∫

M\D
u4ϕ2 + d

∫
M\D

u2ϕ2 (9)

Then it follows from (8) and (9) that

k

∫
M\D

ϕ2|∇u|2 + (a + 1)

∫
M\D

u4ϕ2 + (d + c)

∫
M

u2ϕ2

≥
(

k

2
+ a + 1

)∫
M\D

u4ϕ2 +
(

kd

2
+ d + c

)∫
M

u2ϕ2 − k

∫
M\D

u2|∇ϕ|2.

Now (8) implies

−b

∫
M\D

u3ϕ2 +
∫

M\D
u2|∇ϕ|2

≥
(

k

2
+ a + 1

)∫
M\D

u4ϕ2 +
(

kd

2
+ d + c

)∫
M\D

u2ϕ2 − k

∫
M\D

u2|∇ϕ|2.
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We now apply again Young’s inequality: xy ≤ εx2

2 + y2

2ε
to the left-hand side to

get

|b|
2ε

∫
M\D

u2ϕ2 + ε |b|
2

∫
M\D

u4ϕ2 + (1 + k)

∫
M\D

u2 |∇ϕ|2

≥
(

k

2
+ a + 1

)∫
M\D

u4ϕ2 +
(

kd

2
+ d + c

)∫
M\D

u2ϕ2,

(10)

where ε is an arbitrary positive constant. (10) gives[ |b|
2ε

−
(

kd

2
+ d + c

)]∫
M\D

u2ϕ2 + (1 + k)

∫
M

u2 |∇ϕ|2

≥
(

k

2
+ a + 1 − ε |b|

2

)∫
M\D

u4ϕ2.

Since
k

2
+ a + 1 > 0 therefore we can choose ε sufficiently small such that

k

2
+ a + 1 ≥ 2 |b| ε, then we have a positive constant C1 such that

∫
M\D

u4ϕ2 ≤ C1

(∫
M\D

u2ϕ2 +
∫

M\D
u2 |∇ϕ|2

)
, (11)

for any smooth function ϕ compactly supported in M\D. We can choose R0

such that D is contained in some geodesic ball BR0(p). For any positive number
R > 1 we can choose function ϕ(x) ∈ [0, 1] such that

ϕ (x) =
⎧⎨
⎩

0, on BR0(p);
1, on BR0+R+1(p)\BR0+1(p);
0, on M\BR0+2R+1 (p) ;

and |∇ϕ| ≤ C2, where C2 is a constant. From (11) we have∫
BR0+R+1(p)\BR0+1(p)

u4 ≤ C1

(∫
M\D

u2 + C2
2

∫
M\D

u2

)
.

Since R can be arbitrarily large we conclude that
∫
M\D u4 < ∞. �

If k > 1
4 , a ≥ −1, we can improve Proposition 1 to
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Proposition 2. Let u be a nonnegative locally Lipschitz function satisfying (4).
Suppose that for some compact domain D ⊂ M , (5) holds for any compactly
supported function f ∈ C∞

o (M\D) and k > 1
4 , a ≥ −1. Then∫

M\D
u2 < +∞

implies ∫
M\D

u5 < +∞.

Proof. Under the conditions of the proposition k
2 +a+1 > 0, from our previous

arguments, we can assume that ∫
M\D

u4 < ∞,

and then we have∫
M\D

u3 ≤
(∫

M\D
u2

) 1
2

·
(∫

M\D
u4

) 1
2

< ∞.

Now we multiply (4) on both sides by uf 2 where f is a smooth function
compactly supported in M\D. Then we obtain upon integration∫

M\D
u2f 2�u ≥ k

∫
M\D

|∇u|2 uf 2

+ a

∫
M\D

u5f 2 + b

∫
M\D

u4f 2 + c

∫
M\D

u3f 2.

Integration by parts yields

−2
∫

M\D
uf 2 |∇u|2 − 2

∫
M\D

u2f 〈∇u, ∇f 〉

≥ k

∫
M\D

|∇u|2 uf 2 + a

∫
M\D

u5f 2 + b

∫
M\D

u4f 2 + c

∫
M\D

u3f 2. (12)

Next we apply the stability inequality (5) to the test function u3/2f . Since

∇ (u3/2f
) = 3

2
u1/2f ∇u + u3/2∇f.
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therefore

∣∣∇ (u3/2f
)∣∣2 =

(
3

2
u1/2f ∇u + u3/2∇f

)2

= 9

4
uf 2 |∇u|2 + u3 |∇f |2 + 3u2f 〈∇u, ∇f 〉 .

Putting this into the stability inequality (5), we have

9

4

∫
M\D

uf 2 |∇u|2 +
∫

M\D
u3 |∇f |2 + 3

∫
M\D

u2f 〈∇u, ∇f 〉

≥
∫

M\D
u5f 2 + d

∫
M\D

u3f 2.

(13)

Adding (12) and (13) gives∫
M\D

u3 |∇f |2 +
∫

M\D
u2f 〈∇u, ∇f 〉 ≥

(
k − 1

4

)∫
M\D

|∇u|2 uf 2

+ (a + 1)

∫
M\D

u5f 2 + b

∫
M\D

u4f 2 + (c + d)

∫
M\D

u3f 2.

Next, we estimate the second term on the left-hand side from above by
Cauchy’s inequality,∫

M\D
u3 |∇f |2 +ε

2

∫
M\D

u |∇u|2 f 2 + 1

2ε

∫
M\D

u3 |∇f |2

≥
(

k − 1

4

)∫
M\D

|∇u|2 uf 2 + (a + 1)

∫
M\D

u5f 2

+ b

∫
M\D

u4f 2 + (c + d)

∫
M\D

u3f 2.

Choosing ε = (
k − 1

4

)
/2, then(

1

k − 1
4

+ 2

)∫
M\D

u3 |∇f |2 ≥
(

k − 1
4

2

)∫
M\D

|∇u|2 uf 2

+ (a + 1)

∫
M\D

u5f 2 + b

∫
u4f 2 + (c + d)

∫
M\D

u3f 2,

Bull Braz Math Soc, Vol. 36, N. 1, 2005



STABLE CONSTANT MEAN CURVATURE HYPERSURFACES 107

which implies

−b

∫
M\D

u4f 2 − (c + d)

∫
M\D

u3f 2 +
(

1

k − 1
4

+ 2

)∫
M\D

u3 |∇f |2

≥
(

k − 1
4

2

)∫
M\D

|∇u|2 uf 2 + (a + 1)

∫
M\D

u5f 2.

Since all terms on the left-hand side of this inequality are bounded, we have∫
M\D

|∇u|2 uf 2 < ∞.

Now, we put this term back in the stability inequality (13) with the left-hand side
estimated from above by Schwarz’s inequality, i.e.

9

4

∫
M\D

uf 2 |∇u|2 +
∫

M\D
u3 |∇f |2 + 3

2

∫
M\D

u3 |∇f |2

+ 3

2

∫
M\D

u |∇u|2 f 2 ≥
∫

M\D
u5f 2.

Using the same test function as in the proof of Proposition 1, we get∫
M\D

u5 < ∞.

This completes our proof. �

Now we prove another type of result which will be applied in proving
Bernstein type theorems.

Proposition 3. Let u be a nonnegative locally Lipschitz function satisfying (4)
with k = 2/n for n ≥ 3. If the first eigenvalue of the operator −� − u2 − d is
nonnegative, i.e. (5) holds for any compactly supported function f ∈ C∞

0 (M)

and

[a(n − 2) + n]t2 + b(n − 2)t + c(n − 2) + nd

is bounded below by some positive constant, assume∫
M

u
2(n−2)

n < +∞,

then u ≡ 0.
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Proof. Let g = u
n−2
n , then ∇g = n−2

n
u− 2

n ∇u and

�g = −2(n − 2)

n2
u− n+2

n |∇u|2 + n − 2

n
u− 2

n �u

= n − 2

n
u− n+2

n [u�u − 2

n
|∇u|2]

≥ n − 2

n
u− n+2

n (au4 + bu3 + cu2)

= n − 2

n
g(ag

2n
n−2 + bg

n
n−2 + c).

This inequality is valid whenever u �= 0. Otherwise, since g is locally Lipschitz,
we can multiply by g and interpret the inequality

g�g ≥ n − 2

n
g2(ag

2n
n−2 + bg

n
n−2 + c)

in the distributional sense. Multiplying by ϕ2 on both sides of this inequality,
we obtain ∫

M

ϕ2g�g ≥
∫

M

n − 2

n
ϕ2g2(ag

2n
n−2 + bg

n
n−2 + c)

where the right-hand side makes sense since n ≥ 3.

Since ∫
M

ϕ2g�g = −
∫

M

2ϕg〈∇ϕ, ∇g〉 −
∫

M

ϕ2 |∇g|2 ,

we get∫
M

n − 2

n
ϕ2g2

(
ag

2n
n−2 + bg

n
n−2 + c

)
≤ −

∫
M

2ϕg〈∇ϕ, ∇g〉 −
∫

M

ϕ2 |∇g|2 .

The stability condition (5) implies∫
M

(
g

2n
n−2 + d

)
g2ϕ2 ≤

∫
M

|∇(gϕ)|2

=
∫

M

g2|∇ϕ|2 + 2
∫

M

gϕ〈∇ϕ, ∇g〉 +
∫

M

ϕ2|∇g|2.

Adding this to the preceding inequality, we get∫
M

ϕ2g2

[(
n − 2

n
a + 1

)
g

2n
n−2 + n − 2

n
bg

n
n−2 + n − 2

n
c + d

]
≤
∫

M

g2|∇ϕ|2.

We choose the C∞ function ϕ satisfying:
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(1) 0 ≤ ϕ ≤ 1,

(2) ϕ ≡ 1, on B(R), and ϕ ≡ 0, outside B(2R),

(3) |∇ϕ| ≤ 2
R
.

Then when (
n − 2

n
a + 1

)
g

2n
n−2 + n − 2

n
bg

n
n−2 + n − 2

n
c + d

is bounded below by a positive constant, there exists a constant C such that∫
B(R)

g2 ≤ C

R2

∫
B(2R)

g2 = C

R2

∫
B(2R)

u
2(n−2)

n ,

Letting R → +∞ yields g ≡ 0. �

3 Bernstein type theorems

In this section, we give the applications of Proposition 2 and Proposition 3 to
stable and strongly stable constant mean curvature hypersurfaces in space forms.

First, we recall Simons’ inequality for traceless second fundamental form. Let
Qn+1(κ) be the space form of constant sectional curvature κ and Mn a hypersur-
face in Qn+1(κ) with constant mean curvature H . The following is computed in
numerous works (see for example, [11] and [1]). Choose an orthonormal frame
{e1, · · · , en} which diagonalizes φ at each fixed point on Mn, i.e. φei = µiei ,
and let ∇ be the induced connection on Mn. Then we can write [11, p.198],

1

2
� |φ|2 =

∑
i,j,l

φ2
ij l +

∑
i

µi (trφ)ii + 1

2

∑
i,j

Rijij

(
µi − µj

)2
,

where φijl are components of the covariant derivative of the tensor φ, and Rijij

is the sectional curvature of the plane spanned by
{
ei, ej

}
. By Gauss formula,

we conclude that

1

2

∑
i,j

Rijij

(
µi − µj

)2 = 1

2

∑
i,j

(
κ + µiµj

) (
µi − µj

)2

− H

2

∑
i,j

(
µi + µj

) (
µi − µj

)+ H 2

2

∑
i,j

(
µi − µj

)2
.
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Since
∑

µi = 0, it is easy to check that∑
i,j

(
µi − µj

)2 = 2n |φ|2 ,

∑
i,j

(
µi + µj

) (
µi − µj

)2 = 2n
∑

i

µ3
i ,

∑
i,j

µiµj

(
µi − µj

)2 = −2 |φ|4 .

From the above, it follows that

1

2
� |φ|2 = |φ| � |φ| + |∇ |φ||2 =

=
∑
i,j,l

φ2
ij l − |φ|4 − nH

∑
i

µ3
i + n

(
H 2 + κ

) |φ|2 .

In this case, it follows from ([9] (2.3), (2.4)) that∑
i,j,l

φ2
ij l ≥ 2

n
|∇ |φ||2 + |∇ |φ||2 .

By using a lemma of Okumura (see [1] for a proof), we have∑
i

µ3
i ≤ n − 2√

n (n − 1)
|φ|3 .

So we have finally the following Simons’ inequality:

|φ| � |φ| ≥ 2

n
|∇ |φ||2 − |φ|4 − n (n − 2)√

n (n − 1)
H |φ|3 + n

(
H 2 + κ

) |φ|2 . (14)

Now we prove our theorems.
If we write q (x) = Ric (ν, ν) + nH 2 + |φ|2 , then the fact that Mn is strongly

stable is equivalent to λ1 (L) ≥ 0 where L = −� − q (x) . Note that when
Nn+1 = Qn+1(κ), q (x) = n

(
H 2 + κ

)+ |φ|2 . From Proposition 2 we have the
following higher integrability result.

Theorem 4. Let Mn (n ≤ 7) be a complete noncompact stable hypersurface in
Qn+1(κ) with constant mean curvature H ≥ −κ . If∫

M

|φ|2 < ∞
then ∫

M

|φ|5 < ∞.
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Proof. From the definition of stability, the index of M is at most 1. We know
from a result of Fischer-Colbrie [13] that if M has finite index, then it is strongly
stable outside a compact set, i.e. we have a compact set D ⊂ M such that∫

M\D
|∇f |2 dv ≥

∫
M\D

(
n(H 2 + κ) + |φ|2) f 2dv

for all smooth functions f compactly supported in M\D. Since H 2 ≥ −κ

and |φ| satisfies Simon’s inequality (4), it is easy to see that the conditions of
Proposition 2 is satisfied when n ≤ 7. Thus the conclusion follows. �

Remark 1. It should be remarked that we have actually proved that this
theorem is true when M has finite index.

Now we use Theorem 4 to prove Theorem 2 and 3.

Proof of Theorem 3. When n = 3, 4, 5, we know from Theorem 4 that∫ |φ|2 < +∞,
∫ |φ|5 < ∞, which also implies

∫ |φ|3 < ∞ and
∫ |φ|4 < ∞

by the Cauchy-Schwarz inequality. Next we apply Theorem 1.1 in do Carmo-
Cheung-Santos [7] for the dimensions 3, 4, 5 to show that M is compact. Finally
a theorem in Barabosa-do Carmo-Eschenburg [5] shows that the hypersurfaces
are indeed geodesic spheres. �

Similarly we can give

Proof of Theorem 2. When H > 0 from Theorem 1.1 in do Carmo-Cheung-
Santos [7] for the dimensions 3, 4, 5 we know that M is compact. The same
theorem in Barabosa-do Carmo-Eschenburg [5] says that the hypersurfaces are
round spheres. �

Remark 2. When n = 2 the conclusion is contained in Silveira’s theorem
[16]. In this case, the assumption

∫ |φ|2 < ∞ is not necessary as it follows
from the stability assumption thanks to Huber’s theorem. On the other hand,
this assumption indeed implies that either H = 1 or the constant mean curvature
hypersurface is compact. In higher dimensional cases, it is not known whether
the stability assumption implies finiteness of

∫ |φ|2 .

The following theorem is a straightforward application of Proposition 3.
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Theorem 5. Hn+1 (−1) does not admit any complete strongly stable hypersur-
faces M with constant mean curvature H , satisfying

n2
(
8n − 8 − n2

)
H 2 − 16 (n − 1)2 > 0

and ∫
M

|φ|2(1− 2
n ) < ∞.

Proof. Since there is no compact strongly stable hypersurface with constant
mean curvature H in Hn+1(−1). We suppose on the contrary that there exists
a complete noncompact strongly stable hypersurface M with constant mean
curvature H in Hn+1 (−1) satisfying n2

(
8n − 8 − n2

)
H 2 − 16 (n − 1)2 > 0

and ∫
M

|φ|2(1− 2
n ) < ∞.

Now we verify the assumptions in Proposition 3. Let

a = −1, b = − n (n − 2)√
n (n − 1)

H, k = 2

n

and c = d = n(H 2 − 1) then the polynomial in Proposition 3 reads

2t2 + b (n − 2) t + 2n(n − 1)
(
H 2 − 1

)
.

To guarantee that this polynomial is bounded from below by some positive con-
stant, we only need to consider the term 16n(n − 1)(H 2 − 1) − b2(n − 2)2.
Since

16n(n − 1)(H 2 − 1) − b2(n − 2)2 = n

n − 1
[16(n − 1)2(H 2 − 1) − (n − 2)4H 2]

= n

n − 1
[n2(8n − 8 − n2)H 2 − 16(n − 1)2] > 0,

we have that M is totally umbilic. Since there is no totally umbilic hypersurfaces
satisfying the condition in the theorem, the proof is complete. �
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