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On the approximation of the solutions
of the Riemann problem for a discontinuous
conservation law

João-Paulo Dias and Mário Figueira

Abstract. For a class of discontinuous flux functions introduced in [3] (cf. also [4]),
we prove, for the Riemann problem, an extension of the existence result proved in [2]
for a Lipschitz continuous flux function. In the last section, and based in the previous
results, we apply the Lax-Friedrichs approximation method and the limiters technique
(cf.[6]) to compute the quoted solution in a numerical example. For related results see
[5].
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1 Introduction and main results

In the study of phase transitions (cf. [8], [10]) one can consider some limit cases
that corresponds to a discontinuous flux function. In [3] it has been introduced
an appropriate notion of entropy weak solution to the Cauchy problem for the
corresponding conservation law and an existence theorem has been proved (cf.
also [5], for related results). Let us consider the flux function (discontinuous at
the origin) defined by

f (u) = g(u) + (h(u) − g(u))H(u) (1.1)

where g, h ∈ C∞(R) verify g(0) = 1, h(0) = 0, and H is the Heaviside
function (defined by H(u) = 1 if u > 0 and H(u) = 0 if u < 0). We recall
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the following two definitions (cf.[3]), where f̃ denotes the the multivaluated
function defined by

f̃ (u) = f (u) if u �= 0, f̃ (0) = [0, 1] :

Definition 1.1. A function u ∈ L∞(R×]0, +∞[) is called a weak solution to
the Cauchy problem for the equation

∂u

∂t
+ ∂

∂x
f (u) = 0 (1.2)

with initial data u0 ∈ L∞(R), if there exists a function v ∈ L∞(R×]0, +∞[)
such that v(x, t) ∈ f̃ (u(x, t)) a.e. and∫ +∞

0

∫
R

u
∂ϕ

∂t
dxdt +

∫ +∞

0

∫
R

v
∂ϕ

∂x
dxdt +

∫
R

u0(x)ϕ(x, 0)dx = 0

for each ϕ ∈ C1
c (R × [0, +∞[) (where ϕ ∈ C1

c means ϕ ∈ C1 with compact
support).

Throughout the paper, H̃ will be the multivalued function defined by H̃ (u) =
H(u) if u �= 0, H̃ (0) = [0, 1].

Definition 1.2. A weak solution u of the Cauchy problem for the equation (1.2)

is called an entropy weak solution if, for each entropy η ∈ C1(R), η convex, there
exists a function w ∈ L∞(R×]0, +∞[) such that w(x, t) ∈ H̃ (u(x, t)) a.e. and

∂

∂t
η(u) + ∂

∂x
F (u) − η′(0)

∂w

∂x
≤ 0 in D′(R×]0, +∞[) (1.3)

where

F(u) =
∫ u

0
η′(s)[g′(s) + (h′(s) − g′(s))H(s)]ds.

As it was pointed out in [4], the entropy condition introduced in definition 1.2
is not sufficient to insure the uniqueness of weak solution to the correspondent
Cauchy problem. The following notations and functions will be used throughout
this paper:

(i) fε(u) = g(u) + (h(u) − g(u))

∫ u

−ε

ρε(s)ds, u ∈ R,

whereρε(s) = 1
ε
ρ

(
s
ε

)
, ε > 0, ρ ≥ 0, ρ ∈ D(R) = C∞

c (R)with support
[−1, 1] and such that ρ(−s) = ρ(s) and

∫
R ρ(s)ds = 1 (mollifiers);
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(ii) uL and uR with uL < 0 < uR are the Riemann data (real constants);

(iii) f̄ (respectively f̄ε) denotes the lower convex envelope of f (with f (0) =
0) (respectively of fε) in the interval [uL, uR].

It is easy to see that f̄ is a Lipschitz function in [uL, uR], f̄ ′ having at most a
discontinuity at the origin, and that −∞ < f̄ ′(uL) < f̄ ′(uR) < +∞. Moreover
fε is smooth and fε(u) −→

ε→0
f (u), u �= 0 (fε(0) = 1/2, ε > 0). We will prove

the following lemma:

Lemma 1.3. The sequence {f̄ε}ε>0 is bounded in W 1,∞(I ), I =]uL, uR[, for
ε ≤ ε0 and f̄ε −→

ε→0
f̄ in C(Ī ).

Now, for the initial data (Riemann data)

u0(x) =
{
uL if x < 0
uR if x > 0

(1.4)

we can consider (cf.[2]) the Cauchy problem for the equation

∂u

∂t
+ ∂

∂x
f̄ (u) = 0. (1.5)

In [2] the authors constructed the unique bounded entropy weak solution u (in
the Kruzkov’s sense, verifying the usual continuity property at t = 0 (cf.[7])) for
the Cauchy problem (1.5), (1.4), which is a self-similar function (in the same
sense) of the Riemann problem⎧⎪⎨

⎪⎩
∂uε

∂t
+ ∂

∂x
fε(uε) = 0

uε(x, 0) = u0(x), u0 defined by (1.4)

(1.6)

It is well known (cf.[9]) that in (1.6) we can replace fε by f̄ε to obtain the same
solution uε. By applying lemma 1.3 and theorem 3.1, (iii), of [1] to the functions
f̄ε we will prove the following theorem:

Theorem 1.4. Let {uε}ε>0 be the sequence of (self-similar) functions solutions
of (1.6) for each ε > 0. Then uε −→

ε→0
u in L∞(R×]0, +∞[) weak ∗ and a.e.

in R×]0, +∞[, where u is the unique bounded entropy weak solution (in the
Kruzkov’s sense) of (1.5), (1.4). Moreover, u is an entropy weak solution (in the
sense of definition 1.1 and 1.2) of the Cauchy problem (1.2), (1.4).
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In the last section of this paper we deal with the numerical approximation of
the solution of the quoted Riemann problem for the equation (1.2), obtained by
application of theorem 1.4. For that, and since in general it is difficult to construct
the lower convex envelope f̄ of the original flux function f , we introduce a
procedure to obtain a new Lipschitz continuous flux function f M with the same
lower convex envelope f̄ in [uL, uR]. By theorem 3.3 in [2] we obtain the
same solution u for the corresponding Riemann problem. Then, we apply the
Lax-Friedrichs method and the limiters technique (cf.[6]) to compute the quoted
solution in an example.

2 Proofs of Lemma 1.3 and Theorem 1.4.

We start with the proof of Lemma 1.3. With the notations introduced in §1 and
putting f (0) = f (0+) = h(0) = 0 (f (0−) = g(0) = 0) it is easy to see that
fε(u) = f (u) for |u| ≥ ε, fε(0) = 1

2 and f̄ (0) ≤ 0. By continuity, we derive

f̄ (u) ≤ fε(u), u ∈ [uL, uR] for ε ≤ ε0.

Hence,

f̄ (u) ≤ f̄ε(u), u ∈ [uL, uR] for ε ≤ ε0. (2.1)

On the other hand, there exists c > 0 such that

f̄ε(u) ≤ fε(u) ≤ c, u ∈ [uL, uR]. (2.2)

We derive, with I =]uL, uR[, ‖f̄ε‖L∞(I ) ≤ c1, for ε ≤ ε0. Moreover we have,
by convexity,

−∞ < f̄ ′(uL) ≤ f̄ ′
ε(uL) ≤ f̄ ′

ε(u) ≤ f̄ ′
ε(uR) ≤ f̄ ′(uR) < +∞,

for u ∈ Ī , ε ≤ ε0. Hence, ‖f̄ε‖W 1,∞(I ) ≤ c2, for ε ≤ ε0. Since the injection
W 1,∞(I ) ↪→ C(Ī ) is compact, we can extract a subsequence of {fε}ε>0, still
denoted by {fε}ε>0, such that

f̄ε −→
ε→0

θ in C(Ī ).

The function θ is convex and, by (2.1),

f̄ (u) ≤ θ(u), u ∈ Ī .
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By (2.2) we derive θ(u) ≤ f (u) for u ∈ Ī , u �= 0, and so, by right continuity at
the origin,

θ(u) ≤ f (u) for u ∈ Ī .

Hence,

θ(u) ≤ f̄ (u) for u ∈ Ī

and the lemma is proved. �
We are now able to prove theorem 1.4. To do this we consider, for ε, δ ≤ ε0

in lemma 1.3, the Riemann problem (1.6) with u0 defined by (1.4), that is,
equivalently, the Riemann problems⎧⎪⎨

⎪⎩
∂uε

∂t
+ ∂

∂x
f̄ε(uε) = 0

uε(x, 0) = u0(x)

and

⎧⎪⎨
⎪⎩

∂uδ

∂t
+ ∂

∂x
f̄δ(uδ) = 0

uδ(x, 0) = u0(x)

and we apply the estimate (iii) in theorem (3.1) of [1]. We deduce, for each
R > 0, t ≥ 0, ∫

|x|≤R

|uε(x, t) − uδ(x, t)| dx ≤

≤ c0
[
(R + Mt) (uR − uL) t ‖(f̄ε − f̄δ) − (f̄ε − f̄δ)(0)‖L∞(I )

]1/2

with M = sup
ε≤ε0

‖f̄ ′
ε‖L∞(I ) < +∞ by Lemma 1.3 and since uL ≤ uε(x, t) ≤ uR

a.e. in R×]0, +∞[. From the previous estimates and Lemma 1.3, we easily
derive that there exists a subsequence of {uε}ε>0, still denoted by {uε}ε>0, and a
function u in L∞(R×]0, +∞[) such that

uL ≤ u(x, t) ≤ uR a.e. in R×]0, +∞[,
uε ⇀

ε→0
u in L∞(R×]0, +∞[) weak∗, in L1

loc(R × [0, +∞[)
and a.e. in R×]0, +∞[.

Moreover, since ∫
|x|≤R

|u(x, t) − u0(x)| dx ≤∫
|x|≤R

|u(x, t) − uε(x, t)| dx +
∫

|x|≤R

|uε(x, t) − u0(x)| dx,
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one can easily prove that, for t /∈ A ⊂ [0, +∞[, A with zero mesure,

lim
t→0,t /∈A

∫
|x|≤R

|u(x, t) − u0(x)| dx = 0, ∀R > 0.

Hence, by [7], [2] and Lemma 1.3, u is the unique bounded entropy weak solution
(in the Kruzkov’s sense) of the Riemann problem⎧⎪⎨

⎪⎩
∂u

∂t
+ ∂

∂x
f̄ (u) = 0

u(x, 0) = u0(x)

and u is a self-similar function.
Now recall that uε is also the unique bounded entropy weak solution of the
Riemann problem (1.6) and that we can assume, by Lemma 1 in [3] that∫ uε

−ε

ρε(s) ds ⇀
ε→0

w in L∞(R×]0, +∞[) weak∗

with w ∈ H̃ (u). We derive for fε(uε),

fε(uε) ⇀
ε→0

v = g(u) + (h(u) − g(u)) w in L∞(R×]0, +∞[) weak∗

and

v(x, t) ∈ f̃ (u(x, t)) a.e. R×]0, +∞[,
where f̃ is the multivalued function defined in §1. Hence, by passing to the limit
in (1.6), we obtain that u is a weak solution of the Riemann problem (1.2), (1.4)

in the sense of definition 1.1. Finally, let η ∈ C1 be a convex entropy and let

Fε(s) =
∫ s

−ε

η′(y)f ′
ε(y)dy, s ∈ R,

be the corresponding entropy flux for the approximate problem (1.6). We have

∂

∂t
η(uε) + ∂

∂x
Fε(uε) ≤ 0 in D′(R×]0, +∞[).

It is easy to see (cf.[3], proof of theorem 1) that

Fε(uε) ⇀
ε→0

F(u) − η′(0)w in L∞(R×]0, +∞[) weak∗,
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where

F(u) =
∫ u

0
η′(s)

[
g′(s) + (h′(s) − g′(s))H(s)

]
ds.

Hence, we derive

∂

∂t
η(u) + ∂

∂x
F (u) − η′(0)

∂w

∂x
≤ 0 in D′(R×]0, +∞[)

and it follows that u is an entropy weak solution in the sense of Definition 1.2
and the Theorem 1.4 is proved. �

3 Numerical examples

With the usual notations (cf.[6]) we represent by 
t a uniform time step and by

x the increment space, and we put

r = 
t


x
.

For the sake of simplicity, we consider the explicit difference scheme of 3-points
in conservative form,

vn+1
j = H (

vn
j−1, v

n
j , v

n
j+1

) = vn
j − r

[
g
(
vn

j−1, v
n
j

) − g
(
vn

j , v
n
j+1

) ]
,

j ∈ Z, n = 0, 1, . . . .,

(3.1)

where g : R2 −→ R, the numerical flux, depends on the flux function f (re-
call that a difference scheme (3.1) is said consistent with the equation (1.2) if
g(v, v) = f (v), ∀v ∈ R ).

Recall now that the theory of numerical approximation for scalar conservation
laws uses the lipschitzian condition for g as a fundamental assumption in the
theorems of convergence and so we cannot apply directly the schemes in our
case. If we take, for instance, the “very stable” Lax-Friedrichs first order scheme,

vn+1
j = vn

j − r
[
gn

j+1/2 − gn
j−1/2

]
,

where

gj+1/2 = gLF (vn
j , v

n
j+1),

gLF (v, w) = f (v) + f (w)

2
− w − v

2r
,
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and if we apply to the simple case,

f (x) =
{
x + 1 x < 0

x x ≥ 0
, uL = 0.5, uR = 1,

we get the catastrophic approximation to the solution u(x, t) at t = 0.5,

u(x, 0.5) =
⎧⎨
⎩

−0.5 if x < −0.5
0 if −0.5 < x < 0.5
1 if x > 0.5

-1 0 1-0.5 0.5

0

1

-0.5

0.5

Figure 1:

We can observe a clear difficult in convergence near u(x, 0.5) = 0, precisely the
point of discontinuity of the flux function f .

However, using the results obtained in the previous sections, one can apply the
numerical schemes to the lower convex envelope of f , f̄ , in the interval [uL, uR],
which is a lipschitzian function. Besides, one can even take any lipschitzian
function, say f M , such that the lower convex envelope in the interval [uL, uR]
is equal to f̄ . In fact, using theorem 3.3 in [2] we get always the entropy weak
solution of our problem. Now, remark that if we take −δ < 0, sufficiently close
to 0, the modified flux f M defined by{

f M(x) = kx, k = −f (−δ)

δ
, if −δ ≤ x < 0

f M(x) = f (x) elsewhere
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certainly admits the same lower convex envelope of f . Nevertheless, if we use
this modified flux in the numerical approximation we get a very severe CFL
condition,

r · sup
x∈[uL,uR]

|f ′(x)| ≤ 1,

and so 
t

x

· k ≤ 1, which penalize the eficiency of the scheme. Instead, we
propose the following procedure: let (ū, f (ū)) the first intersection point of the
graph of f with the segment connecting the origin to the point (uL, f (uL)). We
define now:

f M(x) =
⎧⎨
⎩

f (x) if x ≤ ū

kx if ū < x < 0
f (x) if x ≥ 0

(3.2)

where, k = f (ū)/ū. It is clear that the lower convex envelope of f M in the
interval [uL, uR] is f̄ and we can now apply the usual TVD schemes consistents
with any entropy condition. We illustrate the numerical approximation with the
following example:

Consider the discontinous flux function f defined by

f (x) =
⎧⎨
⎩

− 3
2x − 1 if x ≤ −4/5
x + 1 if −4/5 < x < 0
x/2 if x ≥ 0

and represented in Figure 2.

f

f=f
f

M

M

1

��
��

�

��

�
� �

Figure 2:
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The entropy solution coresponding to the Riemann data, uL = −1, uR = 1,
is given by

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

−1 if x/t ≤ −3/2
−4/5 if −3/2 < x/t ≤ −1/4

0 if −1/4 < x/t ≤ 1/2
1 if x/t > 1/2

(3.3)

Accordingly with the procedure (3.2), we define f M(x) = −x/2 if −2/3 ≤ x <

0 and f M(x) = f (x) elsewhere. Now, we use a limiter technique to approximate
the solution (3.3) (cf.[6], pag. 187).

-1 0 1-0.5 0.5

-1

0

1

-0.5

0.5

Exact Solution
Solution at t=0.5

Figure 3:

More precisely, we take as the underlying entropic scheme a variant of the
Lax-Friedrichs scheme,

vn+1
j = vn

j+1 + 2vn
j + vn

j−1

4
− r

f n
j+1 − f n

j−1

2
,

and we choose the superbee limiter,

ϕ(z) = max{0, min{2z, 1}, min{z, 2}}.
The approximate solution at t = 0.5, with a stepsize 
x = 0.005, is displayed
in Figure 3.
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