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The Weierstrass semigroup of a pair of
Galois Weierstrass points with prime
degree on a curve

Seon Jeong Kim* and Jiryo Komeda**

Abstract. We describe the Weierstrass semigroup of a Galois Weierstrass point with
prime degree and the Weierstrass semigroup of a pair of Galois Weierstrass points with
prime degree, where a Galois Weierstrass point with degree n means a total ramification
point of a cyclic covering of the projective line of degree n.
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1 Introduction

Let Ny be the additive semigroup of non-negative integers. A subsemigroup H
of Ny is called a numerical semigroup if the complement No\ H of H in Nj is
finite. The cardinality of Ny\ H is called the genus of H. A numerical semigroup
H is called an n-semigroup if the least positive integer in H is n. Let C be a
complete nonsingular irreducible curve of genus g > 2 over an algebraically
closed field k of characteristic 0, which is called a curve in this paper. Let K(C)
be the field of rational functions on C. For a point P of C, we set

H(P) := {a € Ny| thereexists f € K(C) with (f)s = ¢ P},

which is called the Weierstrass semigroup of the point P. We note that H (P) is
a numerical semigroup of genus g. An integer n is called the first non-gap of P
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if H(P) is an n-semigroup. For distinct points P and Q of C, we set

H(P, Q) := {(a, B) € Ng x Ny| thereexists [ € K(C)
with (f)oo =P + B0},

which is called the Weierstrass semigroup of the pair (P, Q) of points. If C is a
hyperelliptic curve of genus g > 2 and P is its point, then the semigroup H (P) is
well-known. Moreover, if P and Q are distinct points of the hyperelliptic curve
C, Kim [4] determined the semigroup H (P, Q). If C is a curve of genus g < 7,
then every candidate, i.e., every numerical semigroup of genus g < 7, appears as
the Weierstrass semigroup of a point (for the case g = 4 see Lax [3], and for the
cases g = 5, 6,7 see Komeda [10]). In the case where C is a non-hyperelliptic
curve of genus 3, for all distinct points P and Q of C the semigroup H (P, Q)
is determined by Kim-Komeda [6]. If P is a point of a curve with first non-gap
a < 5, then every candidate, i.e., every numerical semigroup with first non-gap
a < 5, appears as the Weierstrass semigroup of a point (for the case a = 3 see
Maclachlan [11] and for the case @ = 4 (resp. 5) see Komeda [8] (resp. [9])).
If P and Q are distinct points whose first non-gaps are 3, then the semigroup
H(P, Q) is determined by Kim-Komeda [7].

In Section 2 we give a necessary and sufficient computable condition for a
p-semigroup to be the Weierstrass semigroup of a Galois Weierstrass point with
degree p where p is a prime number. In Section 3 we determine the Weierstrass
semigroup of a pair of Galois Weierstrass points with degree p.

2 The semigroup of a Galois Weierstrass point with prime degree

First we give the notation which we will use in this section. For an n-semigroup
H we sets; = Min{h € Hlh = i modn} fori = 1,...,n — 1. The set
S(H) = {n,s1,...,s,—1} is called the standard basis for H. An n-semigroup
H is said to be cyclic if there is a Galois Weierstrass point P with degree n such
that H(P) = H. The following result is classical.

Remark 2.1. Any 3-semigroup is cyclic.

Cyclic p-semigroups have the following property:

Remark 2.2. (Morrison-Pinkham [12]). Let p be a prime number. If H is a
cyclic p-semigroup, then we have

Si +Sp—i = 8; +Sp—j, all 1<i,j<p-—1,
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GALOIS WEIERSTRASS POINTS WITH PRIME DEGREE ON A CURVE 129

which are called the M-P equalities.

The above condition is a necessary and sufficient conditioninthecase p = 5, 7.

Remark 2.3. If p = 5or7,then any p-semigroup satisfying the M-P equalities
is cyclic (for example, see Morrison-Pinkham [12]).

For an arbitrary prime number p, Theorem 2.1 in Kim-Komeda [5] gives a
necessary and sufficient condition for a p-semigroup to be cyclic. Using the
theorem we can show that the condition satisfying the M-P equalities is not
sufficient for every p > 11.

Remark 2.4. (Kim-Komeda [5]). If p > 11, then there exists a non-cyclic
p-semigroup satisfying the M-P equalities.

We want to find a strictly additional computable condition for a p-semigroup
satisfying the M-P equalities to be cyclic. From now on, let p be an odd prime
number. We assume that H is a p-semigroup satisfying the M-P equalities. We
set

SH)={p,pas+1(U=1,...,p—D}.

We call
it + e =ar+a,1 +1
" 2
LR . .
Zﬂ(lq)jq=paz+l (I=1,....5%
g=1

the system of linear equations associated to H, where

X
T(x) =x — [—i|p
p

for any integer x and [ ] denotes the Gauss symbol. Here jj, ..., jpr1 are
the variables. Using Carliz-Olsen [1] we can see that the determinant of the
coefficients of (I) is non-zero. Hence (I) has a unique solution. If we can find
the solution, we get the necessary and sufficient condition for a p-semigroup
satisfying the M-P equalities to be cyclic which will be described in Theorem 2.7.
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Proposition 2.5. Let H be a p-semigroup. Then the following conditions are
equivalent.

1) H is cyclic.

p—1
i) S(H)={p}U{> nlqiy |I=12,....p—1
q=1
p—1
for some non-negative integers iy, is, ... ,ip—1 with Z qiq = 1 mod p.
q=1

Proof. ii) implies i) by Theorem 2.1 in [5]. We assume that i) holds. Then
there is a Galois Weierstrass point P on a curve C such that H(P) = H. We
may assume that the C is defined by an equation of the form

p—1 g

o =TT]]e —co? (D

q=1j=1
where

p—1
> qug #0mod p

g=1
and c,;’s are distinct elements of k. Let f: C —> P! be the morphism corre-
sponding to the inclusion

K(P" = k(x) C k(x,z) = K(C), ie., f(R) = (1 : x(R)).

In this case, we may take the point P as f~'((0 : 1)) = {P}. There exists an
integer m with 1 <m < p — 1 such that

p—1
quuq = 1 mod p.
qg=1

For any g with 1 < g < p — 1 we have mq = n,p + r, for some integers n,
and r, with 1 < r, < p — 1. Then the m-th power of the equation (1) becomes

p—1 Iy

2 = [TTTC = g™ (r =g

g=1j=1
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Hence, if we set

m

Z

= = R
l_[f;:l Hl;il(x — Cqj)"

we get
p—1 Kq
VASES l_[ l_[(x —cgp)
qg=1 j=1
p—1
with qu,uq = 1 mod p. Moreover, we have K(C) = k(x,z) = k(x, Z),
g=1

because p is prime. By the proof of Theorem 2.1 in Kim-Komeda [5] we have

S(H(P)) =3 p. > rattgs- s y_w(trgditg, ., »_7((p = Drg)ug
g=1 g=1 g=1
= S(H).
Foranyg =1,2,...,p — 1 weseti, = u,. Then we have
p—1 p—1 p—1
Zn(rrq),uq = Zn(trq)irq = Zn(z‘q)iq.
q=1 g=1 qg=1
p—1

Moreover, we get Z qiy = 1 mod p, because
qg=1

Fqlg = ququ th O

Proposition 2.6. Let H be a p-semigroup satisfying the M-P equalities. The
semigroup H is cyclic if and only if the system of linear equations

i+ +ipg=a+ap1+1
p—1

11 . _
{ah > wlq)ig = pa +1 Id=1,....,55,
g=1
has a solution (iy, ... ,ip—1) = @, ... (O) 1) consisting of non-negative inte-

gers.
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Proof. Assume that H is cyclic. By Proposition 2.5 we have

p—1
S(H) = {pyu{> =g’

q=1

1=1,2,...,p—1

p—1

for some non-negative integers i 1(0), zéo), 1(,0)1 with Zqiéo) = 1 mod p.
qg=1

Hence, we get

Zn(lq)z(o) = [ mod p,

which implies that

—1
n(lq)iéo) = pa; + [ mod p
1

<

<
I

for all l. Since ¢ + n((p — 1)q) = p for all g, we have

p—1 p—1
Y owp— i =Y (p— i

g=1 g=1

Thus, we obtain

i+ i =ata, + 1

Therefore, the system (II) has a solution consisting of the non-negative integers
i i
Assume that (II) has a solution (i;.... ,i,—1) = (i) © (0) _,) consisting of

non-negative integers. Since H satisfies the M-P equahtles and we have

-1
m(lg)+n7n((p—1)q)=pforalg=1,..., pT’
we see that
p—1
S 7Ug)i® = pay+1U=1,....p— 1)
g=1
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Thus, we get

p—1
S(H)={p}u{> mlq)il? |1=1,2,....,p—1
g=1
By Proposition 2.5 H must be cyclic. U

Theorem 2.7. Let H be a p-semigroup satisfying the M-P equalities. Let

oo o) = (Ar, oo, Apar)
be the unique solution of the system (1) of linear equations associated to H.
. p+1 . . .
(1) Ifthereist € {1,..., — such that A, is not an integer, then H is

non-cyclic.
(2) Ifall A,’s are integers, then the following conditions are equivalent:

(1) H is cyclic, i.e., there is a Galois Weierstrass point P with degree p such

that H(P) = H.
(i) Y A +Ap >0and ) Ay + Apg1 = 0 where
reRy reRy
-3
Ry = {re {1 pT} A, <o}.
Proof. (1) Consider the system of linear equations
i+ +ip=a+a,1+1
p—1
II . _
(D Zn(lq)zqual—i—l (l:l,...,PTl),
g=1
where S(H) = {p, pa; +1({ =1,..., p—1)}. By the assumption we get the
solutions of (II)
i1 =A1+i,
y=Ay+ip 2
1 i3 =Aps +ips
. 2 2 . 2 . .
lp;l :APT_I —sz+3 — =y —ipg
ipTH :ApTH — i — =iy —ip.
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1
Assume that there exists ¢ € {1, cee %} such that A, is not an integer. If

H were cyclic, then some solution (iy, ... ,i,—1) must consist of integers by
Proposition 2.6. But by the expression of the solutions, i, is not an integer. This
is a contradiction.

(2) Assume that all A,’s are integers. First we prove that (i) implies (i1). Assume
that we had

E A, +Ap1 <0 or E A+ Apn <O.
2 2
rERH VGRH
Since H is cyclic, we get a solution (i, ... ,i,-1) of (II) consisting of non-

p—3

negative integers. For any r € {1, ... we have i, = A, +i,_, >0,

which implies thati,_, > —A,. If Y A, + Ap1 <0, then we get

FERH
0<ipa =Ap1 —ipss —---—ipp—i,_
5 = b= p=2 7 tpl
SAprl— ip_rEApT4+ E Ar<0.
reRy reRy

This is a contradiction. If Z A+ A 1 < 0, the same proof works well.

reRy

Next we prove that (ii) implies (i). Let

-3
se{l,...,p—}
2

suchthats ¢ Ry. Weseti,_; = 0, whichimplies thati; = A;+i,_; = A, > 0.
Letr € Ry. Weseti,_, = —A, >0. Theni, = A, +i, , =A,—A, =0.
Moreover, we have

Ip-l =Apt —ips3 — - —1p_ 0 —1lp_
b = £ p=2 = -l
=Awt = ) i
rERH
=Ap1 + E A, >0
7
rERH

Similarly we get ip+1 = ApT-H + Z A, > 0. Hence we get i, > 0 for all

2
reRy

g=1,...,p— 1, which implies that H is cyclic. O
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Using Theorem 2.7 we can give an example of a cyclic (resp. non-cyclic)
semigroup satisfying the M-P equalities.

Example 2.8. Let H be the 11-semigroup with
S(H) = {11, 23,24, 25, 26, 27, 39, 40, 41, 42, 43}

(resp. {11, 12, 16, 18, 19, 20, 24, 25, 26, 28, 32}).

Then H satisfies the M-P equalities. Moreover,

Ji+j2+ j3+ ja+ js+ jo = 6 (resp. 4)

j] +2j2+3j3 +4j4+5j5+6j6=23 (resp. 12)
2j1+4j+6j3+ 8js+ 10j5s + jo =24
3j1+6j2+9j3+ ja+4js+7js =25
4j1+8ja+ j3+5ja+9js +2jo =26

5j1+ 102 +4j3 +9js + 3js + 8 js = 27 (resp. 16)

is the system (I) of linear equations associated to H. The unique solution is
(3,-1,0,0,2,2) (resp. (1,1, 1, —1, 2, 0)), which implies that R y = {2} (resp.
{4}). Hence we get

—14+2>0 and —1+4+2>0(@esp. —14+2>0 and —1+0 <0),

which implies that H is cyclic (resp. non-cyclic) by Theorem 2.7 (2).

3 The semigroup of a pair of Galois Weierstrass points with prime degree

Throughout this section let C be a curve of genus g. We determine the Weierstrass
semigroup at a pair of Galois Weierstrass points P, Q with prime degree. First
we review the properties of the semigroup H (P, Q).

Remark 3.1. (Kim [4] and Homma [2]). Let P and Q be distinct points of
C. Then we have the following:

i) Foreach! € G(P) = No\H (P), the integer Min{g | (I, B) € H(P, Q)}
must be equal to some element in G(Q) = No\H (Q), say o (I), and this
correspondence o gives a bijection between the sets G(P) and G(Q).

Bull Braz Math Soc, Vol. 36, N. 1, 2005
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ii) The semigroup H (P, Q) is completely determined by the bijective corre-
spondence o, i.e.,

G(P, Q) =
U ({(l,,B)|/3 =0,1,...,0() —1}U{(a,o()| =0,1,...,1— 1})

leG(P)

where we set G(P, Q) = (Ny x No)\H (P, Q). Thus, it suffices to
determine the graph I'(P, Q) of 0, i.e.,

L(P,Q)={l, o) |l €G(P)}

for describing the semigroup H (P, Q). We call I'(P, Q) the generating
set for H(P, Q).

Remark 3.2. 'We can describe the semigroup of a pair of points whose first non-
gaps a are 2 (resp. 3) using the generating set (see Kim [4] (resp. Kim-Komeda
[7]) for a = 2 (resp. 3)).

Let P be a Galois Weierstrass point of degree p on a curve C. By the proof
of Proposition 2.5 the curve C can be defined by an equation of the form

p—1 g
7’ = l_[ l_[(x - qu)q (2)
g=1 j=1
where
p—1
qiy = 1 mod p

1

<
Il

and c,;’s are distinct elements of k. Let f: C —> P! be the morphism corre-
sponding to the inclusion

K(P") = k(x) C k(x,z) = K(C), ie., f(R) = (I : x(R)).

In this case, we may take the point P as f~'((0 : 1)) = {P}. By Theorem 2.1
in Kim-Komeda [5] we have

p—1 p—1 p—1
S(HP) =1{p. Y qig.-... Y w(tqig.....» 7((p =Dy
q=1 g=1 g=1

Using the above curve C and its point P we get our main theorem.
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Theorem 3.3. i) Let P and Q be distinct Galois Weierstrass points with degree
p on a curve C of genus g. Assume that g > (p — 1)%. Then there exist non-

p—1
negative integers iy, ... ,i,_1 with Zqiq = 1 mod p and an integer s with
qg=1

1 <s < p — 1satisfying iy > 0 such that

p—1 p—1 p—1
S(H(P) =P, Y digeeee sy 7@, Y w((p =iy | .
g=1 g=1 g=1
p—1 p—1
S(H(Q)) = {p,Zqiq+p— L=s.....) wtq)ig+p—t—m(ts),....
q=1 qg=1

p—1
Y w(p = De)ig+1—7((p— 1>s>}

q=1
and
p—1
r(P, Q)= { > w(mq)ig —Ip,Ip — 7 (ms) ‘
g=1
p—1 .
_, m(mq)i
4
i) Conversely, let iy, ... , i, be non-negative integers such that

-1

=

qiy = 1 mod p.
1

<
Il

Take an integer s with iy > 0. Then we can construct a pair (P, Q) of Galois
Weierstrass points with degree p such that S(H(P)), S(H(Q)) and ' (P, Q) are
asini).

Proof. i) Let C be the curve with the equation (2). We set f='((1 : ¢5)) =
{Ps;}. Since the genus of C is larger than (p — 1)2, we have Q = P,, for some

s and . We transform the variable x by X =

. Then the equation (2)

)C - CSI
becomes
1 p—1 . [7_] -‘1 ix
—ZPXXg=19l — 1_[ l_[(X —c ) ]_[ (X —c.)
c q] J
g=1,#s j=1 j=1,%t
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where c/q ; = —— and ¢ is some constant. Then we get
Cqi — C
qj st

p—1

z'=x""\ ] ﬁ(X —cy)! h (X — )",

g=1.#s j=I j=l#t

p—1
where we set Z = C_%X%Z and u = Zqiq +p—1.Ifs = p — 1, then we get
q=1

[)—2 i‘] ipfl

20 = TTTTx =eppr (X7 TT x =<, 7!

g=1j=1 Jj=1.#t

If s # p — 1, then we obtain

p=2 g is ip-1
7P = ( ]_[ ]_[(X—c/qj)q) ( H (X—cgj)s) (Xpl H(X_C;lj)pl).

q=1,#s j=1 j=1,#t j=1

If s = p — 1, then

p—1
S(H(Q)) = S(H(P)) = {p}U { > wqliglt=1.2.... . p- 1}

g=1
If s # p — 1, then by Theorem 2.1 in Kim-Komeda [5] we have
p—2

S(H(Q))={p}tU { Z n(tq)ig + m(ts)(is — 1) + (@ (p — D)(ip—1 + D

g=1.%#s

t:1,2,...,p—1}

p—1
- {p}U{Zn(tq)iq +x@t(p—1)—nm@)t=1,2,...,p— 1}

qg=1
p—1

:{p}u{Zn(rq)iq+p—z—n(ts)|z =1,2,....,p— 1}.
q=1

For any positive integer / and any m = 1,2, ..., p — 1, consider the divisor

( iy )
—1 i mq
(x —cor)! H5=1 [T — qu)[ o
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GALOIS WEIERSTRASS POINTS WITH PRIME DEGREE ON A CURVE 139

p=1 iq p—1
=m ZZqqu_ZqiqP —Il(pPy; — pP)
g=1 j=1 g=1
p—1 iq mq p—1 m
(S5 5]
qg=1 j=1 P g=1 p

p—1 i is
- Z 2 [T e 2 ([T ])
g=1.#s j=1 p =1t p
ms 21 i
—(lp—ms—i—[—]p)Ps,— quiq— [ i|pzq—lp P
P g=1 g=1
p—1 1 is
= w(mq)Py; + Z 7 (ms) Py;
g=1,#5 j=1 j=1.#t

p—1
—(Ip — 7 (ms) Py — | D w(mgq)ig —Ip | P.
qg=1
. L w(mg)i,
We note that [p — w(ms) > 0. Moreover, if [ < | —— |, then
4

p—1
> w(mg)ig —Ip > 0.
g=1

p—1 .
_y t(mq)i
Hence,forl <m <p—1land1 <l < [M} we get
p

p—1
Zn(mq)iq —Ip,lp —w(ms) | € H(P, Q).

g=1

By Lemma 2 in Homma [2] we get the result.

ii) Using the integers iy, ... ,i,—; we construct the curve C with the equation
(2) and its point P. Let us take P;; as Q where £ : ¢51)) = {Ps1}). Then
we get the desired result. O

We give an example of the semigroup of a pair of Galois Weierstrass points
such that we can take only one s as in the above theorem.

Bull Braz Math Soc, Vol. 36, N. 1, 2005
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Example 3.4. Let H be the 11-semigroup with
S(H) = {11, 23,46,69,92, 115, 138, 161, 184, 207, 230}.

It satisfies the M-P equalities. The solution (A, ..., Ag) of the system (I)
associated to H is (23,0, 0, 0, 0, 0), which implies that Ry = . Hence H is
cyclic. The solutions of the system (II) in the proof of Theorem 2.7 (1) are

i1 =23411, ir=1ly, I3=1ig, Ii4=17,

is = —i7 —ig —ig —i10, I = —i7 — i3 —I9— i10,
where i7, ig, i and i} are arbitrary. If iy, i, ... , ijp are non-negative, then we
must have i, =0 forallg =2,3,...,10. Thus, (23,0,0,0,0,0,0,0,0,0) is
only one solution of (II) consisting of non-negative integers, which means that
iy > 0 implies s = 1. By Theorem 3.3 ii) we can construct Galois Weierstrass
points P and Q such that

H(P)=H, S(H(Q)) ={11,32,53,74,95, 116, 137, 158, 179, 200, 221}
and
'P,0) ={23m — 11,11l —m) |1 <] <2m,1 <m < 10}.

In fact, let C be the curve defined by
23
M=[Je¢c-cp) and f:C—P
j=1

the morphism corresponding to the inclusion k(x) C k(x,z). Set {P} =
F£75(: 1) and {Q} = F~'((1: c11)). We get the desired one.

For the following cyclic 11-semigroup H we may take any s with 1 < s < 10
as in the above theorem.

Example 3.5. Let H be the 11-semigroup with
S(H) = {11, 89, 90, 146, 92, 93, 149, 150, 96, 152, 153}.

It satisfies the M-P equalities. The solution (A, ..., Ag) of the system (I)
associated to H is (6,0, 5, —5, 8, 8), which implies that Ry = {4}. Since we
have

As+As=-54+8>0and A4+ Ag = -5+ 8 >0,
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we see that H is cyclic by Theorem 2.7 (2). The solutions of the system (II) in
the proof of Theorem 2.7 (1) are

i1 =641, ir=1y, i3=35+is, is4=—5+1iy,
is=8—1i7—ig—ig—iy, Ic¢=8—i7—1ig—1i9—1ij,

where i7, ig, i9 and ijy are arbitrary. For example, (6,1,5,1,1,1,6,0,1,0)
and (7,0,6,0,1,1,5,1,0, 1) are solutions of (II) consisting of non-negative
integers. Therefore for any s we have a solution (iy, ... , ij9) of (I) consisting
of non-negative integers such that iy > 0. In this example we set s = 2. Namely,
let (iy,...,i10) = (6,1,5,1,1,1,6,0, 1, 0). Then by Theorem 3.3 ii) we can
construct Galois Weierstrass points P and Q such that

H(P)=H,S(H(Q)) =({11,97,95, 148,91, 89, 153, 151, 94, 147, 145}

and

L'(P, Q)=
(89— 11,111 —=2)[I=1,...,8/U{(90 — 11,11l —4)|I=1,...,8} U
(146 — 111,111 —6) | I=1,... , 13} U---
L U{AS3 = 1L 11U =9) [ =1,...,13).

In fact, let C be the curve defined by

6 5
M =[le—ep = ] —ep’ o —ean?
j=1 j=1

6
(= es1)’ (= cen) [ JOr —e2))7 - (x = cor)’.

j=1

We denote by f: C —> P! the morphism corresponding to the inclusion k(x) C
k(x,z). Set {P} = f~'((0: 1)) and {Q} = f~'((1 : ¢31)). Then we get the
desired one.
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