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The Weierstrass semigroup of a pair of
Galois Weierstrass points with prime
degree on a curve
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Abstract. We describe the Weierstrass semigroup of a Galois Weierstrass point with
prime degree and the Weierstrass semigroup of a pair of Galois Weierstrass points with
prime degree, where a Galois Weierstrass point with degree n means a total ramification
point of a cyclic covering of the projective line of degree n.
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1 Introduction

Let N0 be the additive semigroup of non-negative integers. A subsemigroup H

of N0 is called a numerical semigroup if the complement N0\H of H in N0 is
finite. The cardinality of N0\H is called the genus of H . A numerical semigroup
H is called an n-semigroup if the least positive integer in H is n. Let C be a
complete nonsingular irreducible curve of genus g ≥ 2 over an algebraically
closed field k of characteristic 0, which is called a curve in this paper. Let K(C)

be the field of rational functions on C. For a point P of C, we set

H(P ) := {α ∈ N0| there exists f ∈ K(C) with (f )∞ = αP },
which is called the Weierstrass semigroup of the point P . We note that H(P ) is
a numerical semigroup of genus g. An integer n is called the first non-gap of P
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if H(P ) is an n-semigroup. For distinct points P and Q of C, we set

H(P, Q) := {
(α, β) ∈ N0 × N0| there exists f ∈ K(C)

with (f )∞ = αP + βQ
}
,

which is called the Weierstrass semigroup of the pair (P, Q) of points. If C is a
hyperelliptic curve of genus g ≥ 2 and P is its point, then the semigroup H(P ) is
well-known. Moreover, if P and Q are distinct points of the hyperelliptic curve
C, Kim [4] determined the semigroup H(P, Q). If C is a curve of genus g ≤ 7,
then every candidate, i.e., every numerical semigroup of genus g ≤ 7, appears as
the Weierstrass semigroup of a point (for the case g = 4 see Lax [3], and for the
cases g = 5, 6, 7 see Komeda [10]). In the case where C is a non-hyperelliptic
curve of genus 3, for all distinct points P and Q of C the semigroup H(P, Q)

is determined by Kim-Komeda [6]. If P is a point of a curve with first non-gap
a ≤ 5, then every candidate, i.e., every numerical semigroup with first non-gap
a ≤ 5, appears as the Weierstrass semigroup of a point (for the case a = 3 see
Maclachlan [11] and for the case a = 4 (resp. 5) see Komeda [8] (resp. [9])).
If P and Q are distinct points whose first non-gaps are 3, then the semigroup
H(P, Q) is determined by Kim-Komeda [7].

In Section 2 we give a necessary and sufficient computable condition for a
p-semigroup to be the Weierstrass semigroup of a Galois Weierstrass point with
degree p where p is a prime number. In Section 3 we determine the Weierstrass
semigroup of a pair of Galois Weierstrass points with degree p.

2 The semigroup of a Galois Weierstrass point with prime degree

First we give the notation which we will use in this section. For an n-semigroup
H we set si = Min{h ∈ H |h ≡ i mod n} for i = 1, . . . , n − 1. The set
S(H) = {n, s1, . . . , sn−1} is called the standard basis for H . An n-semigroup
H is said to be cyclic if there is a Galois Weierstrass point P with degree n such
that H(P ) = H . The following result is classical.

Remark 2.1. Any 3-semigroup is cyclic.

Cyclic p-semigroups have the following property:

Remark 2.2. (Morrison-Pinkham [12]). Let p be a prime number. If H is a
cyclic p-semigroup, then we have

si + sp−i = sj + sp−j , all 1 ≤ i, j ≤ p − 1,
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which are called the M-P equalities.

The above condition is a necessary and sufficient condition in the case p = 5, 7.

Remark 2.3. If p = 5 or 7, then any p-semigroup satisfying the M-P equalities
is cyclic (for example, see Morrison-Pinkham [12]).

For an arbitrary prime number p, Theorem 2.1 in Kim-Komeda [5] gives a
necessary and sufficient condition for a p-semigroup to be cyclic. Using the
theorem we can show that the condition satisfying the M-P equalities is not
sufficient for every p ≥ 11.

Remark 2.4. (Kim-Komeda [5]). If p ≥ 11, then there exists a non-cyclic
p-semigroup satisfying the M-P equalities.

We want to find a strictly additional computable condition for a p-semigroup
satisfying the M-P equalities to be cyclic. From now on, let p be an odd prime
number. We assume that H is a p-semigroup satisfying the M-P equalities. We
set

S(H) = {p, pal + l (l = 1, . . . , p − 1)}.
We call

(I)

⎧⎪⎪⎨
⎪⎪⎩

j1 + · · · + jp+1
2

= a1 + ap−1 + 1
p+1

2∑
q=1

π(lq)jq = pal + l (l = 1, . . . ,
p−1

2 )

the system of linear equations associated to H , where

π(x) = x −
[

x

p

]
p

for any integer x and [ ] denotes the Gauss symbol. Here j1, . . . , j p+1
2

are
the variables. Using Carliz-Olsen [1] we can see that the determinant of the
coefficients of (I) is non-zero. Hence (I) has a unique solution. If we can find
the solution, we get the necessary and sufficient condition for a p-semigroup
satisfying the M-P equalities to be cyclic which will be described in Theorem 2.7.
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Proposition 2.5. Let H be a p-semigroup. Then the following conditions are
equivalent.

i) H is cyclic.

ii) S(H) = {p} ∪
⎧⎨
⎩

p−1∑
q=1

π(lq)iq

∣∣∣∣ l = 1, 2, . . . , p − 1

⎫⎬
⎭

for some non-negative integers i1, i2, . . . ,ip−1 with
p−1∑
q=1

qiq ≡ 1 mod p.

Proof. ii) implies i) by Theorem 2.1 in [5]. We assume that i) holds. Then
there is a Galois Weierstrass point P on a curve C such that H(P ) = H . We
may assume that the C is defined by an equation of the form

zp =
p−1∏
q=1

µq∏
j=1

(x − cqj )
q (1)

where

p−1∑
q=1

qµq �≡ 0 mod p

and cqj ’s are distinct elements of k. Let f : C −→ P
1 be the morphism corre-

sponding to the inclusion

K(P1) = k(x) ⊂ k(x, z) = K(C), i.e., f (R) = (1 : x(R)).

In this case, we may take the point P as f −1((0 : 1)) = {P }. There exists an
integer m with 1 ≤ m ≤ p − 1 such that

m

p−1∑
q=1

qµq ≡ 1 mod p.

For any q with 1 ≤ q ≤ p − 1 we have mq = nqp + rq for some integers nq

and rq with 1 ≤ rq ≤ p − 1. Then the m-th power of the equation (1) becomes

zpm =
p−1∏
q=1

µq∏
j=1

((x − cqj )
nq )p(x − cqj )

rq .
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Hence, if we set

Z = zm∏p−1
q=1

∏µq

j=1(x − cqj )
nq

,

we get

Zp =
p−1∏
q=1

µq∏
j=1

(x − cqj )
rq

with
p−1∑
q=1

rqµq ≡ 1 mod p. Moreover, we have K(C) = k(x, z) = k(x, Z),

because p is prime. By the proof of Theorem 2.1 in Kim-Komeda [5] we have

S(H(P )) =
⎧⎨
⎩p,

p−1∑
q=1

rqµq, . . . ,

p−1∑
q=1

π(trq)µq, . . . ,

p−1∑
q=1

π((p − 1)rq)µq

⎫⎬
⎭

= S(H).

For any q = 1, 2, . . . , p − 1 we set irq = µq . Then we have

p−1∑
q=1

π(trq)µq =
p−1∑
q=1

π(trq)irq =
p−1∑
q=1

π(tq)iq .

Moreover, we get
p−1∑
q=1

qiq ≡ 1 mod p, because

p−1∑
q=1

rqµq =
p−1∑
q=1

rqirq =
p−1∑
q=1

qiq. �

Proposition 2.6. Let H be a p-semigroup satisfying the M-P equalities. The
semigroup H is cyclic if and only if the system of linear equations

(II)

⎧⎪⎨
⎪⎩

i1 + · · · + ip−1 = a1 + ap−1 + 1
p−1∑
q=1

π(lq)iq = pal + l (l = 1, . . . ,
p−1

2 ),

has a solution (i1, . . . , ip−1) = (i0
1 , . . . , i

(0)
p−1) consisting of non-negative inte-

gers.
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Proof. Assume that H is cyclic. By Proposition 2.5 we have

S(H) = {p} ∪
⎧⎨
⎩

p−1∑
q=1

π(lq)i(0)
q

∣∣∣∣ l = 1, 2, . . . , p − 1

⎫⎬
⎭

for some non-negative integers i
(0)
1 , i

(0)
2 , . . . ,i(0)

p−1 with
p−1∑
q=1

qi(0)
q ≡ 1 mod p.

Hence, we get

p−1∑
q=1

π(lq)i(0)
q ≡ l mod p,

which implies that

p−1∑
q=1

π(lq)i(0)
q = pal + l mod p

for all l. Since q + π((p − 1)q) = p for all q, we have

p−1∑
q=1

π((p − 1)q)i(0)
q =

p−1∑
q=1

(p − q)i(0)
q .

Thus, we obtain

i
(0)
1 + · · · + i

(0)
p−1 = a1 + ap−1 + 1.

Therefore, the system (II) has a solution consisting of the non-negative integers
i
(0)
1 , i

(0)
2 , . . . ,i(0)

p−1.

Assume that (II) has a solution (i1. . . . , ip−1) = (i
(0)
1 . . . . , i

(0)
p−1) consisting of

non-negative integers. Since H satisfies the M-P equalities and we have

π(lq) + π((p − l)q) = p for all q = 1, . . . ,
p − 1

2
,

we see that

p−1∑
q=1

π(lq)i(0)
q = pal + l (l = 1, . . . , p − 1).
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Thus, we get

S(H) = {p} ∪
⎧⎨
⎩

p−1∑
q=1

π(lq)i(0)
q

∣∣∣∣ l = 1, 2, . . . , p − 1

⎫⎬
⎭ .

By Proposition 2.5 H must be cyclic. �

Theorem 2.7. Let H be a p-semigroup satisfying the M-P equalities. Let

(j1, . . . , j p+1
2

) = (A1, . . . , Ap+1
2

)

be the unique solution of the system (I) of linear equations associated to H .

(1) If there is t ∈
{

1, . . . ,
p + 1

2

}
such that At is not an integer, then H is

non-cyclic.

(2) If all At ’s are integers, then the following conditions are equivalent:

(i) H is cyclic, i.e., there is a Galois Weierstrass point P with degree p such
that H(P ) = H .

(ii)
∑

r∈RH

Ar + Ap−1
2

≥ 0 and
∑

r∈RH

Ar + Ap+1
2

≥ 0 where

RH :=
{
r ∈

{
1, . . . ,

p − 3

2

} ∣∣∣∣Ar < 0

}
.

Proof. (1) Consider the system of linear equations

(II)

⎧⎪⎨
⎪⎩

i1 + · · · + ip−1 = a1 + ap−1 + 1
p−1∑
q=1

π(lq)iq = pal + l (l = 1, . . . ,
p−1

2 ),

where S(H) = {p, pal + l (l = 1, . . . , p − 1)}. By the assumption we get the
solutions of (II) ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

i1 = A1 + ip−1

i2 = A2 + ip−2

· · · · · · · · · · · ·
i p−3

2
= Ap−3

2
+ i p+3

2

i p−1
2

= Ap−1
2

− i p+3
2

− · · · − ip−2 − ip−1

i p+1
2

= Ap+1
2

− i p+3
2

− · · · − ip−2 − ip−1.
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Assume that there exists t ∈
{

1, . . . ,
p + 1

2

}
such that At is not an integer. If

H were cyclic, then some solution (i1, . . . , ip−1) must consist of integers by
Proposition 2.6. But by the expression of the solutions, it is not an integer. This
is a contradiction.

(2) Assume that all At ’s are integers. First we prove that (i) implies (ii). Assume
that we had ∑

r∈RH

Ar + Ap−1
2

< 0 or
∑

r∈RH

Ar + Ap+1
2

< 0.

Since H is cyclic, we get a solution (i1, . . . , ip−1) of (II) consisting of non-

negative integers. For any r ∈
{

1, . . . ,
p − 3

2

}
we have ir = Ar + ip−r ≥ 0,

which implies that ip−r ≥ −Ar . If
∑

r∈RH

Ar + Ap−1
2

< 0, then we get

0 ≤ i p−1
2

= Ap−1
2

− i p+3
2

− · · · − ip−2 − ip−1

≤ Ap−1
2

−
∑

r∈RH

ip−r ≤ Ap−1
2

+
∑

r∈RH

Ar < 0.

This is a contradiction. If
∑

r∈RH

Ar + Ap+1
2

< 0, the same proof works well.

Next we prove that (ii) implies (i). Let

s ∈
{

1, . . . ,
p − 3

2

}

such that s �∈ RH . We set ip−s = 0, which implies that is = As +ip−s = As ≥ 0.
Let r ∈ RH . We set ip−r = −Ar > 0. Then ir = Ar + ip−r = Ar − Ar = 0.
Moreover, we have

i p−1
2

= Ap−1
2

− i p+3
2

− · · · − ip−2 − ip−1

= Ap−1
2

−
∑

r∈RH

ip−r

= Ap−1
2

+
∑

r∈RH

Ar ≥ 0.

Similarly we get i p+1
2

= Ap+1
2

+
∑

r∈RH

Ar ≥ 0. Hence we get iq ≥ 0 for all

q = 1, . . . , p − 1, which implies that H is cyclic. �
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Using Theorem 2.7 we can give an example of a cyclic (resp. non-cyclic)
semigroup satisfying the M-P equalities.

Example 2.8. Let H be the 11-semigroup with

S(H) = {11, 23, 24, 25, 26, 27, 39, 40, 41, 42, 43}
(resp. {11, 12, 16, 18, 19, 20, 24, 25, 26, 28, 32}).

Then H satisfies the M-P equalities. Moreover,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

j1 + j2 + j3 + j4 + j5 + j6 = 6 (resp. 4)
j1 + 2j2 + 3j3 + 4j4 + 5j5 + 6j6 = 23 (resp. 12)
2j1 + 4j2 + 6j3 + 8j4 + 10j5 + j6 = 24
3j1 + 6j2 + 9j3 + j4 + 4j5 + 7j6 = 25
4j1 + 8j2 + j3 + 5j4 + 9j5 + 2j6 = 26
5j1 + 10j2 + 4j3 + 9j4 + 3j5 + 8j6 = 27 (resp. 16)

is the system (I) of linear equations associated to H . The unique solution is
(3, −1, 0, 0, 2, 2) (resp. (1, 1, 1, −1, 2, 0)), which implies thatRH = {2} (resp.
{4}). Hence we get

−1 + 2 ≥ 0 and − 1 + 2 ≥ 0 (resp. − 1 + 2 ≥ 0 and − 1 + 0 < 0),

which implies that H is cyclic (resp. non-cyclic) by Theorem 2.7 (2).

3 The semigroup of a pair of Galois Weierstrass points with prime degree

Throughout this section let C be a curve of genus g. We determine the Weierstrass
semigroup at a pair of Galois Weierstrass points P, Q with prime degree. First
we review the properties of the semigroup H(P, Q).

Remark 3.1. (Kim [4] and Homma [2]). Let P and Q be distinct points of
C. Then we have the following:

i) For each l ∈ G(P ) = N0\H(P ), the integer Min{β | (l, β) ∈ H(P, Q)}
must be equal to some element in G(Q) = N0\H(Q), say σ(l), and this
correspondence σ gives a bijection between the sets G(P ) and G(Q).
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ii) The semigroup H(P, Q) is completely determined by the bijective corre-
spondence σ , i.e.,

G(P, Q) =⋃
l∈G(P )

(
{(l, β)|β = 0, 1, . . . , σ (l) − 1} ∪ {(α, σ (l))|α = 0, 1, . . . , l − 1}

)

where we set G(P, Q) = (N0 × N0)\H(P, Q). Thus, it suffices to
determine the graph �(P, Q) of σ , i.e.,

�(P, Q) = {(l, σ (l)) | l ∈ G(P )},
for describing the semigroup H(P, Q). We call �(P, Q) the generating
set for H(P, Q).

Remark 3.2. We can describe the semigroup of a pair of points whose first non-
gaps a are 2 (resp. 3) using the generating set (see Kim [4] (resp. Kim-Komeda
[7]) for a = 2 (resp. 3)).

Let P be a Galois Weierstrass point of degree p on a curve C. By the proof
of Proposition 2.5 the curve C can be defined by an equation of the form

zp =
p−1∏
q=1

iq∏
j=1

(x − cqj )
q (2)

where
p−1∑
q=1

qiq ≡ 1 mod p

and cqj ’s are distinct elements of k. Let f : C −→ P
1 be the morphism corre-

sponding to the inclusion

K(P1) = k(x) ⊂ k(x, z) = K(C), i.e., f (R) = (1 : x(R)).

In this case, we may take the point P as f −1((0 : 1)) = {P }. By Theorem 2.1
in Kim-Komeda [5] we have

S(H(P )) =
⎧⎨
⎩p,

p−1∑
q=1

qiq, . . . ,

p−1∑
q=1

π(tq)iq, . . . ,

p−1∑
q=1

π((p − 1)q)iq

⎫⎬
⎭ .

Using the above curve C and its point P we get our main theorem.
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Theorem 3.3. i) Let P and Q be distinct Galois Weierstrass points with degree
p on a curve C of genus g. Assume that g > (p − 1)2. Then there exist non-

negative integers i1, . . . , ip−1 with
p−1∑
q=1

qiq ≡ 1 mod p and an integer s with

1 ≤ s ≤ p − 1 satisfying is > 0 such that

S(H(P )) =
⎧⎨
⎩p,

p−1∑
q=1

qiq, . . . ,

p−1∑
q=1

π(tq)iq, . . . ,

p−1∑
q=1

π((p − 1)q)iq

⎫⎬
⎭ ,

S(H(Q)) =
{
p,

p−1∑
q=1

qiq + p − 1 − s, . . . ,

p−1∑
q=1

π(tq)iq + p − t − π(ts), . . . ,

p−1∑
q=1

π((p − 1)q)iq + 1 − π((p − 1)s)

}

and

�(P, Q) =
{⎛⎝p−1∑

q=1

π(mq)iq − lp, lp − π(ms)

⎞
⎠∣∣∣∣

1 ≤ l ≤
[∑p−1

q=1 π(mq)iq

p

]
, 1 ≤ m ≤ p − 1

}
.

ii) Conversely, let i1, . . . , ip−1 be non-negative integers such that

p−1∑
q=1

qiq ≡ 1 mod p.

Take an integer s with is > 0. Then we can construct a pair (P, Q) of Galois
Weierstrass points with degree p such that S(H(P )), S(H(Q)) and �(P, Q) are
as in i).

Proof. i) Let C be the curve with the equation (2). We set f −1((1 : cst )) =
{Pst}. Since the genus of C is larger than (p − 1)2, we have Q = Pst for some

s and t . We transform the variable x by X = 1

x − cst

. Then the equation (2)

becomes

1

c
zpX

∑p−1
q=1 qiq =

⎛
⎝ p−1∏

q=1,�=s

iq∏
j=1

(X − c′
qj )

q

⎞
⎠ is∏

j=1,�=t

(X − c′
sj )

s
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where c′
qj = 1

cqj − cst

and c is some constant. Then we get

Zp = Xp−1

⎛
⎝ p−1∏

q=1,�=s

iq∏
j=1

(X − c′
qj )

q

⎞
⎠ is∏

j=1,�=t

(X − c′
sj )

s,

where we set Z = c
− 1

p X
u
p z and u =

p−1∑
q=1

qiq + p − 1. If s = p − 1, then we get

Zp =
⎛
⎝p−2∏

q=1

iq∏
j=1

(X − c′
qj )

q

⎞
⎠
⎛
⎝Xp−1

ip−1∏
j=1,�=t

(X − c′
p−1j )

p−1

⎞
⎠ .

If s �= p − 1, then we obtain

Zp =
⎛
⎝ p−2∏

q=1,�=s

iq∏
j=1

(X − c′
qj )

q

⎞
⎠
⎛
⎝ is∏

j=1,�=t

(X − c′
sj )

s

⎞
⎠
⎛
⎝Xp−1

ip−1∏
j=1

(X − c′
p−1j )

p−1

⎞
⎠ .

If s = p − 1, then

S(H(Q)) = S(H(P )) = {p} ∪
{ p−1∑

q=1

π(tq)iq |t = 1, 2, . . . , p − 1

}

If s �= p − 1, then by Theorem 2.1 in Kim-Komeda [5] we have

S(H(Q))= {p} ∪
{ p−2∑

q=1,�=s

π(tq)iq + π(ts)(is − 1) + π(t (p − 1))(ip−1 + 1)|

t = 1, 2, . . . , p − 1

}

= {p} ∪
{ p−1∑

q=1

π(tq)iq + π(t (p − 1)) − π(ts)|t = 1, 2, . . . , p − 1

}

= {p} ∪
{ p−1∑

q=1

π(tq)iq + p − t − π(ts)|t = 1, 2, . . . , p − 1

}
.

For any positive integer l and any m = 1, 2, . . . , p − 1, consider the divisor(
zm

(x − cst )l
∏p−1

q=1

∏iq
j=1(x − cqj )

[ mq
p

]

)
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= m

⎛
⎝p−1∑

q=1

iq∑
j=1

qPqj −
p−1∑
q=1

qiqP

⎞
⎠− l(pPst − pP )

−
⎛
⎝p−1∑

q=1

iq∑
j=1

[
mq

p

]
pPqj −

p−1∑
q=1

[
mq

p

]
piqP

⎞
⎠

=
p−1∑

q=1,�=s

iq∑
j=1

(
mq −

[
mq

p

]
p

)
Pqj +

is∑
j=1,�=t

(
ms −

[
ms

p

]
p

)
Psj

−
(

lp − ms +
[
ms

p

]
p

)
Pst −

⎛
⎝m

p−1∑
q=1

qiq −
p−1∑
q=1

[
mq

p

]
piq − lp

⎞
⎠P

=
p−1∑

q=1,�=s

iq∑
j=1

π(mq)Pqj +
is∑

j=1,�=t

π(ms)Psj

−(lp − π(ms))Pst −
⎛
⎝p−1∑

q=1

π(mq)iq − lp

⎞
⎠P.

We note that lp − π(ms) > 0. Moreover, if l ≤
[∑p−1

q=1 π(mq)iq

p

]
, then

p−1∑
q=1

π(mq)iq − lp > 0.

Hence, for 1 ≤ m ≤ p − 1 and 1 ≤ l ≤
[∑p−1

q=1 π(mq)iq

p

]
we get

⎛
⎝p−1∑

q=1

π(mq)iq − lp, lp − π(ms)

⎞
⎠ ∈ H(P, Q).

By Lemma 2 in Homma [2] we get the result.

ii) Using the integers i1, . . . , ip−1 we construct the curve C with the equation
(2) and its point P . Let us take Ps1 as Q where f −1((1 : cs1)) = {Ps1}. Then
we get the desired result. �

We give an example of the semigroup of a pair of Galois Weierstrass points
such that we can take only one s as in the above theorem.
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Example 3.4. Let H be the 11-semigroup with

S(H) = {11, 23, 46, 69, 92, 115, 138, 161, 184, 207, 230}.
It satisfies the M-P equalities. The solution (A1, . . . , A6) of the system (I)
associated to H is (23, 0, 0, 0, 0, 0), which implies that RH = ∅. Hence H is
cyclic. The solutions of the system (II) in the proof of Theorem 2.7 (1) are

i1 = 23 + i10, i2 = i9, i3 = i8, i4 = i7,

i5 = −i7 − i8 − i9 − i10, i6 = −i7 − i8 − i9 − i10,

where i7, i8, i9 and i10 are arbitrary. If i1, i2, . . . , i10 are non-negative, then we
must have iq = 0 for all q = 2, 3, . . . , 10. Thus, (23, 0, 0, 0, 0, 0, 0, 0, 0, 0) is
only one solution of (II) consisting of non-negative integers, which means that
is > 0 implies s = 1. By Theorem 3.3 ii) we can construct Galois Weierstrass
points P and Q such that

H(P ) = H, S(H(Q)) = {11, 32, 53, 74, 95, 116, 137, 158, 179, 200, 221}
and

�(P, Q) = {(23m − 11l, 11l − m) | 1 ≤ l ≤ 2m, 1 ≤ m ≤ 10}.
In fact, let C be the curve defined by

z11 =
23∏

j=1

(x − c1j ) and f : C −→ P
1

the morphism corresponding to the inclusion k(x) ⊂ k(x, z). Set {P } =
f −1((0 : 1)) and {Q} = f −1((1 : c11)). We get the desired one.

For the following cyclic 11-semigroup H we may take any s with 1 ≤ s ≤ 10
as in the above theorem.

Example 3.5. Let H be the 11-semigroup with

S(H) = {11, 89, 90, 146, 92, 93, 149, 150, 96, 152, 153}.
It satisfies the M-P equalities. The solution (A1, . . . , A6) of the system (I)
associated to H is (6, 0, 5, −5, 8, 8), which implies that RH = {4}. Since we
have

A4 + A5 = −5 + 8 ≥ 0 and A4 + A6 = −5 + 8 ≥ 0,
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we see that H is cyclic by Theorem 2.7 (2). The solutions of the system (II) in
the proof of Theorem 2.7 (1) are

i1 = 6 + i10, i2 = i9, i3 = 5 + i8, i4 = −5 + i7,

i5 = 8 − i7 − i8 − i9 − i10, i6 = 8 − i7 − i8 − i9 − i10,

where i7, i8, i9 and i10 are arbitrary. For example, (6, 1, 5, 1, 1, 1, 6, 0, 1, 0)

and (7, 0, 6, 0, 1, 1, 5, 1, 0, 1) are solutions of (II) consisting of non-negative
integers. Therefore for any s we have a solution (i1, . . . , i10) of (II) consisting
of non-negative integers such that is > 0. In this example we set s = 2. Namely,
let (i1, . . . , i10) = (6, 1, 5, 1, 1, 1, 6, 0, 1, 0). Then by Theorem 3.3 ii) we can
construct Galois Weierstrass points P and Q such that

H(P ) = H , S(H(Q)) = {11, 97, 95, 148, 91, 89, 153, 151, 94, 147, 145}
and

�(P, Q) =
{(89 − 11l, 11l − 2) | l = 1, . . . , 8} ∪ {(90 − 11l, 11l − 4) | l = 1, . . . , 8} ∪

{(146 − 11l, 11l − 6) | l = 1, . . . , 13} ∪ · · ·
· · · ∪ {(153 − 11l, 11l − 9) | l = 1, . . . , 13}.

In fact, let C be the curve defined by

z11 =
6∏

j=1

(x − c1j ) · (x − c21)
2 ·

5∏
j=1

(x − c3j )
3 · (x − c41)

4

·(x − c51)
5 · (x − c61)

6
6∏

j=1

(x − c7j )
7 · (x − c91)

9.

We denote by f : C −→ P
1 the morphism corresponding to the inclusion k(x) ⊂

k(x, z). Set {P } = f −1((0 : 1)) and {Q} = f −1((1 : c21)). Then we get the
desired one.
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