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Abstract. Inthis paper we study the ergodic properties of the linear action of laffices

of SL(2, Qp) onQp x Qp and distribution results for orbits &f. Following Serre, one

can define a “geodesic flow” for an associated tree (actually associa@d(@ Qp)).

The approach we use is based on an extension of this approach to “frame flows” which
are a natural compact group extension of the geodesic flow.
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0. Introduction

Itis an interesting classical problem to study the linear actions of certain discrete
subgroupd” of SL(2, R) onR?. A particular useful approach is to relate their
dynamical properties to those of the horocycle flow on the quoligHi?. The
present authors considered the natural generalizations of these results to discrete
groups 2x 2 matrices acting on the plane of complex numbers, quaternions or
Clifford numbers by studying the relationship with the horospheres for frame
flows on manifolds of constant curvature [11]. In this paper we want to consider
analogous problems for the non-archimedean local fligldnd the linear action

y (X1, %) > (@Xy + bxg, x4 + dXp), wherey = (28) e T,

for I a lattice inSL(2, Qp) = {(38) :a,b,c,d € Q,, ad—bc=1}. We
shall assume that| e T, otherwise we can replade by I' U {—T"}. The
following result follows easily from ergodicity of horocyclic actions [21, p. 194]
on SL(2, Qp) using a simple equivariance (cf. Lemma 4.2).
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144 FRANCOIS LEDRAPPIER and MARK POLLICOTT

Theorem A. The linear action of" onQ, x Q,, is ergodic with respect to the
Haar measure..

Ouir first distribution result on this action describes orbits of such linear actions.

TheoremB. Letf be acontinuous function with compact support@nx Q.
Let X # (0, 0) be a point ofQ, x Qp. Then, asM — oo,

1 1 1 [ fY)
oM flyX da(Y).
) yeF%l:lpr R vol(T\SL(2, Qp)) IIXI| J IVl )

WhenPT is torsion-free we can also approach the actianthfrough the study
of the dynamics of a naturfilame flowassociated to the action, in contrast to
the usual algebraic view pointin [7], [20] and [17], for example. Triaene flow
is a natural extension of the usumodesic flovassociated tG = PSL(2, Qp)
acting on the quotient spadé\ X of the associated tre¥ [23]. Such flows
have already been considered by other authors (cf. [18], [2]). More precisely,
leto: X — X be a subshift of finite type representing the geodesic flow. The
topological entropy of the subshift is 2 Igg Let S be the closed multiplicative
subgroup of squares I0* = {X € Zp: [X|p = 0}. Let®: ¥ — S be a HOlder
continuous function. Thep-adic frame flow for a latticd™ corresponds to a
simple skew product

T:X¥XxS—>¥XxS

o(X,S) = (X, O(X)S).
Hyperbolic matriceg have distinct eigenvalues_, A_. If the valuations satisfy
IA+lp < |A—|p then we designatk; to be the maximal eigenvalue. Our second

result describes the distribution of maximal eigenvalues. The proof uses this
skew product.

(0.1)

Theorem C. LetI’ < SL(2,Qp) be such thaPT is a torsion-free lattice in
PSL(2, Qp). LetI', be the set of conjugacy classeso& PT" C PSL(2, Qp)

with |try |, = —n. For each clasgy] € I'y,, denote by ([y]) € S the common
value ofp"A, , wherex, denotes the maximal eigenvalue. Squares of eigenvalues
of matrices inI" are uniformly distributed in the sense that for any continuous
functiong on S, we have:

lim pzm > ey )? f ¢ ()dw(s),

[yl€eln
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LATTICES IN SL(2,Qp) 145

wherew is the Haar probability measure af

In particular, if p # 2 then:([y])? has two distinct square roots, which we
can associate with[£y]), and then we can deduce:

fm 2 3 ger) = [ ¢@dos
[v]eln
Theorem C can be viewed as a non-archimedean version of the results in
[24]. We shall give a proof of this result using the frame flow and techniques
from symbolic dynamics. In the particular case tlitdt C PSL(2, Qp) is a
congruence subgroup we can use Deligne’s solution of the Ramanujan-Petersson

conjecture to get the following result.

Corollary 1. LetPI' ¢ PSL(2, Qp) be a torsion-free congruence subgroup

1/3
and letd > <%> . For any charactery on S,

S 2 2y = [ x(odo© +0 (). 0.2)
[y1€ln

Congruence subgroup N) are torsion-free when eith&for pis sufficiently
large [12, p. 197] oN is equal to a square maul

Sections 1 and 2 are mainly preliminary. In sections 3 and 4 we prove Theorems
A and B, respectively. In section 6 we describe the frame flow. In section 7 we
prove the results on the distribution of orbits (Theorem C). In section 8 we discuss
the error term in Corollary 1 and other generalizations.

1 p-adic numbers

We begin by establishing some notation. Tiadic number€), can be repre-
sented by series= 1% a,p", wherea, € {0, ..., p—1}. These are precisely
the closure of the rational numbe@swith respect to the norrix||, = p~Ip
associated to the usual valuatiof, : Qp — Z U {400}, i.e. |X|p = Nif ay#0
anda, = 0 forn < N, and|0], = 4+oc0. Recall that for such non-archimedean
metrics we havex + y|, > inf{|X|p, |ylp} and|xyl, = |[X|p + |Y|p Whenever
X,y € Qp. We denote byZ, = {x: |X|p > 0} the maximal compact subring
consisting of thosex = Y % a,p" € Q, which are in the closure df with

| - [lp. Letus denote by* = {x € Zp: x|, = 0} the natural multiplicative
subgroup ofZ,.
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146 FRANCOIS LEDRAPPIER and MARK POLLICOTT

1.1 The matrix groups
We begin by defining the grouaL (2, Q), SL(2, Qp) and the most important
subgroups.

Definition. We denote the set of invertible 2 2 matrices with entries i@,

by
GL(2,Qp) = {(2 g) :a,b,cd er,ad—bc;«éo},

andwe denote b8 L(2, Q) the subgroup of matrices wittd—bc = 1. Thecen-
terC* of GL(2, Qp) isthe setof scalar matric€ = {(39) : a € Qp, a # 0},

and the center o§L(2, Q,) is {£Id}. We can consider the two compact sub-
groups ofGL(2, Qp) defined by

SL(2, Zp) = {(‘Z1 g) :a,b,c,deZyad—-bc= 1}, and

K:{(i 3):a,b,c,deZp, ad—bce(‘)x}.

Useful groups of diagonal matricédd c C ¢ @ C D are defined as follows:

a o0 y
M= <O a_1>.ae(9},

C = (g a01>:a750, aer}

0
Q= (g OI>:|a|p=|d|p<oo},

a o0
D= <0 d).a,d;éo, a,der}.

We also define thBorel subgroupy

za:{((l) tD:be@p}.

We can conveniently denote B3S L(2, Q,), PSL(2, Zp), PM, PC the various
quotients by{+1d}. Finally, we shall writePGL(2, Q,) = GL(2, Qp)/C*,
P9 =9/C*, andPXK = K /(C* N X). 0
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LATTICES IN SL(2,Qp) 147

Lemma 1.1. For p # 2, we have the following natural exact sequence of
groups:

1 - PSL2,Qp) — PGL2 Qp — (Z/22)*> — 1
For p = 2, we have:

1 > PSL2 Q) — PGL2 Q) — (Z/2Z)® — 1.

Proof. Recall thatS is the group of elements @#* which can be written as a
square. First assume that# 2. Then, we have the following exact sequence
ofgroups:*' 1 — S — 0O* — Z/2Z — 1, where the factor map
e: O — 727 satisfiess(x) = 0 iff x € S. The statement follows, where the
factor mapp : PGL(2, Qp) — (Z/2Z)?is given by

g+ p(g) = (| detg|, (mod 2) s(detg/|detg|p)).

For p = 2, we have the following exact sequence of groupgt — S —
0% — (Z/27Z)? — 1, where the factor map: O — (Z/27)? satisfies
e(x) = (0,0) iff x € S. The factor magp : PGL(2, Qp) — (Z/2Z)3is given
by the same formula. O

1.2 Trees and actions

The role of the hyperbolic upper half plaf# in the usual archimedean case is
taken here by a regular tréé The construction is elegantly described by Serre
[23]. We recall the principal objects.

Vertices. Given any pair of vectors,, v, € Q% associate fatticeL = v1Zp+
v2Zp. We can define an equivalence relation on lattidess L’ if latticesL, L’
are homothetically related (i.e., there exists Qp such thatL’ = «L). We
take the equivalence clasqeg to be the vertices of the trex.

Edges. Given two vertices (equivalence classéis)], [L,] we can associate
an edgdLl ;] < [Lo] whenever we can find a bagis, v,} for L1 and{mv1, vo}
for Lo, wherer = % is called theuniformizet

1A numberx € 0%, x = Za“’o anp" is a square iffag is a square in the multiplicative group
..., p — 1}, and then(—1)™ is the classical Legendre symti(%l) of ag.
2A numberx € 0%, x = 1+ Y7 a2 is a square iffay = ay = 0, and we can take
e(x) = (a1, a).
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148 FRANCOIS LEDRAPPIER and MARK POLLICOTT

Lemma 1.2. [23, p. 70]. X is a homogeneous tree, with every vertex having
(p + 1)-edges.

There is a natural actioB L(2, Q) x X — X onthe tree given by [v1Z, +
V2Zpl = [(yv1)Zp + (Yv2)Zp]. In particular, we see th&* acts trivially onX
and we recall the following result.

Lemma 1.3 [23, Exercise 1 (b) p. 78]. The groupGL(2, Qp) acts onX by tree
automorphisms and the representatior&df (2, Qp)/C* is injective inAut(X).

We also have the following straightforward result.

Lemma1l.4. The action ofGL(2, Qp) on both the vertices and the edgesof
is transitive.

Fix Xo = e1Z, + €Zp, wheree, = (1, 0) ande; = (0, 1). The stabilizer of
the vertexxo is the set of matrice§2 §) such thatLo ~ v1Z;, + v2Zp, Where
vy = (a,¢), v, = (b,d). This is precisely the groug*K. By contrast the
action of SL(2, Qp) on X is not transitive. The treX is endowed with the usual
distanced(., -), with neighbouring vertices having distance 1. Recall:

Lemmal.5[23,p.75]. Foranyy € SL(2, Qp)andanyvertex € X d(y X, X)

is even.

Let us call a vertexx odd or even according to the parity dfx, Xp). From
Lemma 1.5, the set of even (odd) vertices is invariant urglei2, Q,). The
following is now straightforward:

Lemma 1.6. The action ofSL(2, Q) on both the odd and even vertices)of
is transitive.
2 The geodesic flow and subshifts of finite type

We now want to emphasize geometric viewpoint in anticipation of the introduc-
tion of symbolic dynamics later. We can now introduce analogues of familiar
geometric concepts frofi" in the context of the treX (cf. [18], [2]).

2.1 Geodesics

We begin with a definition.
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LATTICES IN SL(2,Qp) 149

Definitions. A geodesicy in X is a bi-infinite sequence of neighbouring ver-
tices
o [L e[l [Lile <[l ...

without returns. Astraight lineis a geodesic up to the place of the origin.

Let Y denote the space of geodesicsXin There is a natural induced action
of GL(2,Qp) onY and on the space of straight lines. Straight lines are in
one-to-one correspondence with ordered pairs of distinct points in the projective
spaceP(Qp) [23, p. 72].® Given a geodesiy, we write (Y, Y-«) for the
associated pair of endpoints B (Qp). The associated action &L (2, Q) on
P1(Qp) x PX(Qyp) is the projective action given by

y(y+009 y—OO) = (Cy+oo —f—d’ Cy7w+d

The following lemmas are now straightforward:

Lemma 2.1. The mappingp: GL(2, Qp) +— (PY(Qp) x PL@Qp))*, where
(PL(@Qp) x PX(@Qp))* is the space of pairs of distinct points i (Qy), given by
p(38) =&, g) is an equivariance between left multiplication GrL(2, Q)
and the diagonal projective action @P*(Q,) x P1(Qp))*.

Lemma 2.2. The action of bottGL(2, Qp) and SL(2, Qp) on the space of
pair of distinct points (corresponding to straight lines) is transitive.

Lemma 2.1 implies that the actionGfL (2, Q) on the space of pair of distinct
pointsistransitive. The stabilizer ofthe p&ib, 0) is precisely the set of diagonal
matricesD C GL(2, Qp). It follows that the action oBL(2, Q,) is transitive
on the space of distinct points P*(Qp) and the stabilizer of the pairo, 0) is
the set of Cartan matric&s= SL(2, Qp) N D.

Notation. Let yg be thereference geodesig = {X(n), h € Z}, wherex(n) is
the vertex associated to the latticg = v1Zp 4 v2Zp, With vy = (1,0), v, =
0, 7M.

The stabilizer ofyy by the action ofGL(2, Qp) is the group? and we have:
3In fact, [23] actually considers unoriented straight paths, unordered pairs of distinct points in the

projective spac®l(Q p). The stabilizer we consider is of order 2 in the one considered there, the
difference corresponding to inversions.
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150 FRANCOIS LEDRAPPIER and MARK POLLICOTT

Corollary 2.2.1. The groupGL(2, Qp) acts transitively orY .

The stabilizer ofyp by the action ofSL(2, Qp) is the group? N SL(2, Qp) =
M. It follows that the action ofSL(2, Q) on the space of geodesics has two
orbits, according to whether the origin is odd or even. gkedesic flown
the non-archimedean case is the discrete transformationY — Y which
associatesto each geodesic anew geodesic obtained by simply shifting all vertices
to the left by one step (or equivalently by adding one to the indices). The geodesic
flow T exchanges the two orbits &L(2, Qp) onY, and the squarg?: Y - Y
preserves eachtype. Algebraicallyy, is represented by the matlﬁ% fl’) , which
commutes t@. Thus, identifyingY with GL(2, Q,)/Q = PGL(2, Qp)/PQ,
the right action of 3 9) induces the geodesic flow

2.2 The Busemann function

By analogy with the usual upper half-plane we can introduce the following
definition (cf. [3]). Given a geodesig = {y(n), n € Z}, theBusemann func-
tion associates to a vertexe X the numbeiby(X) = limp_, 1 (d(X, y(n)) —
d(Xo, y(n))) € Z. Itis easily seen thdid,(x) depends only on the endpot...

A geodesicy = {y(n): n € Z} is completely determined by the straight line it
belongs to and the value bf(y(0)).

Lemma 2.3. Letg= (28) e GL(2, Qp) then we can write
Bgyo (9%) = 2max(—|alp, —[d|p) + | detg|p.
In particular, the geodesigyp € Y can be represented by

b )
(% > 2min(alp, 1dfp) — |detg|p> e (PYQp) x PL@p))* x Z.

Proof. It is convenient to use th& AN decomposition foiGL(2, Qp), with

the compact grouf = X, N = B and A being the set of diagonal matrices
{( pgl p‘§2> t ke, ko € Z}. Elementsg € K fix the vertexxy, so they have no
effect on the Busemann function. Similarly, elements (32%) leave invariant

by,, so that it suffices to comput®,, (gxo) for g = (p;l p‘ﬁz). Then,

—2|alp + | det(@)|p if ky > ko

by, (9%0) = ko — ky = .
0t e [—2|d|p+|det<g>|p|f ki < ko

which agrees with the definition in the statement of the Lemma. g
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In the above representation, the geodesic flow consists in subtracting 1 from
theZ component (cf. [3], [2] and [18]).

2.3 Discrete subgroups

Throughout this notd;’ will be a discrete cocompact subgroup®Ii(2, Qp).

Example 1 (Quaternion groups). Givenu, v > 1, thequaternion algebra
D = D(u, v) is the four dimensional algebra over the ration@lsvith basis
1,i, j, k subject toi? = —u, j2 = —v andk = ij = —ji. For each primep,
D(u, v) is said to split inQ, if the algebraG(Qp) := D ® Q; is isomorphic
to the 2x 2 matrices ovef),, where we use the convention that, = R. It
is known thatD (u, v) splits inQy iff ux? + vy? = z? has a non-trivial solution
in Qp. [25, p. 11], [14, p. 79], and this happens for all but finitely mamyFor
example, the Hamiltonian quaternioBy1, 1) is definite i.e., it doesn't split
overR. It also doesn't split oveQs, but splits over all othe®,. Given a prime
p satisfyingp = 1 (mod 4)* we can choose € Q, with ¢2 = —1 and set

Xo + X1 Xo + X3&
=+ 0T 2T X0, Xa, Xo, X3 € Z Y
—X2 + X3¢ Xg — X1€

This is a free group iP GL(2, Qp) with the%1 generators (anéi;—l inverses)

s_ | Xotxe Xet+XeE) Xo X Xe Xs € Z, 33 X2 =p,
—Xo + Xz Xg— X1/~ Xg > 0 and odd xq, X2, X3 even|

Moreover,I"” is a cocompact lattice i? GL(2, Qp). Then, since det = p,
forse ST =TI"NPSL2, Qp) is a cocompact lattice ifP SL(2, Qp). As a
subgroup of a free group; is automatically free.

Example 2 (Schottky and non-arithmetic groups). There is a simple cons-
truction due to Gerritzen and van der Put [9] which gives every torsion-free
discrete subgroup. Ldt ¢ PSL(2, Qp) be a free group generated by hy-
perbolic elementg, ...,y (i.e., none fixes a vertex). Assume thatfi-

xes a geodesi€L)nez andyiLy = Lnym then we denotéA(y) = {x €
X:d(x,Lg) < d(x,L1)} andB(y) = {x € X:d(X, Lms1) < d(x, Lm)}.

The discrete group is called aSchottky groujf we can make choices so that

4This is a simplifying assumption to avoid working in the quadratic extensidppf

Bull Braz Math Soc, Vol. 36, N. 2, 2005



152 FRANCOIS LEDRAPPIER and MARK POLLICOTT

the 4 sets{A(y), B(y):i = 1,...,1} are pairwise disjoint. Any finitely ge-
nerated torsion-free subgroup BISL(2, Qp) [13, p. 409] is a Schottky group.
Moreover, this construction gives rise to non-arithmetic lattices arbitrary close
to any given lattice.

In general, we have the following result.

Lemma 2.4 (Ilhara’s Theorem) [23, p. 82]. A discrete cocompact torsion-free
subgroupl” of PSL(2, Q) is a free group and™\ X is a finite graph.

If " is torsion-free, observe thatN PSL(2, Zp) is compact, discrete and
torsion-free, hence trivial. Moreover the intersectionlofvith any bounded
group is trivial, thereford™ cannot identify edges with a common vertex. The
graphT"\ X is a homogeneous graph wiflp 4+ 1) edges at each vertex, aid
can be realized as the homotopy group of the finite gfapK. The following
result shows that there are many more examples of torsion-free lattices.

Lemma 2.5. Any discrete cocompact subgroiipof PSL(2, Q,) contains a
torsion-free finite index normal subgroup C TI.

Proof. SinceQ, is a characteristic zero field, Selberg’s Lemma gives Ihat
contains a torsion-free finite index subgraop[4, p. 87]. Moreover, the group
I'" must be finitely generated [16, p. 35]. a

Thelimit set A is the set of limit points ofI"xp} in X U 3 X. It consists of the
whole boundand X. Observe also that the graph X is connected, since it is
the quotient of the connected graph Sincel’ C SL(2, Qy), the vertices of
"\ X arel"-orbits of either odd or even vertices.

2.4 Subshifts of finite type

Assume for the remainder of this section tHatis a torsion-free lattice in
PSL(2, Qp). The groupI’ acts on the left or¥ = GL(2, Qp)/Q. The ge-
odesic flow on the quotient spatRY is conjugated to a subshift of finite type:

Proposition 2.6. (cf. [2]). There exist a subshift of finite typ&’, ¢’) and a
conjugacyd’ : I'\GL(2, Qp)/Q +— X’ such thatd'T = o’'P’.

It follows that periodic orbits of period for X’ are in one-to-one correspon-
dence with periodic orbits of periatfor the geodesic flow of\G L(2, Qp)/9Q,
that is, with geodesicy = gy € Y such that there is somg e I' with
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¥9Y¥o = ga’yo, wherea = (7 9). The elementy associated to the same pe-
riodic orbit are conjugated ifi. In other words, periodic orbits of periadfor
¥’ are in one-to-one correspondence with conjugacy classes of elements
such that there exigt € GL(2, Qp) andq € Q satisfyingg—yg = a"q.

If the group is torsion-free, the construction is quite natural (cf. [18]). In fact,
the quotient spacE\Y can be identified with the space of geodesic$ §k,
i.e., the sequences of successive neighbouring points ¥ without returns.
More precisely, wher" is torsion-free the action oX does not have fixed
vertices nor fixed edges, and therefore the cover frota I'\ X is regular. This
ensures that paths @i\ X lift uniquely to X, and therefore there is a one-to-one
correspondence between lifts of geodesicsXoand orbits for the action df
onY. The subshift of finite type of Proposition 2.6 is then built on the set of
orientededges of"\ X, and there are exactlyentries equal to 1 in each row and
each column of the matrix of the subshift. In particular, the topological entropy
is log p. We have:

Proposition 2.7. The geodesic flow onT'\Y is transitive and has entropy
log p. The measure of maximal entropy is ergodic. It corresponds to the Haar
measure oi"\GL(2, Qp)/9Q.

Proof. Ergodicity of the Haar measure follows from Moore’s ergodicity the-
orem. By aresult of [1], the Haar measure is the measure of maximal entropy.
Since it has an ergodic measure of full support, the subghifs transitive. [

We can distinguish between even and odd geodesics according to the parity
of their starting point. Each one of the sets of either even or odd geodesics
is in one-to-one correspondence WItRSL(2, Qp)/M. The geodesic floir
exchanges even and odd geodesics. Therefore th@hpyeserves both sets of
even and odd geodesics and, sifices ergodic,T? is ergodic on each of these
two invariant components. We denote Bythe set of even geodesics atndhe
T2 shiftonX. Since the parity of the geodesic associated to a sequence depends
only on the zeroth coordinafe is also a subshift of finite type, and we have:

Corollary 2.7.1. The geodesic flow is transitive on the space of even geodesics
of '\ X and has entropy log p. The measure of maximal entropy is ergodic. It
corresponds to the Haar measure BRSL(2, Q,)/M.

In other words, since the geodesic flow is given by the right multiplication by
(7 9)=(%32)(%%) or, equivalently(F p) we have the following.
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Corollary 2.7.2. The right multiplication by the matriX g g) is transitive
on the spacd™\SL(2, Qp)/M. It has topological entropy logp. The Haar
measure is the measure of maximal entropy and is ergodic.

For anyk > 0, there is a one-to-one correspondence between periodic orbits
of lengthk in £ and conjugacy classeslihsuch that the valuation of the trace is
—k. Letm, be the number of conjugacy classegof T" with |try|, = —n. The
integersn such thatr,, # 0 have g.c.d. 1 (by a simple argument we shall present
in section 5). In particular, the following well known result easily follows.

Corollary 2.7.3. The geodesic flow is mixing on the space of even geodesics
. 2n
of I'\ X. Furthermore, there is a number< 1 such thatr, = pT(lJr omMm).

Remark. As we shall see in 88, more results on the error termsfacan be
obtained using representation theory [14].

3 The proof of Theorem A

Let y denote a geodesic .

Definition. Thehorocycle of y is the set of geodesiassuch that

Zioo = Yoo and by, (z(0) = by, (y(O).

Equivalently,z belongs to the horocycle ofif, and only if, z(n) = y(n) for all
n large enough so that the horocycleyaf also thestrong stable manifoldf y
under the geodesic flow.

The action ofl" preserves the horocycle relation. The following result is
familiar for mixing subshifts of finite type.

Proposition 3.1. On the space of even geodesics (odd geodesicE)\ Af
the horocycle relation is minimal and uniquely ergodic. The unique invariant
measure is the measure of maximal entropy for the geodesic flow.

We can rewrite this result in terms of tisd (2, Q,) action.
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Corollary 3.1.1. The action of the subgrouRis minimal and uniquely ergodic
onI"\SL(2, Qp)/M.

Let I" be a subgroup 06L(2, Qp) with —Id € I'. We are interested in the
ergodic properties of the linear actionslobn Q, x Q, given by:

y 1 (X1, X2) > (ax + bXo, cxq + dX), wherey = (28) eT.

The following lemma is easily shown.

Lemma3.2. The mapQ, x Qp — SL(2, Q,)/B defined by

-1
—X2
0

X1 0
(X1,0) —~ <O Xll) B

(X1, X2) > ()): ) B, wherex, # 0, and
2

is an equivariance between the linear action@p x Q, and left multiplication
on cosets, e.g.,

-1
X1 —X%, _(axg+bxy _(a b
y (Xz 0 )2?_ (cx1+dx2 0 B, wherey = c d)€ SL(2, Qp).
We saw that thé&-action on the spadé\SL(2, Qp)/M is analogous to the ho-
rocycle foliation on the space of geodesics. THéundle ovel"\SL(2, Qp)/M
we are interested in is analogous to the frame bundle over the space of geodesics
(i.e. over the unit tangent bundle) and the action is analogous to the action of

the strong stable foliation of the frame flow, see 86 for details. Theorem A now
follows from Lemma 3.2 and the following result.

Lemma 3.3 [21, p. 194]. The rightB action onI"\SL(2, Q;), with orbits

e ]

is ergodic (with respect to Haar measure).

4  Proof of Theorem B
4.1 Notations and results

We can define norms d@dp, Q, x Qp andSL(2, Q,) as follows.
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Proof. Definition. Fort € Qy, set|t|| := p~Ile, for X = (x4, X2) € Qp x Qp,
set||X]|| := maxX{||xal], [z}, and fory = (28) € SL2 Qp), set|ly|| =
max{|(al[, [[bl], [Icl], [Id]]}.

We denotg - | the Haar measure di, normalized such thaZ,| = 1. Note
that|0*| = |{t : ||t]] = 1| = |{t : |t|], = 0}] = ’%1 5 Let A be the
measure orf), x Q, which is invariant by the action dbL(2, Q,) and such
thatA(Zp x Zp) = 1. Theorem B is restated as the following result:

Theorem 4.1. LetI" be a discrete lattice irSL(2, Qp), f be a continuous
function with compact support dp, x Qp, X # (0, 0) be a point ofQ, x Qp.
Then, aaM — oo,

1 1 1 [ fY)
oV flyX dacy).
Myer,;sp»ﬂ WX = Semvstz o xS v

The limit measure in the above theorems is not invariant under the action of
SL(2,Qp). The following observation explains why this measure is the natural
limitmeasure for distribution problems. Ley be a Haar measure &1.(2, Q).

Proposition 4.2. Let f be a continuous function with compact support on
Qp x Qp, X # (0, 0) be a point ofQ, x Q,. Then, asM — oo,

1 foxdy » — [

dr(y).
PM Sy ii<pm XIS (Y]]

Proof. We first observe that we may suppose that the funcfiaa invariant
under the action o5L(2, Zy). Take X = (p~%, 0) and choosef to be the
indicator function of the sphere of norrp", wherek,| € Z. We have to
computepiM fuynspM f (y X)dy, which ispiM times the Haar measure of the set

of matrices(2 8) such that
inf{lalp, [c|p} =1 + kK, |blp > —M, |d|, > —M, andad —bc= 1.
We can decompose this set into the disjoint union of
{lalp=1+k, [clp =1 +k, |bl]p>—-Mand|1+bc|lp>—-M+I+k}

5Oan, the measurg| is simply the fair dice Bernoulli probability measure on digits. Also, note
thatZp is the disjoint union ofAx = {t : |t|p = k} for k > 0, and| Ax| = p_k|Ao|.
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and of
{lalp=r, [clp=1+k, |blp>—-Mandb+c > ~-M+r —1 —kj,

forr > | + k. Taking the Haar measure of these sets and the limit, we obtain:
2
p=(+ p—1+<p—1> 1
p p p—1
—p+k <p2 — 1)
p2

11 o
= A, y) s inf{IXp, 1Yo} = 1))

_ 1 [t
XIS Y

da(yY),

as required. O

4.2 Proof of Theorem 4.1

The proof of Theorem 4.1 follows the ideas of the proof of Theorem 4 in [11].
In particular we start by associating to aly= (X1, X2) € Qp x Qp a matrix
W (X) € SL(2, Qp) such thatX = ¥ (X)(1, 0).

Definition. For X = (X1, %X2) € Qp x Qp, X # (0,0), define¥(X) e
SL(2, Qp) by:

X1 0 .
1 if [Xalp < [X2lp,
X2 Xq

W(X) =
X% ) otherwise.
X2 0

Observe that for alX, the matrix¥ (X) is a product¥(X) = KA, where

KeXandA = (”Ok r?k) wherek = inf{|xq|p, [X2|p}, i.6. A= (”E” ||XC|)|*1>'

To a compact open subsetc Q, x Qp\{(0, 0)}, andm € Z, we associate the
setFn C SL(2, Qp) defined by

Fm = (W(X)(§3): X eF,Islp > m).
We have the following two useful lemmas:
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Lemma4.3. LetI" be adiscrete subgroup &L(2, Q,), andF be a sphere_in
Qp x Qp. Then, for~m large enough, one can find an open coveFdby setsG'
such that the setgG'., y € T are pairwise disjoint.

Proof. By homogeneity, it suffices to consider the unit sphifer©bserve that
U (S) C K. Assume first that the group is torsion-free, we know that ¢ K
forall y # Id. Therefore, fos, s' € Zp, X € S, the matrix(3$) y¥(X) (5%)
does not belong tK either. This shows that for all # 1d, y & is disjoint from
S. Ingenerall’ N X is finite, and there are only a finite number of elements
such thaty N y S is nonempty. The lemma follows. O

Lemma 4.4. Assume that foX € Qp x Qp, X # (0,0) andy € T', there is
s € Qp such thatl (y X) = yW(X) (3 %). Then, we have:

X [y X

Il = max{|Is|| X[ Iy X[, 7 =7 -
[y XI1™ 11X

Proof. We have two matriceK, K’ € K such that:

L2 s||><||||y><||
KyK’ = [ !Xl

||VX||

The lemma follows, sincgK y K’|| = [|y]]. (Compare with [11, Lemma 5]

FixkandF C {(X1, X2) : Inf{|X1]p, [X2|p} = k}, small enough that there exists
mso that the setg F,, are pairwise disjoint. Each € I' such thay X € F gives
rise to a ballB, € Qp, with measurep™™ and such thas € B, if, and only if,
y\IJ(X)( ) € Fm. By our choice of, the setd3, are disjoint. By Lemma4 4,
providingT is sufficiently large, we haviéy || < T if, and only if, ||S|| < ——— HXHP*

for s € B,. Therefore, we can now ertg}qcarc{y el |yl < pM, ¥ X € F}
as:

1 1 pM+k }
— —— |1s: |I9|| < andI'y (X cF .
oV pm { [Isl] < X1l X)(§3) € Fm

The following distribution result for lattices is the-adic analogue of the usual
unique ergodicity results fdi2.
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Proposition 4.5[21, p. 194]. LetI’ C SL(2, Q) be adiscrete subgroup which
is a lattice:

(1) The normalized quotient of the Haar measure ofi\SL(2, Qp) is the
uniqueN-invariant probability measure;

(2) Every N-orbit is uniformly distributed, i.e., fof € Co(I"\SL(2, Qp))
and anyI'x € I'\SL(2, Qp) we have

| —_— f(r du) = f(v)d ’
% 2(B(T)) B(T) ( X (0 l)) r(® \SL2.0) (y)dv(y)

whereB(T) = {t € Qp: ||t|| < T}. [21, p. 181].

Theorem 4.1 on the complement @, 0) follows from (2) applied to the
indicator function ofl" F,,. Observe that

AF)pT

vFm) = s, Q)

and that||Y|| = p~¥ is constant orF. In order to prove Theorem 4.1 we still
have to show that the mez;tsurx%.-iyerwHST Dirac(y X) form a tight family
of measures o, x Q, in the neighbourhood of0, 0). By discreteness of
I', it suffices to check that the measw%;fllyIIST Dirac(y X)dy are tight. This
follows from the same computation as in the proof of the Proposition 4.2.

Remark. There are distribution results for higher rank real matrix groups due
to Gorodnik, and other related results due to Maucourant.

5 Cross ratios

Although the geodesic flow is relatively easy to analyse, modeled as it is by a
subshift of finite type, the natural object for us to consider is a compact abelian
group extension described in the introduction. The following definition is useful
in the sequel.

Definition. We define thecross-ratio of four distinct pointsx, y, u, v

< PH@ by (X — U)(y — v)
_x—u(y—v L
X, y,U,v) = X0y -0 € P7(Qp).
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The cross-ratio takes all values @j, except the value 1. It is sometimes
convenient to extend the definition@o, x, u, v) = (X, y, u,u) = (X, X, U, U) =
1. We call the valuation(x, y, u, v)|, the absolute cross ratio This has a
particularly simple geometric interpretation. If we considerthe ppths (x, y)
andp, = (u,v) then|(X,y,u,v)|p = {P1, P2}, Where{p, pz} is simply the
length of the common part of the paths, signed according to orientation. [6,
p. 706].

The following simple result is also useful.

Lemma 5.1.
(1) The cross ratio is invariant under the actior@if (2, Qp).
(2) For a hyperbolic matriA the maximal eigenvalug(A) belongs taQ,.

(3) For two hyperbolic element& and B with respective pair of endpoinfs
(a_,a;) and(b_, by) in (PY(Qp) x P1(Qp))*, we can write:

e AT (M(BY))
(a+, b+, a, b_) = qlﬁ;noo W

Proof. The first part follows from

ax+b 3 ay+b (@d-bo(x—y)  det(A)(x-y)
cx+d cy+d  (cx+dycy+d)  (cx+d)(cy+d)’

gx—gy= (5.1)

and similar identities. Substituting into the definition of the cross ratio we have
that(x, y, u, v) = (gx, gy, gu, gv). For the second part, the eigenvaluggA)
andi_(A) satisfy

tr(A) £ /(trA)2 — 4de( A)
> .

Ax(A) =

It suffices to show thattrA)? — 4de(A) ¢ Qp is a perfect square. We know
that (tr A)? is a square and that providingis a hyperbolic matrix d¢f\) has a
higher valuation, and thus we see from Hensel's Theorem that the difference is
a perfect square. For the third part, the elemésitand B have the same pairs

of fixed points(a_, a;) and(b_, by). Letxy be the repelling fixed point for
A9B9thenyy = B9X, is afixed point forBY A (and, moreoverAfy; = Xxq). In

6we use the convention that denotes an attracting fixed point, arddenotes a repelling fixed
point, for the associated action.
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particular,xy — b_ andyq — a_, asq — +o0. For a given hyperbolic matrix
M = <‘;‘§m)) 3%) say, with attracting and repelling fixed poimts. andm_,
the eigenvalues.. satisfy:

AL (M) = (€c(M)my +d(M)) and L. (M)A_(M) = det(M).
Two applications of (5.1) give

(C(AMYq + d(AY) = det( A% (@ — Xq) ' (c(ADa, + d(AD) (@, — yq)
= det(A") (@, — Xq) A(AD) H(@r — yq)
(c(BYxq + d(B%) = det(BY) (by — yq) H(c(BNb, + d(BY)) " (by — Xq)
= det(BY)(by — yg) " *A(BH) H(by — xg).
Moreover, we have the usual relations @tBY) = det( AY) det(B%) and thus
A_(AIBY) = (c(AY Bq)xq + d(AYBY))
= (c(AMyq + d(A%)(c(BNxq + d(B))
= (& — Yo MAY) @y —xg) 7t
x (by — Xq)(M(BN) by — yq) " det(ABY),
from which we deduce

MADABY _ @ — Yo (b — Xg)
AMATBY) T (@5 = xq) by — Vo)

Finally,

(al-’ b+v a, b—) = qlrpoo(&kv b+’ yQ’ Xq)

3 @ — by —Xg) _ . AADA(BY
T a—+too (@ — Xg) (b — Yg)  a—+oo  A(AIBY)

’

which completes the proof. O

To prove Corollary 2.7.3 we deduce easily from Lemma 5.1 that g.c.d.
(IItracey|pl, y € ') hasto be 1, since otherwise g.¢|0x, y, u, v)|p|) over all
four distinct point, y, u, v € Pl(Qp) would be different from 1, a contradic-
tion. O
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6 The frame flow

In this section we come to one of the key ingredients in our analysis. We shall
consider a compact abelian extension of the geodesic flow, the frame flow, and
study it using symbolic dynamics.

Definition. Wedenote byr: PGL(2, Qp) — PGL(2, Qp) multiplication on
the right by the matriX% 9), i.e.,g — g (% $). We define thérame flowto be
the mapF2?: PGL(2, Qp) — PGL(2, Qp).

6.1 Coordinates forPGL(2, Qp)

The following identification will prove useful later.

Definition. Let Z be the set of tripleso, 8, t), wherea and g are distinct
points in the projective spade*(Qp) andt € Qp, the set of nonzerg-adic
numbers. Given an§ € Q, we defined; : PGL(2, Qp) — Z by

s 1 g (o, B, Te) := (9(00), 9(0), —(g(0), 9(0), &, g(1)),  (6.1)
providedé # g(0), g(oco). In particular,

a by (a b a-é&c
v (e o) (aomia) oo
Lemma 6.1. The left action ofy’ in these coordinates is given by:
g(a, B, %) = (@), gPB). (@ B, (@) ), &) 1), (6.3)

where the first two actions are the projective ones and the third is multiplication
in Q% by (@, B. (9)71(%). &).

Proof. This is by direct calculation. Suppogeandg’ are generic. Observe
that by definition

D:(g'9) = (9 (@), g'(B), 7:(9'D)) .
To simplify the final term, we write

7:(9'g) = —(g'g(00), g'9(0), &, g'g(1))
= —(g(0), 9(0), (g) (&), 9(1))
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by Lemma 5.1.(1). By developing the last cross-ratio, we get

7:(g'9) = —(9(c0), 9(0), £, g(1)) (g(c0), 9(0), (@) *(4), §),

which is formula (6.3). 0

In addition, if g is a hyperbolic matrix, and, 8 are the fixed points of at
infinity, then we geg(a, B, 1) = (a, B, A%t), wherex is the maximal eigenvalue
of g, and this holds for any choice of, as long ag is not one of the fixed points
of g.

6.2 Symbolic dynamics for frame flows

LetI" be a subgroup dL(2, Qp) containing—I. We assume th&T is torsion-

free and consider the symbolic dynamics for the geodesic flow from section 2.4.
Givene and€ letn > 0 be the least value such that= € for |i| < n. We

can then define a metric an by d(e, ¢) = p™", say. The following should be
compared with the measurable version in [18, Theorem 2.1].

Proposition 6.2. LetPI" be atorsion-free lattice dP GL(2, Q). There there
is a one-to-one conjugacy’: ¥’ x O — PI'\PGL(2, Qp) and a Lipschitz
continuous functio®’ : ¥’ — ©*such that: F¥’'(x, u) = ¥/'(Tx, ©'(X)u).
Moreover, ifx is a periodic orbit of perio@k in X', andg € I is some associated
element of", then

122]p = 2Jtrg|p = —2k and p*a? = @'(T* 1x)... 0 (TX)O'(X).

Proof. It is easy to see directly from (6.2) that, for any choicetahe ac-

tion of the frame flow in these coordinates takes the simple fetm 8, t:) =

(o, B, mte). Recall that the stabilizer of the geodesicis the subgrou® of
diagonal matrice$3 9) such thatal, = |d|, < co. The right action ofPQ on
PGL(2, Qp) is given by multiplication of the third coordinate By an element

of O*. Moreover theP Q-orbit is the fiber of the projection froR GL(2, Q)

to Y. In other words(«, 8, |t:|,) defines another parameterizationygfwhere

the geodesic flow is subtracting 1 from the last coordinBt€,L(2, Q,) is re-
presented a¥ x O, frames going to the same geodesic are parameterized by
¢ /|| p, and the frame flow is represented as the product of the geodesic flow and
the identity in the fiber. Observe that all these properties hold evedepends

ona andp. From the above description &G L(2, Qp) and the corresponding
coding of geodesics, we can repres@it\PGL(2, Q,) by X’ x O*. More
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precisely, we can choose some fundamental domakfor '\ X. Lete € ¥’
represent a geodesic and writée) for the image of this geodesic with zeroth
coordinate in the fundamental domain. For eacke choose, € Qp U {oo})
different from the ends of(e). Itis easy to see that we need only choose a finite
number of such reference points. More precisely, we can consider two nearby
geodesicg, € € X' for whichg = €, for —n < i < n, with n is sufficiently
large, then we can choosg= &¢. Since we are assuming tfeande’ agree on

a very long cylinder then the end¢) in the projective spacB*(Qp) (thought

as the boundary X of the treeX) must be close to the end gfe). (Similarly

for g~ty(Te) andg=ty(T¢), for g € I'g.) If the cylinders are long enough, it is
possible to find:e outside all these sets. We thus parameterize the set of frames
projecting on the geodesiae) by the mapug,:

Tte
U (Q) = @ (6.4)

where(g(oo), 9(0), |t |p) corresponds to the above parameterizatioa dive
thus have a one-to-one representation'oP G L(2, Qp) by X’ x O* whichfibers
over the representation of geodesicsiy The frame flow preservds orbits,
commutes with the projection to geodesics, and factors as the geodesic flow. To
compute the fiber mapping defined by the frame flow almwee successively
invertue,, apply the frame flow, bring back the frame in the fundamental domain
if necessary, and applys,, to the new frame. This is precisely multiplication
by an elemen®’(e) € ©*. Observe that, with this construction, the formula
for periodic orbits is automatic. It remains to show that it is possible to choose
e — & in such a way tha®’ is Lipschitz continuous. Le¢ € X’ and let
y(e) be the associated geodesic described above. Thel¢ aa two numbers
—N < q(e) < 0and 0< g'(e) < N such that the vertex (g ) belongs to the
fundamental domain if, and only iff < i < g’. We say that is entering if

g(e) = 0 andleaving if g’(e) = 1. We denote by(e) the element of” such
thaty(T9©e) = g(e)y(e). The sefly of possible sucly is finite andq, q’ and

g depend only on the;, for [i| < N. We can simplify matters by defining

for entering elements only. More precisely, we &et= &r-qe,, and thus we
have®’(e) = 1 when 1< ¢'. Forq’ = 1, we need to show that the may

is Lipschitz continuous. Recall that giverande’ with & = € for |i| < n, for
anyn > N we can writed(g, €) = p™", say. We know that we have the same
boundary identification elememgt € T’y for the two sequences. It is clear for
the construction that the two pairs of end poiats’, 8, B’ € Q, will each be
correspondingly close, i.gl¢ —o'|| < p~"and|| —B'|| < p~". We also have

Bull Braz Math Soc, Vol. 36, N. 2, 2005



LATTICES IN SL(2,Qp) 165

that|(c, B, ¥, &) lp = (', B', v, &e)|p. Finally, we observe that

Tee Tee
|T§§|p |T§Q/|p
_H (9(00), 9(0), &e. 9(1))  (9(c0), 9(0), &¢. g(1))
11(9(00), 9(0), &, gl 1(9(00), 9(0), &e, 9L

In particular, we see thifiug, — Uz, || = O(p™"), from the definition of the cross
ratio. : O

|Uge — Ug, || =

6.3 The case forPSL(2, Qp)

There are foulP SL(2, Q,) orbits (eight ifp = 2) in PT'\PGL(2, Q,), which
are described by the value of We already defined the parity of an elementof
and sel for the set of even sequences. We still have to comgte’) (e, u)).
We see from (6.4) that:

e(W)Hew) =e) + e((@—B)a—&)(B—E&) (mod2, (6.5)

wherea andg are the ends of the geodesi®).

Proposition 6.3. There is a one-to-one representatign PI'\PSL(2, Q)
— X x S and a Lipschitz continuous functi@h : 3 — S such that:

VFUles) = (0e®(s) = &(€5s),

whereF2 is the right multiplication by(g ) in PSL(2, Qp). Furthermore, if
eis a periodic orbit of periok in X, andg € T is any element associatedép
then

1A2p = 2Jtrgl, = —2k and p*)2 = ©(*te)...0(0ce)O(e).

Proof. We definew—! as the restriction of¥')~1 to £ x S. We have to show
that we can choose ti§gin the proof of Proposition 6.2 such thatall’) (e, s)
areinthe same@ SL(2, Q) orbit. LetsvaryinS. We have:(s) = 0 and by (6.5)

we should choosg; such that ((a —B)a—&)(B — gg)) = O foralle. Since

the crossratidy, 8, &, &) takes all possible values, itis possible to choose such a
locally constange, provided the ends(y(e)) andB(y(e)) vary in a small enough
sets. SeB(e) = O(Te)O(e). Then(¥')~L(g, s) and(¥V) L(oe BO(e), s) are

in the sameP SL(2, Q) orbit for all s,s" € S. The result follows from the
transitivity ofo on X. O
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Finally, we remark for completeness that Proposition 2.7 for geodesic flows
easily extends to frame flows:

Proposition 6.4. The frame flowF2 on PI"\P SL(2, Qp) is transitive and has
entropy2 log p. The measure of maximal entropy is ergodic. It corresponds to
the Haar measure of\SL(2, Q).

7 Proof of Theorem C

In this section we shall make use of the symbolic dynamics described in the
previous section. The following useful notion is adapted from [10].

Definition. A continuous ma@®: ¥ +— S is called weakly aperiodic if the
relation

h(ex) = z£(©(X)h(X),
wherez € C, ¢ is a character o1§, andh is a continuous function oX, has
only the trivial solutionz = 1, ¢ trivial andh constant.

Proposition 7.1. The map® defined in 86 is weakly aperiodic.

Proof. Assume not. Then there exigtand ¢ such that for any periodic
orbit of periodk, we have;(®®(e)) = z ¥, where we write®@® (e) for
O (0 1x)...0(ex)O(x). Therefore we have for afj € I that

(p P92 = 2o,

ie., E(AS) = 1, where¢ (u) = ¢(p~VIru)z-UIe/2 is a character on the group of
squares irQy. By Lemma 5.1 (3) this implies that((x, y, u, v)?) = 1 for all
pairwise distinck, y, u, v € A. Thisimplies that is trivial as a character ofi
andz = +1. We havez # —1 because is mixing. O

We also have the following useful result.

Lemma 7.2. We can find %-H(‘jlder continuous functiod : ¥ — S such
that ®+ = (U o 0)®U ! depends only on sequences in the future (i.e., can be
realized as a function on the associated one sided shift spage

We can therefore assume (without loss of generality) éhas defined on
>*. We letC¥(X*) denote the Banach space of complex valuezbntinuous
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functions’ with norms||w|| = |w|e + |w|e, Where| - | is the supremum norm
and
[wla = sup| "W () — w(YI: X = ym for m < n}.

Let x : S — C be a character for the compact abelian gréupVe can define a
transfer operatorf : C*(X*) — C¥(X%) by

1
Lw® =5 Y x@eI Hw(y).

oy=x

The following result is fairly standard.

Lemma 7.3.

(1) If x =Ithen the spectrum df; has a simple maximal eigenvaltteand
the rest of the spectrum is contained in the disk C: |z| < 1}

(2) If x # Ithen the spectral radius df, is strictly less thari.

Moreover, the operator has essential spectral radias mostp—?.

Proof. Part (1) on the spectrum df; is described in [19]. For part (2), it
is easily seen that the spectral radius/gfis at most 1 and the bound on the
essential spectral radius follows from [19]. 4f, has spectral radius 1 then we
can findw € C*(X*) and 0< 6 < 27 such thatl,w = e?w. However,
this impliesy (©@~1(x))w(x) = €?w(ox), for all x € . By aperiodicity we
deduce thatv is constant angt = 1. a

Recall thato™ is the function on=* defined by
O (X) = B@" X ... 0O X).

We can write 1
Low(x) = o > x (O™ I Huw(y).

oly=x

By Lemma 7.3, ifm denotes the measure of maximal entropy:on we have
an alternative characterization of the isolated eigenvalues.

7In fact, we can assume = 1/2 since® was Lipschitz and Lemma 7.2 requires us to half the
exponent.
8If & expands the metric by/p > 1 then the function acting om-Holder functions has essential
spectral radius ip* [19]. Herep = p*2 anda = 1/2.
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Lemma 7.4. For any charactery on S and anyd > l:

Low(x) = /wdm/xda)—i— > biny (w, A+ 0 (6"). (7.1)

|%i1>6
wherej; are the eigenvalues df,,

(n+d — 1!
1050, (w, X)| < T'l)!nwn
andd; > 1is the multiplicity of;. If A; is simple, we may tak ,, , (w, X)| <

[fw]].

Proof. We can write £} = > P" + Qn, where P are eigenpro-
jections associated to eigenvalugs (of modulus not smaller thad) and
limsup,_, . 11Qnl*" < 6. By writing eachP, in Jordan canonical form we
can now derive (7.1). O

The eigenvalues; also have a more geometric interpretation. IL,gbe the set
of conjugacy classes ¢f € " with [try |, = —n. Foreachclasy ] € I'y, denote
by «([y]) € S the common value op"%,. There is the following refinement of
Corollary 2.7.3:

Proposition 7.5. For any charactery on S and anyy > 6 > r_ln:

& T X)) = [xdo+ ¥ 0l +0(7. (72

[yleln |xi|>6

wherey; are eigenvalues fof, with multiplicitiesd; and ¢ n | < (”(’Jld' l)l,)'. If
Ai are simple, we may take , , independent of. In particular, eigenvalues
of matrices inI" are uniformly distributed in the sense that for any continuous

function¢ on S, we have:

lim — Y ey f ¢ (9)dw(s),

2n
~ P [yleln

wherew is the Haar probability measure afi

The proof consists in an application of the arguments from [22] or [19]. The
original argument of Ruelle gave an exponential error term, but one with a larger
exponent thary. The optimal estimate was later derived by Haydn, and it is
his proof which is followed in [19]. However, subsequently a simplified proof
of this result was obtained by Ruelle [22] which is the one that we will briefly
describe. The main ingredient is the following lemma.
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Lemma 7.6. For any charactery on S and anyy > 6 > %:

1
S X 107001 = [rdo+ 3 anare0ln). @3

o"x=x |Ai|>6

where); are eigenvalues for, of multiplicity d;, and|ci n , | < % If A

are simple isolated eigenvalues, we may takg, independent of.

Proof. For completeness, we briefly sketch the idea of the proof (see Ruelle

[22,82.13]and [19, pp. 157-164]). For each strigg - - , ij_; for ¥ we choose
a sequence, .. i , € lio,---,ij—1] whose first symbol i$. One can then
estimate
D x O @1h = Y (L)
oNe=e i
- (7.4)
= Z (LQ I[io,...,i|_1])(xio ..... i|_1) - (-E; I[io,...,i|_2])(Xio,...,i|_2) .
I=1 \i=ig,....iI-1

= O(no"),

for any% < 6 < 1, Wheny = I we have the maximal eigenprojection 6y is
J-dm. In particular,£]1;;; — [ Ij;dm. We deduce estimate (7.3) using (7.1)
and (7.4). The proof is the same when# 1, but now the main term is 0, that
we interpret ay’ xdo. O

To complete the proof of Proposition 7.5, recall that by Proposition 6.3, we
have a one-to-one correspondence between periodic orkit®bperiodn and
conjugacy classes ii,. Moreover, the value o®™ is exactly the unitary part
t([y])? of the square of the maximal eigenvalue of the conjugacy ¢hakslt
follows that we can estimate, by counting only prime periodic orbits:

1
= 2 x0TI = Y xadyhAI = O

oNx=x [yleln

Which completes the proof. d

Remark. In the case thap # 2, we can remove the squares in the statement
of Theorem C. This follows since the eigenvaluesjtoand —y appear as the
square roots of?.
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8 Error terms and the Ramanujan-Petersson Conjecture

In this final section we shall prove Corollary 1. We use a mixture of symbolic
dynamics and representation theory, which has parallels with the Lewis-Zagier
approach to cusp forms [15].

8.1 Transfer operators

We begin with some comments based on the transfer operator. By Proposition
7.5 we get:

pZana( 0D = [ xdol = Coolcol. @)

wherei1(x) is the eigenvalue of , with highest modulus (second highest when
x = 1), Ca(x) depends on the total multiplicities of eigenvalues with the same
modulus as.1(x), and grows polynomially im. We want to consider

¢(I") := suplA1(0)I-
X

If we havec(I") < 1, we obtain relation (0.2) forary, c(I') < 6 < 1. Arelated
result comes from a consideration of the rate of mixing of the frame flow with
respect to the measure=mx wonX, x S.

Lemma8.1. Fix x € S, choose Lipschitz functiors, H € C*(X) and denote
Gy(X,8) = G,(X)x(8), Hy(x,8) = H,(X)x(s) andcg () = [G, o
(6)"H,du. Then for any > 0 > %:

(n+d — n
Co.H., () /de/Hdm/deJrlge __1), D/\ +0(y"), (8.2)

whereD; depends ot andH. If 4; are simple isolated eigenvalues this becomes

CGHX(n) /de/Hdm/xdw+ZDA”+O )

[2i|>y

whereD; depends o andH.

Proof. We can writecg ., (N) = [ G, L} H,du and then the result follows
from Lemma 7.4. O
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8.2 Representations

Let us fix x € S, and consider function&;, j = 1,..., K(x), such that
Gj,=GjX)x(s), ] =1,..., K(y) form an orthonormal basis of the sum of
the eigenspaces corresponding to eigenvalues with the same moduldg as
By Lemma 8.2 we have that

1 _
log 22001 = lim — suplog /Gj,x o(&>”Gk,xdu‘,
j.k

whereg is the symbolic frame flow. By Proposition 6.3, we get

1
logc(I) < supsup lim —log
x G,H n—+o00 N

, (8.3)

f G, (T'ga"H, (T'g)dg
MPSL2,Qp)

wherea is the diagonal elemerat = (5 ?) and the supremum is taken over all
a—Holder continuous function§, H on the associated shif* (taken with
/ G = 0wheny = I). We can use representation theory to estimate the Right
Hand Side of (8.3).

LetG = PSL(2, Qp), andI" a lattice inG, and let us denote byy, g € G,
the regular right representation @fon L2(I'\G). In order to effectively bound
(8.3) we have to replace general Holder functionsbyinite vectors.® Let ¢
be a typicakr Holder continuous function ok, then we can write

v=> a. (8.4)
i=0

wheregy = [ ¢ and
(@) ¢ depends only on coordinates between Oiaad =,
(b) [@ =0, and

© lgilloo < lpllap™.

We can suppose we have chosen for our identification 3bf with

M\ PSLZ2, Qp)/M afundamental domain of diameter smaller thizarsay, and
containing the vertery (which is fixed byK = PSL(2, Zp)). Fix x. Let ®;

be associated to the functign(x) x (s). The imagesK ®; of ®; under the right
action of K are associated to functions on the tree which depend only on the
edges at distance &y smaller tharn + D. Moreover, the orbit of¢ underK is
finite. It follows that thed; are K -finite, and din{(K ®;)) < C,(p? + 1)'*P.
Recall that we can choose= 1.

9.e., functions for which the spaiK @;) of the K-orbit K @ is finite dimensional.
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Lemma 8.2. Assume there is a hnumbgr< 1 such that for theK -finite func-
tions ®;, ¥; with norm 1 and orthogonal to constants, we have:

[(Uan®i, Wj)| < /dim((K®i))ydim((KW;)) B". (8.5)
Then, forG, = 7%, ® andH, = > 2, ¥, we have that, for each < 3

[{(UanGy, Hy)| = O (B™).

Proof. The proof uses decomposing the functi@s H, from formula (8.4)
into a sum ofK -finite functions as above. We then apply (8.5) to get:

[UanGy. H)l < ) [(Uan @i, )

i,j>0
< D min(C, (v P2+ DI Gy H|l pm 2
i,j>0
The estimate easily follows. O

We also need the following standard result on representations.

Lemma 8.3 [8, p. 23]. Sincel'\PSL(2, Q,) is compact, the regular right
representation o6 splits into a countable number of discrete unitary represen-
tations.

A K finite function® in L2(I'\P SL(2, Qp)) decomposes into an orthogonal
sum of®y in the irreducible representations. It is clear thatdheare K -finite
and that

dim((K ®)) = Z dim((K ®y)).
k

To prove (8.5), it suffices to know that there is a numBer 1 such that
for any irreducible representatignin L2(I"\G), any K -finite unit vectorsu, v
orthogonal to the constant functions, we have:

(p@Hu,v) =< Vdim(Ku)dim((Kv)) g". (8.6)

In order to minimize3, we shall concentrate on congruence subgroups.
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8.3 Congruence subgroups

For definiteness, consider the quaternion algdbra= D(1,1). Recall from
§2.3 that if we writeG(Qp) = D ® Qp then

(1) G(R) is compact,
(2) G(Qy) is compact, and
(3) G(Qyp) is not compact fop # 2, co.

For p = 1(4), PG(Qyp) is isomorphic toPGL(2, Qp), andI' = I'(1) =
PG(Z[1/p]) is a cocompact lattice iR GL(2, Qp).

Definition. Forp = 1(4) andN > 1, (N|p) = 1, thecongruencesubgroup
I'(N) of PGL(2, Qp) associated t® andN is the group

['(N) = Ker(G(Z[1/p]) = G(Z[1/p]l/NZ[1/p]).

Clearly, a congruence subgroup is a cocompact lattice @L(2, Qp). By
Lemma 1.1, its intersection witlPSL(2, Qp) is a cocompact lattice in
PSL(2, Qp). Our objective is to show the following.

Proposition 8.4. LetT' be a congruence subgroup &fGL(2, Qp). Then,
for any irreducible representatiop in L2(I"\PGL(2, Qp)), any K -finite unit
vectorsvy, vo orthogonal to the constant functions, we have:

(p@uy) < JIm(Kupdim(Ko) (—;) ®.7)

Proposition 8.4 itself follows from deep results of Jacquet-Langlands [12,
Theorem 18, p. 186] and Deligne [12, Theorem 6, p.137], [14, pp. 79-82].
More precisely, forg # p, let Kq € G(Qq) be a compact open set and let
I =GA)N ]_[#p Kq, whereA denotes the adeles @f. There is a natu-

ral bijection betweeiG (Q)\G(A)/ (G(]R) X ]_[q#p Kq> andI'\G(Qyp), which

induces &G(Qp)-equivariant isometry on the correspondingspaces. In par-
ticular, if p, is an irreducible representation appearing #l"\Q,) then there
exists an irreducible representatipin L?(G(Q)\G(A)) such that thepth com-
ponent ofp is pp. By the Jacquet-Langlands theorem, for all spgithere exists
an irreducible representation pfe L2(SL(2, Q)\SL(2, A)) such thapp = p,,
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andp,, is a discrete series f@L(2, R). Itthen follows from Deligne’s Theorem
thatpp, is tempered In particular for all> 0 andK -finite vectorsu, v we have
that(,op('fJ %) u, v) = O (Vdm{(Kupdim((Kv)) p~") [5].

We can now complete the proof of Corollary 1.

By sections 8.1 and 8.2 we see that the spectral gap can be estimated by the
speed of mixing and thus by the decay of coefficients in some representations
(Lemma 8.3). This decay is given by (8.7). It follows that no eigenvalue for any

i . 1/3
operatorL, occurs in the regioie| > (%) and Corollary 1 follows.

Remarks.

(i) There are a number of closely related invariants associated to graphs such
asT"\G/K. Perhaps the most familiar is thieara zeta functiordefined

by
ze =[]@-p)™

14

where the product is over prime closed curyas I'\G/K of lengthl (y).

Ihara showed that (s) is rational inu = g5 and can be expressed interms

of the transition matrixA by Z(s) = (1 — u?>)~tdet(l — Au+ qu®)~L.

In particular, the poles oZ(s) are determined by the eigenvalues of the
transition matrixA and for congruence subgroups we have the analogue of
the Riemann hypothesis on the location of the zeros. The above analysis
shows that the correspondihgfunction

Lo =[] @ x@ymp o)™
[v]
has a meromorphic extension to a half-pld&s) > ¢, wherec < 1.

(i) It would be interesting to extend Theorem 3 and Corollary 1 to the case
of latticesI” containing torsion. However, this would require a significant
revision of the method of coding geodesics sifitg is not obviously a
subshift of finite type. There is a discussion of this problem in [2].
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