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The general set in the MCIM Isotopic Model
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Abstract. To obtain a bigger number of mathematical and physical applications of
the Santilli’s isotheory, the latest studies have shown the necessity of analyzing isotopic
models which use non associative laws. The main goal of this paper is to give a gener-
alization of the isotopic construction model based on the multiplication (MCIM), which
is useful to obtain non associative mathematical isostructures.
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Introduction

In 1978, R. M. Santilli proposed a generalization of the conventional Lie’s theory
by using isotopies. The isotopies of Lie’s theory were constructed to lift the
theory from its current sole applicability to linear systems to nonlinear systems,
lifting achieved via the reconstruction of linearity on isospaces over isofields.
It was the first stage of what is actually known asSantilli’s Isotheory[1]. He
considered that the basic unitI of each mathematical structure can depend on
several factors external to the system in which we are placed, like coordinates,
speed, time, density, temperature, and so on. It involves an isounit of the type
Î = Î (x, v, t, μ, τ, ...). By using this principle, Santilli carried out a step by
step construction which generalizes the most common mathematical structures,
originating those denominatedmathematical isostructures[2], [3]. It allowed
him to progress in the development of some physical applications, mainly in
Quantum Mechanics and Dynamics of Particles [4].

In 2001, the isotopic construction model based on the multiplication (from now
on, it will be denoted by MCIM) was introduced by ourselves (see [5]) in the same
way as the one proposed by Santilli, although by putting a special emphasis in
the use of∗-laws. Later, it was improved in [6] and [7]. Nevertheless, to enlarge
the number of mathematical isostructures and to get new practical applications, it
is necessary to weaken the associativity hypothesis, obtaining in this way more
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general cases. To do it, all the elements which form the general set of every
isotopy must be settled. This will be then the main objective of this paper.

1 Preliminary Concepts

From now on anisotopic liftingor isotopywill be any correspondence between
a mathematical structure and another one of the same type, that is to say, in such
a way that both verify the same properties. Note that according to this definition
an isotopy could not be a map. The image is then calledisotopic structureor
isostructure[1].

Santilli’s isotopic model of 1978 is based on the generalization of the initial
unit: I → Î = Î (x, v, t, μ, τ, ...). So, fixed any mathematical structureE,
endowed with an inner law×, this model considers a setV ⊇ E, endowed with
an associative law∗ and I , Î , T ∈ V , whereI ∈ E is the unit of∗ in V and
T = Î −I . V, T and Î are respectively calledgeneral set, isotopic element and

isounityof the isotopy. So, it is defined theisostructureÊ, endowed with the
law ×̂ with unit Î as:

Ê = {̂x = x ∗ Î : x ∈ E},

â×̂b̂ = â ∗ T ∗ b̂ = (a ∗ b) ∗ Î , for all â, b̂ ∈ Ê.

The MCIM isotopic model generalizes the Santilli’s one, by using as many
∗-laws as the initial ones inE, in such a way that ifE is endowed with an inner
law ◦, it will have associated a∗-law ?, suchthat:

â̂◦b̂ = (a ? b) ∗ Î , for all â, b̂ ∈ Ê.

Let us observe that if? ≡ ∗, then̂◦ ≡ ×̂ is the Santilli’s previous law.
So, any isotopy is given in the following way:

Conventional level −−−−−−−−−−−−−−−−−−−→

General level
(V, ?, ∗, ...)
∪

(E,+,×, ...) (E, ?, ∗, ...)
a a

↓ ] ∼=↓ I

Projection level π←−−−−−−−−−−−−−−−−−−−− Isotopic level

(Ê, +̂, ×̂, ...) (Ê, +̂, ×̂, ...)

π ◦ I (a) = â = a ∗ Î I (a) = â
â+̂b̂ = (a ? b) ∗ Î â+̂b̂ = â ? b
â×̂b̂ = (a ∗ b) ∗ Î â×̂b̂ = â ∗ b

Bull Braz Math Soc, Vol. 36, N. 2, 2005



“main” — 2005/6/23 — 17:58 — page 189 — #3

THE GENERAL SET IN THE MCIM ISOTOPIC MODEL 189

2 A Generalization of the MCIM

2.1 A first generalization of the MCIM

To get a generalization of the MCIM, we are going to weaken some of the
conditions which are necessary when using this isotopic model. To do it, let us
consider the frame of hypothesis:

(1) A setE, endowed with an inner law◦, a setV ⊇ E, endowed with a inner
law ∗, with unit I ∈ V , and an arbitrary element̂I in V .

So, let usdefine:

Ê = {̂x = x ∗ Î }, â̂◦b̂ = (a ∗ b) ∗ Î .

We will saythat Ê is injectiveif â = b̂ ∈ Ê impliesa = b ∈ E.
Let us observe that if∗ is associative and there existsT = Î −I ∈ V , then we

have the MCIM isotopic model. In thiscase,̂E will be injective.
In the general case, we have the following result:

Proposition 2.1. If ∗ is associative inV, then̂◦ is associativein V̂, provided it

is well-defined, that is, if for alla, b, c ∈ E suchthat â = b̂, it is verifiedthat

â̂◦̂c = b̂̂◦̂c and ĉ̂◦̂a = ĉ̂◦b̂. Moreover,if Ê is injective, the converse is also
verified.

Proof. Let ∗ be associative.As ◦̂ is well-defined, it means that such a law has
a perfect sense over Ê. So ◦̂ is associative:

(
â̂◦b̂

)
◦̂̂c = ((a ∗ b) ∗ c) ∗ Î = (a ∗ (b ∗ c)) ∗ Î = â̂◦

(
b̂̂◦̂c

)
.

Let us now supposethat ◦̂ is associativeandÊ is injective. So:

((a ∗ b) ∗ c) ∗ Î =
(
â̂◦b̂

)
◦̂̂c = â̂◦

(
b̂̂◦̂c

)
= (a ∗ (b ∗ c)) ∗ Î .

Now, as Ê is injective, we have that(a ∗ b) ∗ c = a ∗ (b ∗ c) and thus,∗ is
injective. �

Let us observe thatif Ê is injective,then◦̂ is well-defined. However, as we

will see next, the converse is not true in general. Indeed, let us supposethat Ê
is not injective. So, they should exist, at least, two different elementsx, y ∈ E
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such thatx ∗ Î = y ∗ Î . Besides,as ◦̂ should be well-defined, it must be
(x ∗a)∗ Î = (y∗a)∗ Î , for all a ∈ E. If we also consider thatE has the inverse
element property with respect to∗, we can takea = x−I ∈ E, and so:

Î = (y ∗ x−I ) ∗ Î .

Then, let us observe that if∗ is associative inV , it will imply the non existence
of T = Î −I , because in the other case, by multiplying on the right byT in the last
equality, it is deduced thatI = y ∗ x−I ; this is,x = y, which is a contradiction.

On the other hand, if∗ is non associative inV , the corresponding isotopic
element could exist or not, although if it exists, then the following equality has
to be satisfied:

I =
[(

y ∗ x−I
)
∗ Î

]
∗ T.

or equivalently:
T =

[(
y ∗ x−I

)
∗ Î

]−I
.

So, we have then proved the following result:

Proposition 2.2. By adding in (1) thatE has the inverse element property with

respect to∗ andthat Ê is not injective, then eitherT = Î −I does not exist or if
it exists, then∗ is non associative inV. Besides, in this case, for allx, y ∈ E
suchthat x̂ = ŷ, it is verified thatT =

[(
y ∗ x−I

)
∗ Î

]−I
. �

2.2 A second generalization of the MCIM

Let us now consider the following set of hypothesis:

(2) A set E, endowed with two inner laws◦ and•, a setV ⊇ E, endowed
with two inner laws,∗, with unit I ∈ V , and?, and arbitrary elementŝI , T
in V .

Let usdefine:

Ê = {̂x = x ∗ Î },

â̂◦b̂ = [(̂a ∗ T) ∗ (̂b ∗ T)] ∗ Î ,

â̂•b̂ = [(̂a ∗ T) ? (̂b ∗ T)] ∗ Î .

Let us observe that if∗ is associative and there existsT = Î −I ∈ V , then we
have the MCIM isotopic model.
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This generalization is useful to study some of the properties that the general
setV should verify. To see it, we will show first an explicit example. We are
going to get the complex numbers structure(C,+, ∙) as an isotopic projection of
the real numbers structure(R,+,×). To do it, we will employ the laws?|R ≡ +
and∗|R ≡ × and the isounit̂I = Î (t), depending on a factor “time”t ∈ R, such

thatx ∗ Î (t) = x + t i ∈ C, for all x, t ∈ R. In this way, R̂ = C.
The following step is to get+ and∙ as laws in the projection level. To achieve

this objective, it will be necessary to use again the time factor, although now in
an inverse sense with respect to the procedure used to obtain the isotopic set in
question. For this reason, a good way to deal with this aspect would be to use
the isotopic elementT = T(t) = Î (t)−1. So:

(a+ bi)+̂(c+ di) = ([(a+ bi) ∗ T ] ? [(c+ di) ∗ T ]) ∗ Î ,

(a+ bi )̂∙(c+ di) = ([(a+ bi) ∗ T ] ∗ [(c+ di) ∗ T ]) ∗ Î .

Then, we can take advantage that the isotopic element depends on the time to
conserve the following useful information: fixed(a+bi) ∈ C, this element was
just obtained when the time ist = b. To get it, we can define the operation∗ in
the general setV as follows:

(a+ bi) ∗ T = ab

whereab (which could be identified with the pair(a, b) in R2) would belong to
V . So, it is useful to consider the following set:

CT = {ab = (a+ bi) ∗ T : a, b ∈ R} .

Remark. In a similar way, if we are now considering an isotopy of any structure
E, it will be useful to consider the set:

ET =
{
â ∗ T : â ∈ Ê

}
.

Therefore, the corresponding general setV can be defined as:

V = E ∪ Ê ∪ ET ∪
{
Î , T

}
.

Now, at this point, it is important to note that in the case of the MCIM isotopic
model, setsE andET coincide. It is so because under this model the associativity
of the operation∗ in the general setV and the existence of the isotopic element
T = Î −I are satisfied by hypothesis. So, for alla ∈ E it is verified:

(
a ∗ Î

)
∗ T = a ∗

(
Î ∗ T

)
= a.
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In particular, this proves the necessity of generalizing such a model to the
following three cases: first, when the associativity of∗ in V is not verified.
Second, when the isotopic element does not exist and third, when none of these
two conditions is satisfied. These three cases will be dealt in this paper.

On the other hand, it would be necessary to define the corresponding∗-laws
between elements ofET . By example, in the concrete case which we are dealing,
it would be convenient to define the laws? and∗ in RT = {ab : a, b ∈ R} as
follows:

ab ? cd = (a+ c)b+d, ab ∗ cd = ((a× c)− (b× d))b×c+a×d

It would be also necessary to define the operation∗ between elements ofRT and
the isounit̂I :

ab ∗ Î = a+ bi

In this way, we would obtain in the projection level:

(a+ bi)+̂(c+ di) = ([(a+ bi) ∗ T ] ? [(c+ di) ∗ T ]) ∗ Î =

= (ab ? cd) ∗ Î = ((a+ c)b+d) ∗ Î = (a+ c)+ (b+ d)i .

(a+ bi)×̂(c+ di) = ([(a+ bi) ∗ T ] ∗ [(c+ di) ∗ T ]) ∗ Î =

= (ab ∗ cd) ∗ Î =
(
((a× c)− (b× d))b×c+a×d

)
∗ Î =

= (ac− bd)+ (bc+ ad)i .

Note that, in particular, we have obtained that:
(
R̂, +̂, ×̂

)
= (C,+, ∙)

So, it is proved that an isofield, which conventionally cannot be doted of a total
order, can be obtained starting from a totally ordered field, like real numbers, by
using an isotopic lifting. In this way, it is also proved the necessity of considering
the isoorder which was defined in [6]. Moreover, the study of the isoorder should
be deeper in this concrete case, to solve some problems which appear. We will
deal with this study in future works.

Finally, we can summarize the information relative to our general set as fol-
lows:

V = R ∪ C ∪ RT ∪
{
Î , T

}

being, for alla, b, c, d ∈ R:

a ? b = a+ b, a ∗ b = a× b, a ∗ Î (t) = a+ t i
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(a+ bi) ∗ T = ab, ab ∗ Î = a+ bi, ab ? cd = (a+ c)b+d

ab ∗ cd = (ac− bd)ad+bc, Î ∗ T = T ∗ Î = I = 1≡ 10

An aspect to remark is that by using this construction we have shown an
example in which the operation∗ is non associative inV , since fixeda ∈ R and
a certain instant of timet0, one has:

(a ∗ Î ) ∗ T = (a+ t0i ) ∗ T = at0 6= a = a ∗ I = a ∗ ( Î ∗ T)

Besides:
(a ∗ T) ∗ Î = a0 ∗ Î = a = a ∗ (T ∗ Î )

Moreover, if we demand the construction to be coherent, another condition to
be satisfied would be the following:

[(
a ∗ Î

)
∗ T

]
∗ Î = a ∗ Î

As T = Î −I , it must bêI = I ∗ Î = ( Î ∗T)∗ Î and thus, we get theMoufang’s
Identity: [(

a ∗ Î
)
∗ T

]
∗ Î = a ∗

(
( Î ∗ T) ∗ Î

)

2.3 The MCGIM isotopic model

We can try to generalize the MCIM isotopic model by considering thatT is not
the inverse of the isounit̂I in V . In this case, we will callgeneralized isotopic
elementto T , which is a different concept from isotopic element:

Definition 2.3. It will be said that an isotopy follows thegeneralized MCIM
(from now on, MCGIM) when, under usual notations, there exists an element
T ∈ V such that, for alla ∈ E, it is verified:

(
â ∗ T

)
∗ Î = â = a ∗ Î

So, the setET acquires a great importance when we must decide the isotopy to
construct, because such a set will be the one that has to verify properties satisfied
by the isostructure to get. In this way, it is convenient to center us in the nature
of the setET .

Proposition 2.4. Let us consider an isotopic lifting by using MCGIM. Then,
E = ET if and only if for all a ∈ E, it is verified:

(
a ∗ Î

)
∗ T = a.
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Proof. The sufficient condition is evident. So, let us supposea ∈ E. As
E = ET , there existsb ∈ E such thata =

(
b ∗ Î

)
∗ T and so,a ∗ Î =((

b ∗ Î
)
∗ T

)
∗ Î = b ∗ Î . Thus,a =

(
a ∗ Î

)
∗ T . �

This result allows us to have confidence in the generalization achieved, because
all the basic aspects of isotopies are preserved. In fact, we are imposing the
associativity of the operation∗ at no time, which is particularly favorable for the
study about the isotopical relationship between associative and non associative
mathematical structures.

In the other way, note that in the particular case in which∗ is associative inV
andT = Î −I is the isotopic element, we got then the MCIM isotopic model as
a particular case of the MCGIM one. Moreover, the following result is verified:

Proposition 2.5.By using the MCGIM isotopic model, if∗ is an associative law
in V, with unit I , then they are verified:

a) If there existsa ∈ E such thata ∗ Î has left inverse inV with respect to∗,
thenT ∗ Î = I .

b) If ET = E and there existsa ∈ E admitting left inverse inV with respect
to ∗, thenÎ ∗ T = I .

In particular, if (a) and (b) are satisfied, thenT is the isotopic element of such
an isotopy.

Proof. Note that the final assert of the proposition is evident, because the
conditionT = Î −I is directly deduced from (a) and (b). So, it is sufficient to
prove both items. Without lost of generality, we can suppose in both of them
that∗ is associative:

a) Let us suppose that there exists a left inverse ofa ∗ Î in V , for a given
a ∈ E. Then:

a ∗ Î =
(
â ∗ T

)
∗ Î = (a ∗ Î ) ∗ (T ∗ Î )⇒ I = T ∗ Î .

b) Let us now suppose thatET = E and that there exists a left inverse of
a ∈ E in V , with respect to∗. Then:

a = (a ∗ Î ) ∗ T = a ∗ ( Î ∗ T)⇒ I = Î ∗ T. �
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So, when working with associative∗-laws, it is not more interesting the injec-
tivity of the used isotopy but ifE = ET or not. Nevertheless, what is the matter
with isotopies in whichE 6= ET? They are possible, because we have already

considered the case inwhich R̂ = C was obtained, beingRT 6= R. Such an ex-
ample is useful to show that in every isotopy both properties and laws demanded

for Ê have to be satisfied inET , because such properties will be inherited by the
isostructure to obtain. So, given an initial mathematical structure and another of
the same type, every isotopic lifting consists on finding a superstructureV which
contains both structures plus an isounit and an generalized isotopic element. In
this way, let us consider finally the following:

Example 2.6.Let us suppose the nilpotent group(Z/Z2,+), with the usual sum.
We are going to carry out an isotopic lifting of it by starting from elements of
isotopy Î = 0 (associated with the isotopic elementT) and∗ defined both in
such a way that, fixeda, b ∈ Z/Z2, they are verified:

a ∗ b = a+ b ; a ∗ Î = â = a+ 0= a

In this way, we get Ẑ/Z2 = Z/Z2. We also define, for alla ∈ Z/Z2:

â ∗ T = aT , aT ∗ Î = a, 0T ∗ 0T = 0T ,

1T ∗ 1T = 1T = 1T ∗ 0T = 0T ∗ 1T .

So, fixeda, b ∈ Z/Z2, we have in the projection level:

â+̂b̂ = π ◦ I
(
(̂a ∗ T) ∗ (̂b ∗ T)

)
= π ◦ I (aT ∗ bT ) .

Hence:
0+̂0= 0, 1+̂1= 1= 1+̂0= 0+̂1,

and thus,

(
Ẑ/Z2, +̂

)
=

(
Z/Z2, +̂

)
is a non nilpotent group.

So, in this way, a non nilpotent mathematical isostructure has been obtained as
an isotopic projection of a nilpotent structure. However, it has been necessary for
getting it to impose in our construction that the corresponding pair

(
(Z/Z2)T , ∗

)

coincides with the isostructure searched.
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