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The general set in the MCIM Isotopic Model
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Abstract. To obtain a bigger number of mathematical and physical applications of
the Santilli’'s isotheory, the latest studies have shown the necessity of analyzing isotopic
models which use non associative laws. The main goal of this paper is to give a gener-
alization of the isotopic construction model based on the multiplication (MCIM), which

is useful to obtain non associative mathematical isostructures.
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Introduction

In 1978, R. M. Santilli proposed a generalization of the conventional Lie’s theory
by using isotopies. The isotopies of Lie’s theory were constructed to lift the
theory from its current sole applicability to linear systems to nonlinear systems,
lifting achieved via the reconstruction of linearity on isospaces over isofields.
It was the first stage of what is actually known Santilli’'s Isotheory[1]. He
considered that the basic unitof each mathematical structure can depend on
several factors external to the system in which we are placed, like coordinates,
speed, time, density, temperature, and so on. It involves an isounit of the type
I =1, v,t,u,1,..). By using this principle, Santilli carried out a step by
step construction which generalizes the most common mathematical structures,
originating those denominatedathematical isostructurd®], [3]. It allowed

him to progress in the development of some physical applications, mainly in
Quantum Mechanics and Dynamics of Particles [4].

In 2001, the isotopic construction model based on the multiplication (from now
on, itwill be denoted by MCIM) was introduced by ourselves (see [5]) in the same
way as the one proposed by Santilli, although by putting a special emphasis in
the use ofk-laws. Later, it was improved in [6] and [7]. Nevertheless, to enlarge
the number of mathematical isostructures and to get new practical applications, it
is necessary to weaken the associativity hypothesis, obtaining in this way more
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188 R. M. FALCON and J. NUNEZ

general cases. To do it, all the elements which form the general set of every
isotopy must be settled. This will be then the main objective of this paper.

1 Preliminary Concepts

From now on arnsotopic liftingor isotopywill be any correspondence between

a mathematical structure and another one of the same type, that is to say, in such
a way that both verify the same properties. Note that according to this definition
an isotopy could not be a map. The image is then cafletbpic structureor
isostructure[1].

Santilli's isotopic model of 1978 is based on the generalization of the initial
unit: 1 — I = 1(x,v,t,u,1,..). So, fixed any mathematical structuiee
endowed with an inner law, this model considers a sét> E, endowed with
an associative law and 1, |, T € V, wherel € E is the unit ofx in V and
T =1"".V, T andl are respectively calledeneral set, isotopic element and

isounity of the isotopy. So, it is defined thsostructureE, endowed with the
law X with unit 1 as:

=

E={X=xx1:xeE}
AxbD=2xT b= (axb)xT, foral 3,beE.

The MCIM isotopic model generalizes the Santilli's one, by using as many
x-laws as the initial ones i, in such a way that iE is endowed with an inner
law o, it will have associated &law «, suchthat:

Zob= (asb)* 1. forall a,bcE.

Let us observe that if = %, theno = X is the Santilli's previous law.
So, any isotopy is given in the following way:

General level
Conventional level (V, %, %, ...)
U
(E5 +5 X7'~') (E,*, *,...)
a a
| # =] 1
Projection level b1 Isotopic level
(E. 7%, .0 R (E,F, %, ..)
mol(@=a=axl l(a)=a
atb=(axb) 1 afb=axb
axb=(axh)*1 axb=axb
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2 A Generalization of the MCIM
2.1 Afirst generalization of the MCIM

To get a generalization of the MCIM, we are going to weaken some of the
conditions which are necessary when using this isotopic model. To do it, let us
consider the frame of hypothesis:

(1) AsetE, endowed with aninner law, a setv > E, endowed with a inner
law *, with unit1 € V, and an arbitrary elememtin V.

So, let usdefine:

)

IR ﬁz(a*b)*r

)

={X=xx

=

We will saythatE is injectiveif 2 =b € E impliesa=b ¢ E.

Let us observe that i is associative and there exiSis= ' e V, then we
have the MCIM isotopic model. In thisase E will be injective.

In the general case, we have the following result:

Proposition 2.1. If x is associative ifV, thena is associati_vén 7, provided it
is well-gefined, that is, ifior alh, b,c e E_suchthatﬁ — D, it is verifiedthat
@oc = bot andToa = Gob. Moreover,if E is injective, the converse is also
verified.

Proof. Let x be associativeAs 5 is well-defined, it means that such a law has
a perfect sense evE. Soo is associative:

<’aT8E\>676= ((axb)=*c) %1 = (ax* (bxc)) *T\:ﬁ_‘S(/_b'é\_ﬁ).

Let us now supposthato is associativandE is injective. So:

(@xb)%c)* T = (a—aﬁ)s_eza_a(ﬁs_e) —@x(bxc)) 1.
Now, asE is injective, we have thata % b) * ¢ = a % (b % ¢) and thusx is
injective. O

Let us observe that E is injective,thens is well-defined. However, as we

will see next, the converse is not true in general. Indeed, let us summﬁ
is not injective. So, they should exist, at least, two different elemengsc E
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such thatx x I = y = I. Besides,ass should be well-defined, it must be
xxa)x | = (yxa)« 1, foralla € E. If we also consider thdt has the inverse
element property with respect #owe can taken = x~' € E, and so:

= (y*x_')*r.

Then, let us observe thatifis associative itV it will imply the non existence
of T = 1!, because in the other case, by multiplying on the right liy the last
equality, it is deduced thdt= y x x~'; this is,x = y, which is a contradiction.

On the other hand, i is non associative iV, the corresponding isotopic
element could exist or not, although if it exists, then the following equality has

to be satisfied:
I =[(ysxx")*T]*T.
or equivalently:
T = [(y*xf') >|<T]7I
So, we have then proved the following result:

Proposition 2.2. By adding in (1) thaE has the inverse element property with
respect tox andthat E is not injective, then eitheF = ! does not exist or if
it exists, thenx is non associative iV. Besides, in this case, forally € E
suchthatX = 7, itis verified thatT = [(ysx ") % 1] . 0

2.2 A second generalization of the MCIM

Let us now consider the following set of hypothesis:
(2) A setE, endowed with two inner laws ande, a setV 2 E, endowed
with two inner laws, with unitl € V, andx, and arbitrary elements T
inV.

Let usdefine:

{
b = [@xT)x* (f_)\* T)] * T
Feb=[@xT)*xDxT)] 1.

Let us observe that if is associative and there exi§ts= 1~' e V, then we
have the MCIM isotopic model.
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This generalization is useful to study some of the properties that the general
setV should verify. To see it, we will show first an explicit example. We are
going to get the complex numbers structdt® +, -) as an isotopic projection of
the real numbers structu(®, +, x). To do it, we will employ the laws, = +
andsx,, = x and the isounit = 1(t), depending on a factor “time"e R, such
thatx * T(t) =X+ti € C, forall x,t € R. In this Way@ =C.

The following step is to get and- as laws in the projection level. To achieve
this objective, it will be necessary to use again the time factor, although now in
an inverse sense with respect to the procedure used to obtain the isotopic set in
guestion. For this reason, a good way to deal with this aspect would be to use
the isotopic element = T(t) = 1 (t)~L. So:

@+biFc+di) = (@+bi)«T]x[(C+di)*T]) =1,

(@+biyc+di)=(@+bi)«T]«x[(c+di)«T]) 1.

Then, we can take advantage that the isotopic element depends on the time to
conserve the following useful information: fix¢éd+ bi) € C, this element was
just obtained when the time is= b. To get it, we can define the operatigin
the general se¥ as follows:

@+bi)xT =ay

wherea, (which could be identified with the paig, b) in R?) would belong to
V. So, it is useful to consider the following set:

Cr={ap=(@+bi)*T:a,beR}.

Remark. Inasimilarway, if we are now considering an isotopy of any structure
E, it will be useful to consider the set:

ET = {/5\*-]— E\EE\}
Therefore, the corresponding generaléatan be defined as:
V=EUEUErU{I,T}.

Now, at this point, it is important to note that in the case of the MCIM isotopic
model, set& andEt coincide. Itis so because under this model the associativity
of the operation: in the general sef and the existence of the isotopic element
T = 1" are satisfied by hypothesis. So, foralE E it is verified:

(@xN*xT=ax(1*T)=a
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In particular, this proves the necessity of generalizing such a model to the
following three cases: first, when the associativityxoin V is not verified.
Second, when the isotopic element does not exist and third, when none of these
two conditions is satisfied. These three cases will be dealt in this paper.

On the other hand, it would be necessary to define the correspordaves
between elements & . By example, in the concrete case which we are dealing,
it would be convenient to define the lawsandx in Ry = {a,:a,b € R} as
follows:

ap*xCy = (A+Cprd, ap*Cy = ((@xc) — (bxd)pciaxd

It would be also necessary to define the operatibetween elements @& and
the isounitl :
x|l =a-+bi

In this way, we would obtain in the projection level:

@+bi)¥c+di) = ([@+bi)«T]*[C+di)*« T *1 =
= (@ *C) * | = ((@+C)pyq) * | = (@+0) + (b+d)i.

(@+bxc+di)=((@+b)«T]*[C+d)*xT)*1 =
= (@ *C) * | = ((@x ©) — (bX D))pycraxa) * | =
= (ac— bd) + (bc+ ad)i.

Note that, in particular, we have obtained that:
(ﬁ7 i? §) = (Cv +7 .)

So, itis proved that an isofield, which conventionally cannot be doted of a total
order, can be obtained starting from a totally ordered field, like real numbers, by
using an isotopic lifting. Inthis way, itis also proved the necessity of considering
the isoorder which was defined in [6]. Moreover, the study of the isoorder should
be deeper in this concrete case, to solve some problems which appear. We will
deal with this study in future works.

Finally, we can summarize the information relative to our general set as fol-
lows:

V=RUCURy U{I, T}

being, for alla, b, ¢, d € R:
axb=a+bh, axb=axhb, ax1(t) =a+ti
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@+bi)xT = ap, a,* | =a+ bi, A * Cq = (@ + C)prg
A *Cq = (AC— bdagine, 1T =Txl=1=1=1,

An aspect to remark is that by using this construction we have shown an
example in which the operationis non associative i, since fixeda € R and
a certain instant of tim&,, one has:

(a*IA)*T=(a+toi)*T:aoyéa:a*l =ax(*T)

Besides:
@xT)*l =ayxl =a=ax*x (T x1)

Moreover, if we demand the construction to be coherent, another condition to
be satisfied would be the following:

[(a*ﬂ *T] «l=axl
AsT =1"',itmustbel = | x1 = (I «T)*1 and thus, we get thdoufang’s

Identity.
[(a*ﬂ T 1 =ax ((r*T)*D

2.3 The MCGIM isotopic model

We can try to generalize the MCIM isotopic model by considering The not
the inverse of the isounitin V. In this case, we will caljeneralized isotopic
elemento T, which is a different concept from isotopic element:

Definition 2.3. It will be said that an isotopy follows thgeneralized MCIM
(from now on, MCGIM) when, under usual notations, there exists an element
T € V such that, for alla € E, it is verified:

(’5* T) *

So, the seEt acquires a great importance when we must decide the isotopy to
construct, because such a set will be the one that has to verify properties satisfied
by the isostructure to get. In this way, it is convenient to center us in the nature
of the setE+.

Proposition 2.4. Let us consider an isotopic lifting by using MCGIM. Then,
E = Er ifand only if for alla € E, itis verified:

(a*ﬂ*Tza.
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Proof. The sufficient condition is evident. So, let us suppase E. As
E = Ey, there existdh € E such thata = (b+T) * T and so,a* 1 =
((b*D*T)*I=b*I.Thus,a=(a*T)*T. O

This result allows us to have confidence in the generalization achieved, because
all the basic aspects of isotopies are preserved. In fact, we are imposing the
associativity of the operationat no time, which is particularly favorable for the
study about the isotopical relationship between associative and non associative
mathematical structures.

In the other way, note that in the particular case in whighassociative iV
andT = 1" is the isotopic element, we got then the MCIM isotopic model as
a particular case of the MCGIM one. Moreover, the following result is verified:

Proposition 2.5. By using the MCGIM isotopic modelsfis an associative law
in V, with unitl, then they are verified:

a) Ifthere exista € E such thaia T has left inverse itV with respect tcx,
thenT x| = 1.

b) If Er = E and there exista € E admitting left inverse itV with respect
tox, thenl « T = 1.

In particular, if (a) and (b) are satisfied, théhis the isotopic element of such
an isotopy.

Proof. Note that the final assert of the proposition is evident, because the
conditionT = 1" is directly deduced from (a) and (b). So, it is sufficient to
prove both items. Without lost of generality, we can suppose in both of them
that« is associative:

a) Let us suppose that there exists a left inversa ofl inV, for a given
ac E. Then:

axl = @*T)*F:(a*ﬂ*(T*f):ﬂ:T*r

b) Let us now suppose th&tr = E and that there exists a left inverse of
a € E in V, with respect te:. Then:

a=@*D*T=ax(T*T)=1=1x%T. O
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So, when working with associativelaws, it is not more interesting the injec-
tivity of the used isotopy but iE = Et or not. Nevertheless, what is the matter
with isotopies in whichE # E;? They are possible, because we have already
considered the case whichR = C was obtained, beinBt # R. Such an ex-
ample is useful to show that in every isotopy both properties and laws demanded
for E have to be satisfied iEt, because such properties will be inherited by the
isostructure to obtain. So, given an initial mathematical structure and another of
the same type, every isotopic lifting consists on finding a superstru¢turgch
contains both structures plus an isounit and an generalized isotopic element. In
this way, let us consider finally the following:

Example 2.6.Let us suppose the nilpotent grodfy/Z,, +), with the usual sum.
We are going to carry out an isotopic lifting of it by starting from elements of
isotopyIA = 0 (associated with the isotopic eleméh} and x defined both in
such a way that, fixed, b € Z/Z,, they are verified:

axb=a+b; axl=a=a+0=a

In this way, we th//\Zz = Z]Z,. We also define, for all € Z/Z,:
?a_l‘*T:aT, aT*T=a, Or * Oy =0y,

1T*1T =1T =1T*OT=0T*1T-
So, fixedq, b € Z/Z,, we have in the projectionvel:

h=rol ((’?a‘*T)*(E*T))znol(aT*bT)-

Hence: . . . .
0+0=0, 1+1=1=140=0+1,

and thUS,<Z//\Z2» i) = (Z/Zz, f) is a non nilpotent group.

So, inthis way, a non nilpotent mathematical isostructure has been obtained as
an isotopic projection of a nilpotent structure. However, it has been necessary for
getting it to impose in our construction that the corresponding p@/Zz)T, *)
coincides with the isostructure searched.
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