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CG Global Convergence Properties
with Goldstein Linesearch*
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Abstract. This paper explores the convergence of nonlinear conjugate gradient
methods with Goldstein line search without regular restarts. Under this line search,
global convergence for a subsequence is given for the famous conjugate gradient meth-
ods, Fletcher-Reeves method. The same result can be obtained for Polak-Ribiére-Polyak
method and others.
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1 Introduction

We consider the global convergence of nonlinear conjugate gradient methods for
a smooth, nonlinear, and unconstrained function aériables

min f (x) (1.1

where f : R” — R!is continuously differentiable and its gradient is denoted
by g. We consider only the case where the methods are implemented without
regular restarts. The iterative formula is given by

X1 = Xk + oy (1.2)
whereqy is a step-length and is the search direction defined by

d — — Ok for k=1

(1.3)
—Ok + Pulk—1  for k> 2
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wheregy is a scalar andy denotegg(xy).
The best-known formulas gk are called the Fletcher-Reeves (FR), the Polak-
Ribiére(PR) and Hestenes-Stiefel(HS) formulas and are given by:

k12
B~ = (1.4)
T gkl
ﬁF’R — w (1.5)
“ g1 12
IBFS _ g|-<r (gk - gk—l) (1.6)

d¢_1(gk — Ok-1)
where||-|| means the Euclidean norm. The conjugate gradient methods (CG) are
available for large-scale unconstrained optimization because their storage are
relatively small. Numerical results showed thafifs easy to be computed and
if its dimensionn is very large, the CG is still the best choice for solving (1.1).

In the already-existing convergence analysis and implementations of the CG,
the strong Wolfe conditions, namely,

f (X + axte) < f(X) + Crakgy Ok (1.7a)
|9 + o) T dk| < Col gy Okl (1.7b)

where O< ¢; < ¢; < 1, are oftenimposed on the line search. Since Al-Baali [1]
first extended the globally convergent property of nonlinear CG to inexact line
search using the strong Wolfe conditions, some important global convergence
results for CG have been given. But there is little result about the CG using the
Goldstein conditions, namely,

f (%) + (1 — )o@y d < f (X + o) (1.8a)

f (X + i) < f (%) + Conegy) e (1.8b)

where 0< ¢ < % Gilbert and Nocedal’'s analysis [2] on the CG was greatly
different from that used by Al-Baali [1]. Dai and Yuan [3] showed that the FR
method is globally convergent if the line search conditions (1.7) are satisfied. [7]
presents anew CG with (1.7) and gives the proof. [4]investigates the convergence
property by using different choices fgg. [5] establishes the convergence results
in the absence of the sufficient condition. [6] propose a new line search algorithm
that ensures global convergence of CG.

In this paper, we will propose the convergence properties of the CG using
the Goldstein conditions, (1.8a) and (1.8b). Especially, we take example for
Fletcher-Reeves to give the global convergence property.
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2 Results for general conjugate gradient methods

In this section, we always assume thjak|| % O for all k, or else a stationary
point has been obtained. And from (1.3) we have that

O Ok = — [19klI? + B0y d_1 (2.1)

If gl dk_1 > 0 andBx < 0, we have thag, dy < 0. If g/ dk_; < 0andpk > 0,
we still have thapy dq < 0. In other words, we can select the rightto enable
(1.3) to satisfy the descent conditighdq < O at every search directiai.

The condition (1.8b) indicates the sufficientdecrease, whereas the (1.8a) means
to control the step length from below.

Assumption 2.1.

() f is bounded below on the level det= {x| f (X) < f(Xg)}, wherexg is
the starting point.

(i) In some neighborhootll of L, f is continuously differentiable, and its
gradient is Lipschitz continuous; namely, there is a conskant 0 such
that

Il9(x) — gyl = K lIx =yl forall x,y e N. (2.2)

From Assumption 2.1and if the level set. is bounded, we can know that
there exists a positive constansuch that

9ol < n. (2.3)
The following important result was obtained by Zoutendijk [9]
Lemma 2.2. Suppose thaAssumption 2.1 holds. Consider any iteration

method of the form (1.2)-(1.3) wittl satisfying (2.1) and with the Goldstein
line search (1.8). Then

i (g d)? -

2
id|

Proof. From (1.8a) we have that

(1 — )Gy dk < T (X + o) — () (2.4)
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And from the mean value theorem we have that

f (X + i) — F(X) = @’ (X + i) e (2.5)
where
Ok € (0, a). (2.6)
By combining (2.4), (2.5) and (2.2), we obtain
—cg dk < Ko [l 1® (2.7)
By (2.6) and (2.7), we obtain
—ca'd
I (2.8)
K lldkll
By this inequality into (1.8b) and (2.1), we have
Cc?(gg d)?
fk < fk e (29)
o K llchl1?
By summing this expression over all indices less than or equaMe obtain
K. 2(a™d)?
fon < fo— Y SO (2.10)
K lldi|

i=0
Sincef is bounded below, we have thfg — fx, 1 is less than some positive
constant, for alk. Hence by taking limits in (2.10), we obtain

o0 T N2
> % <00 (2.11)
~ |d|
which concludes the proof. O
From (2.11), we can see
Gt _ (2.12)
K- oo ”dk”
Theorem 2.3. From (1.8b), we can have that
Jim g7 d| =0 (2.13)

This result is easy obtained.

A disadvantage of the Goldstein conditions vs. the Wolfe conditions is that
the (1.8a) may exclude all minimizers 6{xx + «dy). However, the Goldstein
and Wolfe conditions have much in common. The Goldstein conditions are often
used in Newton-type methods but are not well suited for quasi-Newton methods
that maintain a positive definite Hessian approximation.
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3 Global Convergence

The CG with Goldstein line search is as the following:

» Step 1 Giverx; € R",d; = —gy,k := 1, if g; = 0 then stop;
otherwise continue.

Step 2 Compute agy satisfying (1.8).
» Step 3 Generate,; by (1.2). If g1 = 0 then stop.

Step 4 Comput@y, and generatdy.; by (1.3).
* k:=k+ 1, go to Step2.

Lemma 3.1. ([8].) Suppose thain(> 0) andc are constant{a} is a positive
series, if the following for alk holds

k
> a =mk+c (3.1)
i=1

We have that

> T =00 (3.2)

i=1 :

g2

& _ (3.3)

k=1 Z a

i=1

Take example for Fletcher-Reeves method, ge= B R, we give the proof
of the global convergence property.

Theorem 3.2. Suppose thax, is a starting point for whichAssumption 2.1
holds. Let{xx, k =1, 2, - - -} be generated by (1.2) and (1.3) with a line search
(1.8). Then (1.2) and (1.3) terminate at a stationary point or converge in the
sense that

liminf gl = O (3.4)
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Proof. Whenk > 2 we now rewrite (1.3) as

ok + Ok = B¢ Rdk_1 (3.5)
Squaring both sides of the above equation we get
ldkll® = — llgll® — 29¢ d + By lIdhe—11I® (3.6)
Set )
d Td
S . 3.7
([ llgklI®
Note thatt; = ”g# r, =1, andr, > 0.

From (3.6), (3.7) and (1.4), we have that

——Z +2y (3.8)

mm gl

The proof is by contradictlon. If (1.2) and (1.3) do not terminate after many
iterations, we have that there is positive consjant 0 such that

logkll = o forall k. (3.9)
Therefore from (2.3) and (3.9), it is easy to obtain that
1 1 1
< <= (3.10)
n ol T ou
From (3.7) and (3.10), we obtain that
n 2
th < ——+ 5 Tk (3.11)
n )
Hence
2 n
th< — M (3.12)
L
Forty > 0, from (3.11) we can get
n 2
n
T % (3.13)
k=1 "
From (3.11), (3.12) and Lemma 3.1, we obtain that
o Td 2 0 r2
3 (G907 _ pRRLIY (3.14)
o dd? T &
The relation (3.14) contradicts (2.11). This contraction shows that the theorem
is true. O
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Theorem 3.3. Suppose thaxg is a starting point for whichAssumption 2.1
holds. Let{xx, k =1, 2, - - -} be generated by (1.2) and (1.3), whgesatisfies
(1.5) and (1.6), with a line search (1.8). Then

Iilininf logkll =0 (3.15)

We can prove theorem 2.1 as theorem 3.2.

4 Discussion

In this paper we have presented the global convergence property for nonlinear
CG, where the step-length is computed by the Goldstein conditions under the
assumption that all the search directions are descent directions. It is shown that
in the previous section that the CG converges globally under the Goldstein line

search conditions. The assumption that the objective function is bounded below
is weaker than the usual assumption that the level set

X[ f(x) < f(x0)} (4.1)

is bounded.
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