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A symmetry of sphere map implies its chaos*

Jerzy Jezierski and Wactaw Marzantowicz

Abstract. A well-known example, given by Shub, shows that for ghy> 2 there is a
self-map of the spher®’, n > 2, of degreed for which the set of non-wandering points
consists of two points. It is natural to ask which additional assumptions guarantee
an infinite number of periodic points of such a map. In this paper we show that if a
continuous magf : " — S" commutes with a free homeomorphigm S" — " of

a finite order, thenf has infinitely many minimal periods, and consequently infinitely
many periodic points. In other words the assumption of the symmetfyasiginates a

kind of chaos. We also give an estimate of the number of periodic points.
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1 Main results

In discrete dynamical systems theory one of the most natural problems is to study
periodic points and minimal periods of a continuous nfapWe suppose that

f: X -> Xis a self-map of a smooth compact manifold We shall use the
following notation:

PK(f) = Fix (%), P«(f) = {x € X: k is the minimal period ok} ,
1
Perf) = (k: R(f) £ 0}, P(f)= [ JP*f)=[JR«(D). @)

keN keN

In the study of periodic points it is important to have a description of the set
Per f) and a function (sequenck)— #P(f), ork — #PX(f), where #A
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denotes the cardinality of the sAtc X. In an naive approach to the notion of
chaos, one can use the following definition.

Let f: X — X be a map. We say thdt haschaotical behaviaror shortly
that it originate<haos if either Peff) ¢ N is an infinite setor, putting a
stronger requirement, if the functida — #P(f) is unbounded

Itis obvious that the chaotical behavior bfn each of the above senses implies
the existence of infinitely many periodic pointsfof Studying the latter property
of f, Shub and Sullivan showed that if for a mdép: M — M of a compact
smooth manifoldV the sequence of Lefschetz numbgrg f ™)} of iterations of
f is unbounded and is of classC?, then it has infinitely many periodic points
([20]).

One can ask whether the statement of the Shub-Sullivan theorem still holds if
we drop out the assumption about the smoothneds dhe answer is negative
in general, as follows from an example given by Shub [19].

Example 1.1. Lethy : St — S' be a map of the circle of degres; e.g.
ha(2) := z%. Further lety: [0, 1] — [0, 1] be the map given ag(t) = /1.
Representing? as the suspension &, i.e. > = S' x [0, 1]/ ~ where we
contractS! x {0} and S* x {1} to points. We define a continuous map

f(l(z,th = [(ha(2),n®O]) .

Thendeq f) = deghy) = d. Itis easy to check that the set of non-wandering
points of f (thus also periodic points) consists of two (fixed) po[i&s x {0}]
and[S' x {1}], which means that there is not a chaos then. On the other hand
L(f™ = 1 — d™ is unbounded there. Note thdt is not differentiable at
[S* x {O}].

The analogous construction works for a sphere of any dimensier?.

On the other hand there are compact manifolds such that for any continuous
self-map of such a manifold the unboundedness of the seq{ien€®)} implies
the existence of infinitely many periodic points. In [2], Block et al., making an
attempt to show a Sarkovsky type theorem (cf. [18]) for maps of the circle, proved
the theorem stated below. To formulate it we remind that KPer- Per(f)
denotes the set of all minimal periods biwhich are minimal periods for every
maph homotopic tof (cf. [9, 10, 11]), called théomotopy minimal periods

Theorem 1.2. Let f: St — S be a map of the circle of degregeg f) = d.
Then

(E) HPer f) = ¢@ifand only ifd = 1.
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A SYMMETRY OF SPHERE MAP IMPLIES ITS CHAOS 207

(F) HPex f) is nonempty and finite if and onlydf= —1 or d = 0. We have
thenHPenr f) = {1}.

(G) HPex f) is equal toN for the remaining values df, i.e. |d| > 1, except
is one special case, namaly= —2, whenHPenr f) = N\ 2. O

In particular if|deq )| > 1, thenf originates chaos, by Theorem 1.2 (G).

Next a complete description of the set of homotopy minimal periods was
given for maps of the two-torus [1], any torus [15], a compact nilmanifold [9], a
completely solvable solvmanifold, and a spediaR-solvmanifold [11] consec-
utively. The answer is formulated in a more complicated way than Theorem 1.2.
Roughly speaking in the case which is equivalent to the condition{ th&t™)}
is unbounded, the set of homotopy minimal periods, thus minimal periods, is in-
finite as it is in the case for the previously described circle case. An approach is
based on Nielsen theory of periodic points [6, 9] due to the geometric properties
of the mentioned classes of manifolds. As an application of the approach one can
derive Sarkovsky type theorems for mappings of three dimensional nilmanifolds
and completely solvable solvmanifolds [10, 11]. On the other hand, the Nielsen
theory is useless in studying maps of spheres bec&use simply-connected
if n > 2. A special position of the circle in this approach is the fact that it is
simultaneously a sphere and a torus.

One can ask whether the assumption on the smoothnessani be replaced
by another geometric condition ahto get the statement of the Shub-Sullivan
theorem. In this work we show that a continuous nfapS" — S" of degree
d, |[d] = 2, gives rise to chaos if it commutes with a free homeomorphism
g: S" — S offinite order larger than 1. More precisely, we prove that #Fi%)
is unbounded as a functionkfind the set Pérf ) is infinite (Theorems 1.6, 1.9).
Since we will use some facts on transformation group theory, it is convenient to
put our symmetry assumption also in the terms of transformation groups.

Definition 1.3. Let X be a smooth manifold angl: X — X be a homeomor-
phism of finite ordem. We say thag is free if for everyx € X and1 <k <m,
gk(x) = x impliesk = m. Equivalently, for a homeomorphisgn: X — X of
order m we say that an action of the cyclic grogg} = Z, on X is given then
by (k, X) — g“(x). If gis free, then this action is called a free action (cf. [3]).

Definition 1.4. Let X be a smooth manifold with an action of a cyclic group
Znm defined by a homeomorphiggm X — X of orderm. We say that a map
f : X > XisZn-equivariant if fa = «of, or equivalently, if for the each
a € Zm and everyx € X, fa(X) = af (X). Note thatf is Zn-equivariant if
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it commutes with the generator of action i.é(ax) = «af (x). We say that a
homotopyH : X x [0, 1] — X is equivariant if

xeX, tel0,1], oe€Zn imply H(ax,t) =aH(X, ).

Suppose that we are given a free action of the finite cyclic gi&yon the
sphereS', n > 2, i.e. we are given a free homeomorphigm S' — S" of
orderm.

Definition 1.5. Letm = p‘fl ... p¥, o > 0, be the decomposition oh
into prime powers. Let neX be a natural number. We representby k =
pi’l ... pbs pzf:il .-+ p& where ps;1, ..., pr are other different primes and
b > 0,a > 0. We put

/. oAb b,
K:=p"- - ps.

Now we are in position to formulate our main result.

Theorem 1.6.Letg: S" — S", n > 1, be a free homeomorphism of finite order
m> 1, andf : " — S be a map of sphere that commutes vgthSuppose
thatdeg f) ¢ {—1, 0, 1}. Then for everk € N we have

#Fix (fX™) > m?k
where K’ is as in Definition 1.5. In particular, fdc = m® we have

#Fix (F™) > mst2,

Corollary 1.7. Under the above assumptions

. #Fix (fh
limsup ——— >m. O

|—o00 I -

Furthermore, note that for a self-mdpof the sphereS", n > 1, the se-
quencg L ( f*)} of the Lefschetz numbers of iterations is unbounded if and only
if deg(f) # 0, £1 (see Remark 2.3). From Remark 2.3, it follows that Theorem
1.6 replaces the smoothness assumption in the classical Shub-Sullivan theorem
[20] by a symmetry assumption in the case of the sphere map.

Corollary 1.8. Let f: S" — S" be a continuous map such that the sequence
{L(f™}isunbounded. If commutes with a free homeomorphigm S" — S
of orderm > 1, then the seP(f) of periodic points is infinite. O
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A SYMMETRY OF SPHERE MAP IMPLIES ITS CHAOS 209

Let us fix a prime numbep | m and restrict the action td, C Zn. In this
case we can estimate not onl% f) = #Fix (f'), but also # (f).

Theorem 1.9. Let f: S* — S" be a continuous map which commutes with a
free homeomorphism of S" of prime orderp. If deq f) # +1, then for each

| € N there exist at leasp — 1 mutually disjoint orbits of periodic points each
of lengthp'. Thus

#Py(f) = (p—-Dp'.

The general idea of the proofs of Theorems 1.6 and 1.9 is to study a map
f : M — M of the quotient spachl := S"/Z,, induced by theZ,-equivariant
map f: S — S in the problem. Next we estimate the number of periodic
points of f, and we “lift” them to periodic points of . To study periodic points
of the induced magd we use the Nielsen theory adapted to this situation. It is
worth pointing out that a direct application of the Nielsen number is inefficient
(see remarks in Section 7).

The paper is organized as follows. Firstin Section 2 we remind some facts on
equivariant maps. In Section 3 we give a brief presentation of the Nielscn theory
adapted to the discussed problem. Next in Section 4 we discuss periodic points
of a map of the quotient spadé to get an estimate of the number of periodic
points of a map which is induced by an equivariant magb{Theorem 3.1,
Corollary 4.5). In Section 5 we derive an effective form (Theorem 5.6) of the
latter formula using a geometric observation (Lemmas 5.1, 5.2) and elementary
arithimetical computation (Theorem 5.7). Section 6 contains the proofs of the
main theorems 1.6, 1.9.

2 Equivariant maps

In this section we include some facts about equivariant maps which we will need.

Proposition 2.1. Suppose thaf, acts freelyorS", n > 1. If f : ' > Sis
an equivariant map, then

degf)=1 modm. (]

The above fact is well known and has various proofs. We remark only that for
m = 2, this is the classical Borsuk-Ulam theorem which states that an odd map
has odd degree.

Recallthatthe degree of a map classifies homotopy classes of (nhon-equivariant)
maps of the spherg".
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The following theorem was proved by R. Rubinsztein [17].

Theorem 2.2. Suppose that a finite group acts freely orS”, n > 1.

Then the natural functiofS", Sl — [S", "] of the set of equivariant
homotopy classes into the set of homotopy classes is an injection, i.e. if two
equivariant maps have the same degree, then they are equivariantly homotopic.
Moreover the image ofS", S'|g in [S", S"] = Z is equal to{mZ + 1}.

Remark 2.3. Observe that from Theorem 2.1 it follows that déy=Im + 1
for any equivariant map. Consequently the assumptionfdggt+1 means then
|degf| > 1if m > 2. If m = 2 there are equivariant maps of degreg, but
degf = 0is excluded in this case.

For a better ilustration of the idea of the conclusion of Theorems 1.6 and 1.9 we
present the following example about the dynamics of the canonical equivariant
maps of the unit circle with a free action of the grafip of roots of unity.

Example 2.4.For a givenm, let the generator of cyclic groupy, act (freely) on
S' by rotation by the anglé{;—i, i.e. the subgroup of roots of unity of degnee
acts on the whole group. It is easy to check that) := 2™, 041 € Z, is a
Zm-equivariant map of the circle. Note théf (z) = z!™+Y" | and by definition
z is anr-periodic point ifz!™tD" = z andr is the smallest number with this
property. Itis equivalentto the fact thats a root of unity of degreéem+1)" — 1
but not of degre€lm + 1)" — 1withr’ | r. Let us consider all the iterations
as consecutive powers of a natural numbers- 1,i. e.r = m3, Itis easy to
check the following. 1&, b € Z, @ € N, andm > 2, then

a=b modm*=— a™"=b" mod m**!.
Applying thiss times toa = Im 4+ 1 andb = 1 we get

Im+ D™ = 1 modms*!, ie. m*|dm+ ™" —1.

Consequently for ang > 0, roots of unity of degreent! are roots of the
polynomialz!mD™ — z i.e. they belong t&®™ () = Fix (f™) . This gives
the following estimate

#Fix(f™) > m*™ = mn?. (2)

Among all roots of unity of degremst! there are¢ (mst') primitive roots of
degreemst!, whereg (k) is the Euler functioni.e. the number of all numbers
less therk and relatively prime td&. We show that these roots belongRg ().
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It is enough to show that for a primitive root of unigyof degreems+! we have
fm* (&) £ £. Indeed

%.(Im—&-l)””s_1 _ (g_.lm)ms‘1 _ é_.mlsgmsl(m—l)%.msl (1—m)€_.m5‘1 —1. S—(ms*'ll—msl—&-ms‘l) ’

becauset is a primitive root of unity of degreen®*! and msl — ms™1 2 1
mod m3*L. Sincep (M) = mS¢(m®), the above shows that

#Pms () > m°p(m) 3)
for the above map. In particular ih = pis a prime, then

#Pps(f) = pPe(p) = p(p—1). (4)

Note that taking the suspension of this map we get a mapf S? with the
same dynamics a$ of Example 2.4. On the other hand, slightly modifying
n(t) of Example 1.1 we can construct a mapS3fwhich is a small perturbation
of = f but has only two non-wandering points. Theorems 1.6 and 1.9 say that
any small equivariant perturbation, or more generally any equivariant continuous
deformation off must possess at least the part of dynamics described above.

3 Nielsen Theory

We recall briefly the facts of Nielsen theory. For the details we refer the reader
to [12].

A few words about the notation. Usually the covering maps are denoted by
p: X — X and we will do so in this section. However in the rest of the paper we
will be given a spac& with a free action of a finite grou@ on X. This yields
a coveringX — X = X/G onto the orbit space. We will denote this covering
p: X = X.

Let p: X — X be a universal covering of a polyhedron. We denote by

Ox = {a:)~(—>)~(: pax = p}

the group of deck transformations of this covering. This group has a (non-
canonical) bijection with the fundamental grompX although we will not use
this correspondence in this paper. Lfet X — X be a map and let liftf) =

{(f: X - X: pf = fp} denote the set of all lifts of . If we fix alift fy, then
each other lift off can be uniquely written asfo, « € Ox. Consider the action

of Ox on the set lift(f) given by
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The orbits of this action are calldReidemeister classesd their set is denoted
by R(f).
On the other hand we consider the fixed point set:

Fix(f) :={xe X: f(X) =x}.

We define theNielsen relationon this set as follows. We say that two fixed
pointsx , y areNielsen relatedf there is a pathw : [0, 1] — X satisfying:

w(0) = X, w(l) = y and moreover the paths and f w are homotopic rel

{0, 1}. This relation divides Fixf) into a finite number of mutually disjoint
classes. We denote the set of these classég€ bfy). It turns out that, for any lift

f e lift (), the setp(Fix (f)) is either a Nielsen class df or is the empty set.
Each Nielsen class is of the above form. Moreover subordinating to a Nielsen
classA c Fix (f)) alift f e lift(f) satisfyingA = p(Fix (f)) we get the map

j: N(f) — R(f) which is injective (but is not onto in general). Thus we
may identify each Nielsen class with a Reidemeister class. On the other hand
the restriction off to Fix (f¥) is a natural homeomorphism which induces the
self-map of V' ( f¥) and the last extends to the self-mBp : R(f¥) — R(fK)

given byR ¢ [h] = [h'], whereh’ e lift (f¥) is the unique lift making the diagram

SN

commutative (for a fixed liftf of f). Since(R ;)¥ = id, we get an action on the
groupZ, on R(fX). The orbits of this action are callaibits of Reidemeister
classesand their set is denoted R (f¥). Now we consider the natural map

lift (f) > f i~ felift(f%).

This induces the maip1: R(f) — R(%). Similarly we defind: R(f') —

R(f¥) forl | k. AReidemeister clasa € R(f¥) classis callededucibleif A =

i(B) for B € R(f'), foranl | k, | < k. An orbit of Reidemeister classes is
calledreducibleif one (hence all) of its elements is a reducible Reidemeister class.
In [12] Boju Jiang introduced a numbeX F( f) which is ahomotopy invariant

and is the lower bound for the cardinality of KikK) (of the self mapf : X — X

of a finite polyhedron). Here we do not need to recall (a little complicated)
definition of N R ( f), since in the case when all involved Reidemeister classes
are essential this invariant is equal to the sum given in the next Theorem (see
Chapter 3 of [12]).
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Theorem 3.1. For any self-mapf : X — X of a finite polyhedron and a fixed
natural numbek € N

#Eix(f% > Z(#ﬂf(‘)R(fr))-r
rk

whereZEOR (") denotes the set of irreduciblé)(essential €) orbits (O) of
ReidemeisterR) classes of the map'.

Proof. The inequality follows from:

1. each essential Reidemeister class (considered as the Nielsen class) is non-
empty,

2. irreducible Reidemeister classes are mutually disjoint,

3. eachirreducible essential orbit of Reidemeister classEB(R (") con-
tains at least periodic points (of period). O

4 Periodic points of a self-map of the quotient space

In this sectionM = S"/Z, (m > 1) will denote the quotient space of a free
action, as above, anfl : M — M will denote the self map induced by an
equivariant mapf : S" — S" of degree# 0, +1. With respect to Proposition
2.1itis enough to assume that gég = +1, oronly degf) £ 1if m > 3. We

will give an estimate for the number of periodic points of the equivariant map
f. Sincep(Fix (f*)) c Fix (f¥), we first consider the periodic points of the
map f. We will use the formula from Theorem 3.1. We will show that under
our assumptions, all involved Reidemeister classek ahd of its iterations are
essential and each orbit of Reidemeister classes consists of one element.

Lemma 4.1. Consider the commutative diagram

v ', ¥

] I
Y —f> Y
wherep : Y — Y is a finite regular covering of a finite polyhedron Y . Then

ind(f) = r-ind(f; p(Fix (f)))
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wherer = #a € Oy; fa = « f} (Oy denotes the group of covering transfor-
mations of the regular covering; exceptionally in this Lemma we do not need to
assume that the coveringis universal). In particulaind (f; p(Fix (f)) #0

if and only ifL(f) = ind () # 0.

Proof. If~Fi~x (f) = ¢, then both sides are zero. Suppose that there is a point
X € Fix (f)and lete € Oy. Then

aX € Fix(f) < f@X) =a% < fa®) =af(X) < fa=af.

Thus #~1(x) N Fix f = r. Since both sides of the equality are homotopy
invariant, we may assume that Kik) is finite. Since the covering map is alocal
homeomorphism,

ind (f) = ind (f; p700) =) "r-ind(f;x) =r -ind (f; p(Fix ()))

wherex runs through the sqi(Fix (f)). O

Corollary 4.2. Let f : M — M be the map induced by an equivariant map
f . S — S ofdegree£ 0, +1. Then all the Reidemeister classesfaind of
all its iterations are essential.

Proof. The assumption that def) # 0, +1 implies the same inequality for
all other lifts of f (and their iterations). Thuk(f*) # 0, which implies, by
Lemma 4.1, that all the Reidemeister classe$'oére essential. O

Lemma 4.3. If a self-map of the orbit spac¥ = X/G, of a free action of a
finite groupG, is induced by an equivariant map : X — X then the map
R¢: R(f¥) — R(f¥) is the identity. Thus each orbit of Reidemeister classes
consists of exactly one element.

Proof. Let us recall that each lift of ¥ is of the formafk wherea € Ox.
Since f commutes withr as an equivariant mag,(«f¥) = («f¥) f. Moreover
R¢[h] = [hTif the lifts h, h" lift(f) satisfy fh = h'f . Thus forh = «fX
we may puth = ', and henceR +[h] = [h] for any[h] e lift (). O

Lemma 4.4. The Reidemeister relation of the mép X — X induced by an
equivariant mapf : X — Xis trivial. ThusR(f) = Og = Znm.
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Proof. Each element of liftf) is of the formaf (¢ € ©x). The Reidemeister
action is given by8 o (af) = Bafp~1. Sincef is equivariant, it commutes with
the mapsy, g : X — X. This and the commutativity adx = Z, imply

Bo(af) = Bafp™t=af. O

Corollary4.5. If f : M — M (M = S"/Zy,)isamap induced by an equivariant
mapf : &' — S, then we have

#Fix () = > #R(f) -r
rlk

Proof. The equality follows from Theorem 3.1 once we notice that in each
summand on the right hand sid€OR = 7R. In fact Lemma 4.2 allows to
dropZ and Lemma 4.3 allows to drop the symladl O

Thus it remains to find th_e number of irreducible classe®irf"). Let us
recall that the clasé € R (%) is reducible iff it belongs to the image of the
mapiy : R(f') - R(f¥) foranl | k,| < k.

5 The lower bound of the number of periodic points

In this section we will give formula for the right hand side of the inequality
in Corollary 4.5. Recall that by Lemma 4.4 we may identi®y(f) = Zpn.
Moreover the majpy : Zm — Zm IS given byiy(s) = rs wherer = k/I. To
prove the last we recall that in generala] = [a¥/']. Since the isomorphism
Zm = R(fY) is given bys < a° (wherea is a fixed generator of1(M)),
iv[al = [a¥'] corresponds toq(s) = k/I - s.

We say that a natural numbeeventually dividesn if r divides a powem®.
In other wordg eventually dividesn if and only if for a prime numbep

pIr = pim

Let us notice that then the numbkr defined in Definition 1.5 equals the
greatest divisor ok that eventually divides.
We consider two cases.

(i) r does not eventually divide
Lemma 5.1. Suppose that does not eventually divida. Then

#IR(f") = 0.
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Proof. Let p be a prime number which dividesbut does not dividen. Then
the map ) )
irep: R(F/P) = Zy — R(f") = Ziy

is given byi,(,plal = [pal]. Sincep andm are relatively prime, the maip,
is onto which makes each class®R{( f") reducible. O

(ii) Now we assume thateventually dividesn.
We have the following

Lemma 5.2. Letr eventually dividem. Then the classa € Zn, = R(f") is
reducible iff the numbera, r are not relatively prime.

Proof. <= Letd :=gcd(@,r) > 1. Theni,, 4 is sending
R(f" =Zn3a/d—> aeZn=R(f"),
hence the class € Z, is reducible.

— Leta = iy (b) whereb € Zy,, = R(f"),| <k, | | k. Thenr/l -b =
a(mod m. Let p be a prime dividing the numbey| > 1. Thenp | | implies
p | mand by the above congruence we gdta. Thusgcda, m) > p> 1. O

To formulate and to study the number of Reidemeister classes (Nielsen classes)
of mappings ofM it is useful to introduce the following arithmetic function. It
also seems be interesting by itself.

Definition 5.3. For a givenm € N we define a functiop,, : N — N by

om(k) := #{a e N:aandk are relatively prime, ané < m}.

Remark 5.4. Notice that fork =m > 1

¢m(M) = the cardinality of the set of natural numbers
< m relatively prime withm

equals the Euler function. However far= 1 we havep,(1) = m while the
Euler functiong (1) = 0.
As a consequence of Lemma 5.2 we get.

Corollary 5.5. Foramapf: M — M induced by aZn-equivariant map
f: S"— S"and forr eventually dividingn we have

IEOR(f") = TR(f") = ¢m(r),

whereg,(K) is defined above. O
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Theorem 5.6. For amap f: M — M induced by aZmn-equivariant map
f: S — S wehave

#Fix (f9 = 3 gm) -1,
Ik

where the sum is taken over all divisdrsf k eventually dividingn.

Proof. Note that by Lemma 5.1, in the sum of Corollary 4.5 we may omit out
the summands in whichwhich does not eventually divida, as follows from
Lemma 5.1. Now the statement follows from Corollary 5.5. O

Now we prove the main arithmetic formula deriving the right hand side of
Theorem 5.6.

Theorem 5.7.For a fixedm € N and anyk € N we have
D dml) = m-K,
11k

where the sum is taken over all divisdrsf k, that eventually dividen andk’ is
given by Definition 1.5.

Proof. Let us recall that a divisdr| k eventually dividesn iff it is a divisor of
k’. Consequently the equality of the statement reduc@ﬁp om() = m-K,
where the sum is taken over all divisorskdf Equivalently it is enough to show
that for a natural numbéd¢ eventually dividingm we have

> ¢m) = m-k

11k

where the sum is taken over all divisorslkof
Then We may represem = p1 .-+ pZ, wherea,, ..., as > 1 andk =
pibll . pIt wheret < sandby, ..., by > 1. The sum from the Theorem splits:

>l = Y Y Y,
K 0 1 t
where}_  is taken over the numbetsdivisible by exactlyy distinct primes.
Then _ _ ,
Z Z Z dm(pl - ) Pl P
Sy 1,
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where 1<i; < ..., <is<tand 1< j; <b,, ..., 1<j, <b,.
By Lemma 5.8 the above sum is equal to

1 1 - j
I et

1,00y J10endy

bi, - bi, _
ey \ P By =1 iy=1

bi, +1 bi, +1

1 1 pi1 — Pi; piy - piy
Zy pil(pll ) o (ply ) P, — 1 b - 1

= > m =D (py -1

Now
t
Sepe L= L[ Zmotnab o)
0 1 t y=0 \i1...i,

= ML+ (PP = D) - A+ (P —D) = mp -+ P =m-k.
This proves the statement.

O

Lemma 5.8. Let py, ..., p, be different prime numbers, that divide € N.

Then
L gm(PLt - ) = fm(pr- -+ po) (forall hy, ..., h, €N),
2. ¢m(pr- Po) =ML = 5) - (L= o).
Proof. Ad 1. We notice that for any natural numlrer
ged(pyt - ple, 1) =1 < gedp,r) =1
foreveryi=1, ... , K < gcdpr- - Po,r) = 1.

Ad 2. Letus denoted = {th e N: h <n, p | h}. Thengn(pr--- po)
m—#J;_; Ai. Letus notice that (for K i; < ... <is < w)

#ALN ... NA, = ————.
Pig - Pig
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Now by the inclusion-exclusion principle we have

#UAaZ(l)s( > #Alm---ms)
i s=1

1<ii<--<is<w

I o

1<ii<--<ig<w

Thus

— i1 is

i=1 1<ii<--<ig<w

- 1 1 1
[ = pl"'pis:| ( I01) ( pw)

s=1 1<ii<--<ig<w

O

Remark 5.9. Note that form = p{* ... p% by Lemma 5.8

1 1
$m(M®) = ¢m(pr -~ ps) = M(1— E) (A= F) = ¢m(M) = $(mM),

and consequently the last term of the sum of Theorem 5.6 which corresponds to
me-periodic points (cf. Example 2.4) is of the form

Pm(M®) = mp(m).

Our result can be stated in the following combinatorial way. It can be used for
a construction of an algorithm for estimating the cardinality of periodic points
of a map as in Theorem 5.6.

Proposition 5.10. Let f : M — M be as in Theorem 5.6 arka natural
number. If for each primg | k = p | m, then the number of periodic points
of the mapf* whose minimal periods are of the forpf' - - pi’:, wherel <

j1 < ail,.... .1 <j, <&, isnot less than the coefficient H of the
polynomial

WX, ... %) = a4+ (P = 1) -+ (X + (P — 1))

In the general case the same inequality holds but the polynomie derived
for the number&’, m.
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6 Proofs of main theorems

Now we come back to the equivariant map S'" — S". This map is the fixed
lift of the induced mapf : M — M to the universal covering. Thus all periodic
points of f are contained in the fibres over periodic pointsfof

Proof of Theorem 1.6. From Theorems 5.6, 5.7 we get

#FiX(F4 = > g -1 = mK.

Ik
The lemma below gives: fixed points off ™ over each fixed point of . Thus

#FiX(f*™) > m-#Fix(f) > m(m-k) = m%k’. O

Lemma6.l.Let f : S" — S" be aZy-equivariant map and : M — M the
map induced byf on the quotient space.

If X € Fix f¥, thenp=1(x) c Fix (f™%).

Consequently i# Fix (%) > c(f, k), then#Fix (f*™ > m o f, k).

Proof. To shorten notation denot& f, k) by c. Suppose thaky, ..., X. are
distinct fixed points off K. Consider the fibres over the fixed poiRis . .. , X €
Fix (). Let us fix a point; € p~1(X). ThenfX(x) = ajx; forana; € Oy =
Zm- Note thatx; is not a fixed point off if o # 1. (We use the multiplicative
notation for the operation in the cyclic groj,). Now

fmx) = FK™ Dgx) = - = o™ = X,

because™ = 1 for every element of a group of ordem. Thus allm elements
of the fibrep~—1(%;) are fixed points off k™. O

Proof of Theorem 1.9. Let m = p be a prime. Since (by Lemma 4.4)
R(f_pk) = Om = Zp, each Reidemeister class consists of a singlexliftpk,

1 <i < p, wherex € Oy is a fixed generator. Moreovdr™ is the reducible
class (it reduces td < lift (f)) while all remainingp — 1 Nielsen classes are
irreducible (Corollary 4.3). As we have noticed above, each of these classes is
a singletona’ ¥}, denoted shortly bw' ¥, wherei = 1, ..., p— 1. Since

ind (f pk) # +1, Fix(f pk) # ¥ hencep(Fix ( f pk)) # ¥ is a reducible Nielsen
class of fP“. On the other hang(Fix (o' 7)), fori = 1,..., p — 1, are the
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remaining Nielsen classes. We choose a p&nt p(Fix (¢! fpk)) fori =
1,..., p— 1. We will show that all points in the fibre ovér € p(Fix (' f pk))
(fori =1,..., p—1) are periodic points of with minimal periodp***. In fact
letx; € Fix (o 7). Thenx; = o' fP“(x) and sincef is equivariant, the same
equality holds for every point of the fibqg~1(X;). Now for each element in this
fiore £27(x) = fP(a'x) = «?x and inductively we get P (x) = o' ;.
Sincep is prime, p does not dividei forr < p. Thusppt = p¥t1is the least
period ofx; with respect tof .

It remains to recall that each irreducible essential orbif Bfhas at leasp®
elements. Since there ape— 1 irreducible classes and each fibre contgins
elements, we get at leagf(p — 1) p = (p — 1) p**? periodic points off of the
minimal periodp<*™. O

7 Final remarks

First we would like to emphasize that the Nielsen theory has been already used
to study periodic points in [1], [4], [5], [6], [7, 8, 9, 10, 11], [12, 14, 15]. In all
these papers the crucial point is that for the asymptotic Nielsen number

N(f®) := limsupy/N(fk) > 1

(cf. [14] for the definition). Let us remark that in our consideration we can not
use this argument as follows from the Remark below.

Remark 7.1. For any mag of the quotient spackl = S"/Z,, and everk € N
we have
N(@") < m=#m (M),

because we have at most Reidemeister (Nielsen) classes. Consequently
N(g*®) = 1.

Remark 7.2. Secondly, we must also say that our estimate of the number of
periodic points of a self map &l = S"/Z,, (Cor. 4.5) holds only for a mafp

of M which is induced by an equivariant mdpof S". Recall that the homo-
topy invariantN F.(g), being a lower bound of the cardinality of #Kig), was
introduced by Boju Jiang in Chapter 3 of [12]. Recently the first author proved
that: in the case of a compact manifold of dimensior8, N F(g) is the best
homotopy invariant estimating #Fi{g) from below i.e. for evenyg there exists

h: M — M homotopic tog and for which # Fixh) = NFR(g) (cf. [8]). In

our paper, as well as in all quoted papers [1], [6], [11, 9, 10], [12, 14, 15], [16],

this invariant is equal to the subn N R (@), whereN R(g) = 7EOR(f") (see
Ik
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Theorem 3.1) which allows to get the simple formulae. The mentioned equality
was possible since all the Reidemeister classes were essential. A similar situa-
tion appeared in the papers from the above list, and one would try to repeat the
same argument for the mapof the orbit space.

On the other hand, in the problems discussed in the papers [1], [6], [11, 9, 10]
[12, 14, 15], [16] the fundamental group is infinite, there are infinitely many
Nielsen classes, and for any mbj(f) = N(f¥), for everyk. Moreover, by
the same reason that we work withR.( f) (which is greater thail ( f¥) here)
the information about Nielsen and Reidemeister numbers of all iterations and
the Nielsen or zeta function (cf. [4], [5]) of is not considered.

Remark 7.3. It seems be of the interest to study the dynamics of equivariant
maps not only for the spheres. In particular we expect that, for any compact
closed manifoldX with a free action of a finite grou@, an analog of Theorem
1.6 holds for an equivariant self-mdp: X — X such that the sequengie( f¥)}
is unbounded. Thiswould allow to replace the smoothness condition of the Shub-
Sullivan theorem of [20] by the symmetry to get the same statement as we got
for the sphere (Cor. 1.8).

Finally one can ask whether itis reasonable to study maps which are equivariant
with respect to actions of other than cyclic groups which act freel{gbnAn
explanation is given below.

Remark 7.4. Suppose thaf is equivariant with respect to a free action of an
arbitrary compact Lie grou@®. Then for any elemerg € G of prime order we
may restrict the action to the cyclic groyg}. Such an element always exists

- for finite {g} it follows from the Cauchy theorem, f¢g} infinite it is enough

to consider the maximal torus @. It is obvious thatf is {g}-equivariant,
consequently we have a chaos in the sense considered here. On the other hand
there are very few finite grougs acting on the sphere freely (e.g. for sugh

if H c G is an abelian subgroup, then it is cyclic), and there are only three, up
to isomorphism, infinite compact Lie groupS'( N(S!) - the normalizer ofSt

in S*, andS®) which act freely on the sphere (cf. [3] Il 8 for more information).
With respect to this, it is more natural to assume thatommutes with a free
homeomorphisng of finite order. Moreover iff : 8" — S is G-equivariant
with respect to an infinite compact Lie gro@ then degf) = +1 and the
assumption of Theorem 1.6 can not be satisfied.

Remark 7.5. Also in the case of an arbitrary manifold with a free action
of a compact Lie grougs it is reasonable to assume thatis finite. Indeed,
otherwise for every equivariantmdp: X — X and anyk, we havel (f¥) = 1.
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Consequently, the study of the dynamics of equivariant self-maps by tools which
make use of the assumption that( f*)} is unbounded is rather ineffectual.
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