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Abstract. We study the dynamics of the renormalization operator for multimodal
maps. In particular, we develop a combinatorial theory for certain kind of multimodal
maps. We also prove that renormalizations of infinitely renormalizable multimodal
maps with same bounded combinatorial type are exponentially close. Our results imply,
for instance, the existence and uniqueness of periodic points for the renormalization
operator with arbitrary combinatorial type.
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1 Introduction
1.1 Multimodal maps

Amultimodalmapf: | — I, =[—1, 1], is asmooth map with a finite number
of critical points, all of them local maximum or local minimum, and such that
f(@l) c al. Here we will be interested in more specific kinds of multimodal
maps:

We say thatf is amultimodal map of type n if it can be written as a com-
position ofn unimodal maps: to be more precise, if there exist méps. ., f,
with the following properties

(1) fi: I — | has an unique critical point (a maximum) afdal) c al.
2) f=fho- -0 fq.
(3) If ¢ is the critical point off;, then f; (¢;) > G411 modn-

Then-uple(f4, ..., f,) isadecompositionof f. Inthis paper, we willassume
that the unimodal maps are analytic and the critical point$; afre quadratic
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226 DANIEL SMANIA

(but observe that the critical points éfare not, in general, quadratic). Clearly

f has many decompositions. Sometimes it is more convenient to decompose
the dynamics off in its unimodal parts: for each decomposition fofve can
associate aextended mapF defined onl, = {(X,i): x € I,1 <i < n}(in

other words |, is a disjoint union oh copies ofl ) by

Fx,i) = (fi(x),1 +1 modn) Q)

In [Sm1], we proved that deep renormalizations in infinitely renormalizable
multimodal maps are multimodal maps of type This is the reason to restrict
our attention for this kind of map.

We say thatl is ak-periodic interval to the extended map if

* (€1, 0) € J (g is the critical point off;),
« {J,FQJ),..., F*1(J)} is an union of intervals with disjoint interior,
» The union of intervals in the above family contaifs;, i)},

« FXJ) c J,fork > n.

We will call k the period of J.

Suppose that there existkaeriodic interval forF. Let P be the maximal
interval which is ak-periodic interval forF. ThenFk@P) c dP. We say
that P is arestrictive interval for F of periodk. Note that if P and P are,
respectively, restrictive intervals fé¥ of periodk andk, k < k, thenP c P.
Let P be a restrictive interval and let & ¢; < --- < £, be the times such
that (ci,i) € Fi(P) for somei. Let P; be the symmetrization of‘i (P) in
relation to(c;, i). Observe thaP; contains a periodic pointin its boundary. Let
Ap; be the affine map which magg to | and this periodic point te-1. Then
gj = Ap,,, o Fliti7li o A_ is a unimodal map. Henag = Ap, o F¥o Al
is a multimodal map of type with decomposition(gy, ..., gn). If K > nis the
minimal number such thd& admits a restrictive interval of peridd the mapg
is called therenormalization of f, and denoted byRr( f). Indeed, it is easy to
see that the definition dR( f) does not depend on the decomposition.

The mapR(f) can be renormalizable again and so on. If this process can
be continued indefinitely, we say thétis infinitely renormalizable. Denote
by Pg‘ the restrictive interval associated to tkéh renormalizationR¥(f). If
g € C(F) := {(g;, )}, denote by the corresponding capital Iel@ﬁthe sym-
metrization of the intervaF‘f(P(';) which containgy. We reserve the lettgy for
(c1, 1). The critical pointr for F will be the successomf the critical pointq
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UNIVERSALITY FOR MULTIMODAL MAPS 227

at levelk if r € F‘(Q('g), for the minimal¢ so thatF@(Q'é) contains a critical
point. Definenk = ¢. Then, for any € C(F), k € Nandi < n, there exists
an intervalR¥; so that

+ F' is monotone inR¥,
« The intervalF ™~ (Q¥) is contained inR¥, .

For details, see [Sm1].

Denote byNg the period of the restrictive intervﬂé‘. We say thatf has
C-bounded combinatoricsif Nk, 1/Nk < C.

For (x,i), (Y, j) € Iy, we say thatx,i) < (y, j)ifi = j andx < y. The
intervals ofl, are the setd x {i}, forsomeJ C | andi < n. If ¢ is the critical
point of f;, denoteC(F) = {(i, ¢)};.

Let f andg be two infinitely renormalizable multimodal maps of typeWe
say thatf and g havesame combinatoricsif F'(c,) < Fl(c,) if and only
if G'(cy) < Gi(cy), for anyi,j > 0 andk and¢ < n, whereF andG are
unimodal decompositions df andg. For a domairv c C, denote byB(V)
the Banach space of analytic functions defined iwith a continuous extension
to V, provided with the sup norm.

Our main result is the following

Main Theorem 1. For B > 2, there exist a neighborhood c C of | and
B < 1 such that the following holds. If andg are multimodal maps of type
n, infinitely renormalizable and same combinatorics boundedbyhen, for
k > ko( f, g), the kth-renormalizationR* f and R“g have an analytic extension
in B(V) and

IR“f — R“glls(v) < CB*

HereC = C(f, g).

The above result, together with another ones in this paper, imply the existence
of periodic points to the renormalization operator with any wished combinatorics.

The renormalization theory has a long history: beginning with observable uni-
versality properties and conjectural explanation of these observations in families
of unimodal maps, by Feigenbaum and Collet-Tresser. O. Lanford proposed
the existence of a hyperbolic horseshoe to the renormalization operator. Similar

conjectures was done for critical circle maps and for bimodal maps ([McKZ]).
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Anew stepinthe renormalization theory was attained by Sullivan’s work([Su]):
new tools was introduced, like quasiconformal deformation methods and a fruit-
ful analogy with the theory of Kleinian groups. McMullen([McM2]) proved the
exponential contraction of the renormalization operator and Lyubich ([L2]) its
hyperbolicity (in the space of quadratic-like maps).

Our intention is to construct the foundation of the renormalization theory for
multimodal maps. J. Hu (see [H1] and [H2]) studied the renormalization operator
(compactness and contraction) for bimodal maps in the Epstein class. We will
study the contraction of the renormalization operator in hybrid classes using the
methods introduced by the cited authors for unimodal maps.

1.2 Outline of paper

In the section 1.1 we introduced the most important object in the paper: mul-
timodal maps of typen. These maps are maps obtained of compositions of
unimodal maps. Indeed, deep renormalizations of multimodal maps are multi-
modal maps of type, so there are not loss of generality in restrict our study
for these maps. Furthermore, these maps have a nice structure: in particular,
we can define the combinatorial type of a renormalization, give explicit rules
to the compositions of combinatorial types and realize any combinatorial type
in sufficiently rich families. This is done in section 2. In section 3 we study
polynomials which are compositions of quadratic polynomials. In section 4 we
introduce polynomial like maps of type and we prove that these maps are
hybrid conjugated with compositions of quadratic polynomials. Moreover we
study compact subsets in the space of polynomial like maps. In section 5 we
define the complex version of renormalization and prove the 'small Julia set ev-
erywhere’ theorem, which implies, in particular, that infinitely renormalizable
polynomial like maps of typ& with bounded combinatorics does not support
non trivial Beltrami fields in its Julia set. This result will be used in section 6,
where we prove that infinitely renormalizable real polynomials of typeith

same bounded combinatorial type are hybrid conjugated. As a corollary, we
obtain that the set of infinitely renormalizable real polynomials of typeth
combinatorial type bounded by a consté&his a Cantor set. In the section 7
we define the towers and use McMullen’s arguments to prove it rigidity. Here
we also prove that the critical points are deep points of the Julia set. The theory
of towers is quite similar to the unimodal case and it implies the contraction of
renormalization. Finally, in the section 7.2 we prove, using the McMullen’s the-
ory of dynamic inflexibility, the exponential contraction of the renormalization
operator. In the appendix we collect some results about fixed-point theory, a
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UNIVERSALITY FOR MULTIMODAL MAPS 229

special kind of Riemann surface and quasiconformal theory.

2 Combinatorial results

Once we have defined infinitely renormalizable multimodal maps of typiee
natural question is how much freedom we have to built them, and if we can find
them in arbitrary families of multimodal maps of type A satisfactory answer

is given in section 2.1. But, first of all, we need to study the combinatorics
of infinitely renormalizable maps. To be more precise, we will decompose
the combinatorics of infinitely renormalizable multimodal maps of typ@

basic components, and show how to combine these basic components in an
arbitrary way. If the reader is not interested in combinatorial aspects of the
renormalization, we recommend to jump to section 3.

Definition 2.1. Let f be amultimodal map of type Let(fy, ..., f,) be adecom-
position of f. Letx be a point in the domain of the extended nkapssociated
with this decomposition. Thiénerary of x with respect to the decomposition
(fq, ..., fy) is the infinity wordeo(X)£1(X) ... £i(X)..., with¢(x) = L,C, R
satisfying

R if F'(x) > cj, for somej;

t(x)=4{C if F'(x) =c;, forsomej; (2)
L if F'(x) < ¢, for some].

Let (x,i) be a point ofl,. Theinner itinerary of (x,i) is the finite word
Lo(X, i)gz(X, I) o Ansi (X, I)

Let f be a multimodal map of type. Order the critical points of , a; <
..., Ki < 2", and letvy, ..., vm, m < n be the critical values of . We
associate tof the structure< k¢, v;, s >, wherey; is the map of{i €
N:1<i <ks}into{i e N:1<i <mj}suchthatys(i) = jiff f(a) = vj.

Note thaty ¢ is defined up to a permutation in the critical values. The criticality
of fing is¢;(i) (an even integer).

The definition of the structure: ks, v¢, ¢ > does not depend on the de-
compositions, but the same is not obvious for the inner itinerary of the critical
points of an extended map. However, as it is natural, these two combinatorial
informations are completely equivalents.

Lemma 2.1. Let f be a multimodal map of type with n. Then the inner
itinerary of the critical points of the extended miaplepends only on the structure
< k¢, ¥¢,¢05 >. In particular, the inner itinerary does not depend on the
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decomposition off. Furthermore,< ks, ¥¢, ¢ > can be determined by the
inner itinerary associated to a decomposition.

In an analogous way, the itinerary of an interdatC |, is defined by

R if F'(J) > cj, for somej;
¢ (J)={C if F'(J) contains;, for some j; (3)
L if F'(J) <c;, for somej.

The inner itinerary of) c | x {i} is the finite word¢o(J) ... €n_i(J).

Corollary 2.1. Let J be an interval inl, and f a multimodal map of type.
Then the inner itinerary o does not depend on the decomposition.

By the above corollary, ifl is ak-periodic interval for some decomposition of
f thenJ is k-periodic for all decomposition. In particular the maximal interval
P does not depend on the decomposition and so do the renormalization of
Again by the previous theorem, the order of the intervals in the orhitloy an
extended maj in then copies onl does not depend on the decomposition.

Corollary 2.2. The itinerary of the pointin C I, with respect to an extended
map F does not depend on the decomposition.

The signal of a finite wordw = £g... ¢k, sSgN(w), will be 1, if there exists
an even number of letteR in w, or —1 otherwise. We will apply the signal
function only on words which do not contain the let@ithen we say that the
word w is pure). Provide the set of finite pure words with the following order
<, defined by

 Provide the set of words with length one with the orderx C < R.

clfw=4¢.. tyand® = &...{, are such thaty...¢; = {o...¢;, but
£j+1 # Zj_;,_]_, then
—w=<oifsgnly...£j) =1andfj 1 = L;orsgnitg...£;) = -1
and{j.1 = R.
— Otherwisewn < w.

This is the usual order in the words with two symbols which occurs in the
study of unimodal maps (see, e.g, [dMvVS]).

Lemma 2.2. Letx, y € |. Assume that the pure itinerariés(x) . .. £;(x) and
Lo(y) ... £;(y) aredistinct. Therx < yif £o(X) ... £;(X) < €o(y)...£j(y).
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UNIVERSALITY FOR MULTIMODAL MAPS 231

Proof. The proofis easy. O

Let~1c and flbe multimodal maps of type with decomposition$f1~, oo o)
and(fq,..., fy). If ¢ (resp. G-)Nis the criNticaI point of f; (resp. f;), define
vj= fho-- 0 fi(g) (resp.ﬁi = fhoo---0 ().

Lemma 2.3. Let f and f be multimodal maps of typewith the same inner
itinerary and such that; < v; iff v; < vj. LetHg, Hi: | — | be increasing
continuous functions such thek o f = f o Hg. Then, fory € I:

(1) Ho(f~X(y)) = f1(Hw(y)),

(2) For each pure wordy - - - £,_1 there is at most one pointe f ~1(y) such
thatﬂi X) = ¢;.

(3) Thereis a~poin1x e f~1(y) with inner itinerary g - - - £,,_1 iff there is a
pointX e f~1(Hy(y)) with the same itinerary. Furthermorey(x) = X.

Proof. The item 1 is obvious. To prove 2, lat < --- < a be the critical
points of f anda; < --- < & be the critical points of . Notice thatH(a;) = &;
andHi(vj) = v;. By lemma 2.1 the inner itineraries of and¢; are the same.
Thus one gets that(a) = v; iff (&) = ;. If the interval[a;, & 1] contains
a preimage ofy thenv; = f(a) <y < f(a1) = w. But this occurs iff
vj < Hi(y) < vx and so the intervald, & 1] contains a preimage df1(y).
Since the points ina, a,1) and (&, & 1) have the same inner itinerary, the
proof is finished. 0

Definition 2.2. Denote by< A, <, A°, 7 > thecombinatorial data (c.d.which
contains
 Afinite setAwith A® C A. The setA® is the set of ’critical points’ ofA.

» < is atransitive, anti-reflexive and anti-symmetric relation unéesuch
that any point inA is comparable with an unique point iA°. Further-
more, the relation 'a is comparable with b on respectdo a ~ b, is an
equivalence relation. We will denote pg] the equivalence class riwith
respect to~.

* m: A— Ais amap with the following property: @is a critical point in
AC then

— a<b<cimpliesr(a) < n(b) < 7(c).
— c=<b<aimpliesz(a) < w(b) < 7 (c).

« For anya e Athere existg € A°® so thatr' (c) = a, for somé > 0.
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Figure 1: In the upper part of the figure we represented a c.d.: the elemehts of

are represented by small discs and squares: the squares are the critical elements.
Two elements ofA are comparable if they are in the same segment. In this case
they respect the order in the real line. The elements are permuted as indicated
by the arrows. In the bottom part we see that this c.d. can be realized by a
multimodal map of type two.

A marked combinatorial data (m.c.dwill be < A, <, A, 7, c > withc € A°~.
Two m.c.d.< o, Cc >, < &, € > will be identified up to bijectiong: A - A
satisfying

(1) ¢(A%) = A%

(2) Forx,y € A, x < yiff o(X)<¢(y);

B)r=¢ to7og¢and

(4) ¢(c) =C.

Such ma is called anisomorphismbetween m.c.d. Note thatdfando are
two m.c.d. andr is transitive (if X, y € Athenx'(x) =y, for somei) then
there is at most one isomorphism betweeands. A m.c.d. isessentialif for
any paira < b there isi > 0 so thatz'(a) < d < 7' (b), for somed e AC,
Clearly if any point inA® is periodic thero is essential.

Remark 2.1. We can associate two maps to a m.axd.the first entry map to
the critical set IT: A — A° defined byI1(x) = 7' (), wherei > 0is minimal
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UNIVERSALITY FOR MULTIMODAL MAPS 233

such thatr' (x) € A%; and thefirst return to the critical set defined by o 7.

Remark 2.2. Leto =< A, <, A°, = > beam.c.d. and € A. The itinerary of
x will be the periodic wordlpl; ... £, ... satisfying

R if #'(X) < ¢, for somec € AS;
G =1C ifxi(x) e A% (4)
L if c < x'(x), for somec e AC.

Definition 2.3. Let f be a multimodal map of typeand consider an extended
mapF induced by a decompositi@r, ..., f,) of F. If P is a periodic interval
for F of periodk, then we can associate the following m.cd. =< A, <

’AC7'7T7C>

A={F'(P):0<i <Kk}.

A® = {F'(P): c € F'(P) for some critical point of F }. Moreoverc =
P.

For F'(P) < Fi(P),ifi = j modnandF'(P) < FI(P) in the usual
order in the real line.

« 7: A— Ais defined byr (F' (P)) = Fi+1modn(py,

Note thatr is transitive. Furthermore the does not depend on the decom-
position (up to isomorphism between m.c.d).= o (P, f) will be called the
combinatorial typeof the periodic intervaP. If P is the restrictive interval of
the renormalizatiorR f theno is the combinatorial type of the renormalization
of f.

We can define in an analogous way the combinatorial type of a critically finite
multimodal map.

Here it is easy to see why we must mark a critical point: for instancef, let
be a multimodal map of type 2 which is renormalizable and fet f,) be a
decomposition of it. So the c.d associatedftis a combinatorial information
about the extended mdp: |, — |, associated to this decomposition. If we
mark one of the critical points we obtain the m.c.d. fefo f5; if we mark the
other critical point, we obtain the m.c.d. &f o f;.

The set ofn-admissiblecombinatorial type&" is the set of m.c.do which
can be realized by critically finite multimodal map of typer the set of m.c.do
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such that #x]: x € A,} = #A° = n. Denote byx,' the subset ofi-admissible
transitive combinatorial types with period boundedkh#A, < kn).

If F is an extended map andis a point (or an interval) il, with a pure
itinerary w = £g- - - £, thensgn(w) says if F¥*1 preservesggnw) = 1) or
reversesfgn(w) = —1) the orientation irx. Letoc =< A, <, A%, 7, c > be
a transitive m.c.d. ang € A. Leti > 0 be minimal so that — (x) € 7 (A°).
Definesgn(o)(x) = sgn(€o(m " (X)) - - - £i—1 (7w ' (X))).

Definition 2.4. Let o1 =< Al, <1, A(1:, T1,CL >, 00 =< A2, <2, Ag, o, Co >
be m.c.d. such that; is transitive and#A] = #Aj5. Theproductbetweers;
ando;, will be the m.c.do = 02 x 01 =< A, <, A%, 7, ¢ > defined by

o« A={(X,y): TI1(X) = (Ty o m1)'c; andy € [wcy], for some ). More-
overc = (¢, Cy).

* (X,¥) < (X, y) in the following cases:

- X <1 X;
- X=X,y <z yandsgnoy)(x) = 1;
- X =X,¥ <z yandsgn(oy)(X) = —1.

« A°={(c,6) e A:ce A],C e A}.
» 7 is defined by

(m1(X), y) if x € Ap\ Af,

. : (5)
(m(X), ma(y)) ifx e Al

(X, y) =

Note that#A® = #A] = #A5. A m.c.d. o is primitive if o does not have a
non trivial decompositiow = o3 * o1. Non trivial means#A{ < #A; and
HAS < #A,

Remark 2.3. We are primarily interested in to define theproduct whenr, is
transitive, but we can give a more general definition whéf1 o )" (¢): i €
N} = #AS.

Proposition 2.1. The following holds:

» Let f be a multimodal map of type with a periodic internalP. The
combinatorial type oP is primitive if and only ifP is the periodic interval
associated with the first renormalization bf
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* Let f be a renormalizable multimodal map of typewvhich ism times
renormalizable anR™ f = Apm o fNm o ALL. Then the order in the real
line of the intervals of disjoint interior in the familyf | (P™): j < Np}
are determined by, * - - - x o1, Whereo; is the combinatorial type of the
ith renormalization.

* Letoy, ...,0x be an arbitrary sequence of primitive, transitive n-admissible
m.c.d.. Iff is a critically finite multimodal map of type with combina-
torial typeo = ok * - -- * 01, then f is k times renormalizable, and the
(i-1)th renormalization off is critically finite with combinatorial type; .

Proof. The arguments in the proofs of these three statements are quite similar.
It is sufficient to prove that ib; ando, aren-admissible m.c.d., wherg, is
transitive, then any critically finite multimodal map of typevith combinatorial
typeo, * o1 has a restrictive intervd® of combinatorial typer;. Moreover, ifm

is the period ofP then f ™ restrict toP is critically finite with combinatorial type

o2. Indeed, letF be an extended map fdr. Consider the representation ®f
given by the definition ok-product. TherA, C {(X,y): X € A,, andy € A,,}.

In other appropriate representation, = {F'c: c is a critical point ofF }. Let

¢ be the unique isomorphism between the first representation and the second
one. Forx € A4, let P, be the minimal interval if, which contains all points
ine{(x,y): (X,y) € As}). ThenP, is a periodic interval forf with combina-

torial typeo;. We leave the proof of that™ restricted toRP;, has combinatorial
typeo, to the reader. O

2.1 Full families

Now we will prove that, in quite natural families of multimodal maps, we can
find infinitely renormalizable maps with arbitrary combinatorics. We will follow
the steps of the generalization of the Milnor-Thurston theory for unimodal maps
to multimodal maps introduced by de Melo and van Strien (see [dMvS]). The
main difference is that de Melo-van Strien deal with families where the number
of critical points is constant. In our families. of multimodal maps (see below),
the number of critical points goes of 1 t8 2 1.

Definition 2.5. A good family f; of multimodal maps is a family of multimodal
maps such thaf, = f,(A,-)o--- 0o fi(A,-), where theC?-smooth functions
fi: A x| — |I,withA Cc R", satisfies
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e fi(A,-): 1 — | is an unimodal map such that zero is its critical point.
Moreover, zero is a non-flat critical point: arour@® we can writef; =
¢ (1x]4), whereg is a diffeomorphism and > 1.

e The function(fy(-, 0), ..., fo(-,0)): A — |I"is a homeomorphism.

Leto =< A, <, A% c >. Denote byr = A(vy, ..., vy) be the parameter
A € Asuchtha( fy(1,0), ..., f,(A,0)) = (vq, ..., vn). Letc, = ¢, and define
inductivelyci .1 € A® as the unique critical point such that ; € [7(¢)]. For
¢ € [a] define

f[g]%e,x = 0ie.x
Here¢ = Ror L andg ., (resp. gi.r,) is the orientation preserving (resp.
orientation reversing) inverse branchtx, - ). Consider the set
K, ={xe[-1 1" if ay,ap e Aanda; < a
then Xa, < Xa,; if @€ A, xq =0}

As a subset oR*, K, is a compact convex set. Note that 9K, iff Xa, = Xap,
with [a;] = [ay], a1 # a». Furthermore, ik € K,

diSt(X, BK(,) < Cd(X, BK(,): = min[a]:[b],a;gblxa — Xbl
Heredist is the usual metric defined with a normRf. DefineT : int K, —
int K, asT (x) = y wherey satisfies:

-1
Ya = f[a],zo(a),/\ (Xn (a))

HereA = A(Xz(cy, - - - » Xz(cy))- The mapT is theThurston map associated to
the family f;.

Lemma 2.4.1f x — 3dK, then

IT(X) —X]
dist(x, 0K,)

Proof. The proof is exactly the proof of lemma 4.1 in pg. 126 of [dMvS]. We
will omit the details. The argument is by contradiction. Assume that

TOO =X _

d(x, 9K,) — ©)

Denotey = T (x). Using the argument as in [dMvS], we can prove
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(1) For[a] = [b]:
Xz@ = Xz )| = [Yr@ — Yrm] — 2Kd(X, 9Ks)
(2) We also have, foja] = [b]:
[Xz@ — Xzl < ClYa — Yol

It follows
[Vr@ — Yriy| < ClYa — Yol + 2Kd(X, 9K,)

Apply this inequality recursively to obtain
[Vrs@ — Yasiyl < CslYa — Yol + Ksd(X, 0K,)

Selecta andb such thad(y, dK,) = |Ya — Yb| ands such that there is a critical
pointc € A® such thatr3(xz) < ¢ < 75(Xp). Then

Csd(y, 0Ks) = |Ye = Yr(a| — Ksd(X, 0K,)

Becausal(x, 0K, ), d(y, 0K,) — 0 and sincey, = 0 is a critical point to the
extended majf;, one gets

[Ye — Yr@l
LA S AN
[Xz(c) — Xn2(a)l

But
d(y, 0K,) - 1 1Ye— Yreal Ks
> — —— > 0
d(Xa 0Ks) Cs |Xn(c) - erz(a)l Cs
Which is a contradiction with (6). O

Proposition 2.2. Leto be an-admissible essential m.c.d.. Then any good family
contains a critically finite multimodal map of typewith combinatorial type.

Proof. By de Melo-van Strien fixed point theorem (see the appendix), there
exists a fixed point to the Thurston operaforassociated to a good familfy,
and the essential combinatorial type O

Corollary 2.3. Let f, be a good family. Given an infinity sequence of primitive,
transitive m.c.d. (o1, 02, ...), there exists. € A such thatf, is an infinitely
renormalizable map with this combinatorial type.
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Proof. By Proposition 2.2, there exists a parametgsuch thatf, , is critically
finite with combinatorice,, x on_1 * - - - x 07. Letng be a subsequence such that
Ane = Aco, fOr someir,, € A. Then f,_ is infinitely renormalizable with
combinatoricgo1, 02, ...). Indeed, this is consequence of the following fact:
forall j > Othere exist = €(j) > 0 andng = ne(j) such that f (0)| > ¢, for

i < j,n > ng (use that the critical point is non-flat). O

3 Spaces of polynomials
3.1 Polynomials of type n

Consider the polynomials of degre 2uch that the dominant coefficient is 1
and 0 is a critical point of it. This space can be identified with (&e— 1)-
dimensional spac®, of free coefficients. We say thate P, is apolynomial

of type nif p= Py, 0--- 0 Py, with Py(2) = 7% + a. Denote this sePol,.

Proposition 3.1. Pol, is a complex submanifold &, with global parameteri-
zation
(ag,...,an) = Pano“'o Pal

Proof. The following statement, proved by induction, is sufficient to prove
the lemma: Let) ; _nbix' = P, o---0 Py if i > 27" — 2) thenb =
Vi(@,...,aj_1). Ifi =2"—2i thenb = Cja; + Vi(ay, ..., aj_1), whereV,
are multi-variable polynomials ar(@; # 0. O

The connectivity locusof a family f;, A € A, of polynomial (or polynomial-
like) maps is the set of parameterssuch that the filled-in Julia set of; is
connected. The following result are contained in the stronger results about cen-
tered monic polynomials proved by Branner and Hubbard ([BH]). But in our
setting the proof is easy:

Proposition 3.2. The connectivity locu€,, of Pol, is compact. Moreover all
the connected filled-in Julia sets are contained in an uniform neighborhood of
zero.

Proof. We claim that the connectivity locus is contained in the{&gfo - - o

Pa : l&i| < 4}. Indeed, take a polynomid = P,, o --- o Py, in A, outside
this set. Letay such thatlay| = max{|ay], ..., |a,|}. Consider a critical
point ¢ such thatP,,, o Py, , o --- o Py (c) = am. We claim thatF"(c) goes
to infinity. This is consequence of a straightforward fact:bifs such that
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Ib| > max{4, |a|, ..., |an|} then|b®+a;| > 2|b|foralli. LetF = P, o0---0Py,
be a polynomial. Takb like above. Then, using the fact abo¥e(F) C By, (0).
In particular, in the connectivity locus the Julia sets are in a fixed neighborhood
of zero. Now is easy to see that the connectivity locus is closed. O

Proposition 3.3. Forany N > 1 there exist$(N) with the following property:
Considerp € C, and suppose that there exigtsuch thatz, pN(z) € Bs. Then

By; is contained in a periodic component Kf(p) which contains a periodic
attractor.

Proof. LetP = P, o0---0P, beapolynomial oftypain C. Inparticulara; | <
4. Then for anys andN there existsC; = C(N, §) such thaiD(p")(p(2))| <
Cy forall z € Bs, p € C. Furthermore there exists a const@at= C,(8) such
that|p'(2)| < C,|z|. Suppose thaty, pN(z) € Bs. Forz e Bys, we obtain

IPN@)| < 1PN @ — pN (20l + 1PN (20)] < (2C1(28, N — 1)Cy(28)8 + 1)8

Thus if § is small enough, then the magd' : B,s — By is a strict contraction,
and the lemma follows. O

Corollary 3.1. There exists a constafit so that for anyp € C,

1/C < diamK(p) <C.

4 Polynomial like maps

We say thatf : U — V, whereU andV are simply connected domains such that
U is compactly contained iW, is apolynomial like map if f is a holomorphic
ramified covering. The filled-in Julia sé€(f) of f is the set of points in

U for which all iterates off are defined. We assume that the McMullen’s
topology in the space of polynomial-like maps (see [McM1]) is familiar to the
reader. Sometimes it is useful work wigierms of polynomial like maps: two
polynomial like mapsf; : Ui — Vi, i = 1, 2 define the same germ if

» The filled-in Julia set& ( f;) andK ( f,) are equal,

 the mapsf; and f, are equal in a neighborhood Kf( f,).
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4.1 Hybrid class

We say that two polynomial like mapis andg arehybrid conjugated if there
exists a quasiconformal mapdefined in a neighborhood of the filled-in Julia
set of f and with values in a neighborhood of the filled-in Julia seg etich that
pof =goganddp = 0in K(f). Now it is a classic result in the complex
dynamics the theorem of Douady and Hubbard ([DH]) which asserts that any
polynomial like map is hybrid conjugated with a polynomial. Moreove (ff )
is connected then this polynomial is unique up conjugations by affine maps.
The following easy modification of the result of Douady and Hubbard will
be a useful tool in the study of the polynomial like contrapart of the concept of
multimodal map of type.

Proposition 4.1 (Straightening lemma).Let f : U; — U, ; be a polynomial
like map, which has the formi = f,o0.--0 f1, wheref;: U; — Uj,; are
ramified coverings of degred; andU; are simply connected. Assume that the
critical values of f are contained inJ;. Thenf is hybrid conjugated with a
polynomial in the fornP, o - - - o Py, whereP, is a polynomial of degre#;.

Proof. Firstof all, we can assume, using the uniformization Riemann mapping,
thatU; = Dg(rj) = {x: |x| < rj}, fori > 1,andU; c U, C Uz--- C Up,s.
Assume that the diameter &f,,; is very big. Hencefi: Ui — U, are
polynomial like maps. We will obtain quasiregular extensidnsf f; and f

of f whose arecompatible: f = f,0---0 f;. Chooses small and define
Ani1:=Ani1:={z€C: rny1—¢€ < |z| <rny1}andh,, s = id. Suppose that
we had defineth : A; — A;, whereA is a very fine ring such that the external
boundary ofA; is exactly the boundary dfi;, A is the pre-image of\,,1 by
xNoNo-1-Ni-andh; is an analytic homeomorphism. Defide ; = f._1(A) and

hi_; as an analytic homeomorphism such that the following diagram commute

fi—ll lx"‘ifl @)

Let H be a quasiconformal map which glues the map®xtending the map
to identity outsiddJ,,, ;. Now, we are able to define the quasiregular extensions

_ f, (X) X e Uj,
fi(x) = . 8
0 {H—l o Qn; o H(X) inother case. ®)
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. f(X) X € Uq,

foo=1.", .
H™" o Qn,..N, © H(X) in other case.

)
Here Q,(x): = X". It is easy to see that these extensions are compatible.
Make the pullback of the trivial Beltrami field outsidlk., by the quasiregular
mapping f. We obtain an invariant Beltrami field for f (defining the field
trivial on K(f)). Defineuj = (fyo--- o fj),u. These Beltrami fields are
trivial in a neighborhood of infinity. Let; be the quasiconformal map so that
g% = ui, Li(0) = 0, Li(oo) = oo, L{(c0) = 1. DefineLy 1 = Ly. Then

P = Li;10 fioL;  are polynomials. Moreove® o P, 1---0oP; = Litofol

is hybrid conjugated td . O

hy
/\
&,

| fi I

Qo
o

Q
O -0

Figure 2
Now we are going to define the polynomial like analogous to the concept of
multimodal map of type:

Definition4.1. We say thaf : U — V isapolynomial like map of typa if there
exist simply connected domaids= Uy, ..., U,, Uy;1 = V and holomorphic
mapsfi: U; — Ui,q, 1 <i < nsatisfying

o fi: Uy — U, is aramified covering map of degree two,
e f=fho0---0 f1.

By the straightening lemma, any polynomial like map of tgps hybrid
conjugated with a polynomial inthe forRy o- - -0 Py, whereP,(x): = x?+-a.

Remark 4.1. Note that we can assume, by the Riemann mapping lemma, that
Uy, ..., U1 are equal taD.

We say that a polynomial like map: Uy — U, of typen is real if there
exists a decompositiofify, ..., f,), fi: Uy — U, satisfying:
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» The domaindJ; are symmetric which respect to the real axis ard U;,

* The mapsf; preserves the interval. Furthermorefi: | — 1 is an
unimodalmap suchthéaf,, ..., f,)isadecomposition forthe multimodal
map of typen f: | — I.

4.2 External class

Let f: U — V be a polynomial like map of degrekand connected filled-in
Julia set. Considep: C — K(f) — C — D be the Riemann mapping such that
¢(00) = 00. Thenthemag = o fog_1: (U —-K(f)) — ¢ (V—-K(f))is
defined in an open sé&t— D, whereA is a neighborhood afD. We can inverg
alongdD to obtain a holomorphic mag: U — V defined in a neighborhood of
St. HereU is the uniornof ¢ (U — K ()) with its inversion alongS!. It is easy

to see thag is an expanding map of degrde The mapg is called theexternal
map of f. Note thatg is defined up to affine conjugacies. Indeed, the external
map can be defined whef( f) is not connected, but this will not be used here.

Proposition 4.2. Let AandB be neighborhoods &' andh: A—D — B—Dbe
a homeomorphism which commutes with Thenh has a continuous extension
to A — D such thath(z) = ez in S, witha9-1 = 1.

Proof. Let
Ar={zeC:1< |zl < R}

and
BrR={zeC:z=x+y- i, withx,yeR,0< |z <InR}

DenoteQ(z) = z% and defined: Br — Bgrs by O(2) = d - zandu(z) = €%
The diagram

Br —2> Bgd

Ml lu (20)

AR —Q) ARd

commutes. Fix an arbitrariR > 1 and assume, without loss of generality, that
the domain oh is A, for somer < RandB — D is contained inAg. Consider
the fundamental annulus = Q 2(Ars — Ag) and a compact sék C Bg such
thatu(A) = A. Then for any poin? € 1 1(Q 2(Ar)), there existj,i € N
suchthafl ' (2) + j € A.
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Select a homeomorphisisuch thaf o h = h o uu. The transformatioh is
defin~ed inthe open_s@tﬁ Ag and with values irBN Agr, whereA = = 1(A—-D)
andB = u (B — D). Sinceho T =T o h, one gets

hoT=Toh+k (11)
For somek € N and for points inA,1,4. Since
(h+DeT=Toth+j)+k+j-d-1 (12)

we can assume, replacihgy an appropriate translation biby an integer, that
0 <k <d— 1. Apply the equation 11 recursively to obtain

i
Aot =T oﬁ_k.d—i._‘:‘j_ll,
for j > 0 and points inA,1q. Let
. k
D = sup,idistg;(h(2),z— h) (13)

Then for anyX € u 1(Q2(Age), selecti, j such thatx = T-(z) — j, with
ze A If X € Athen
distg. [ h(%), % k
R ’ d-1

o . k
= distBR(h(T" @-D.T'@-]- —)

d-1
_— Cd -1 . K
= i 7'. f— . 7'.—_. 7'. o =
_dlstBR(d ) —k-d T a7 ] d—l)
. ] ~ dl—l . i _i di . i
:dIStBR<d '(h(Z)—k'm—J'd)ad '(Z—k'd—_l—l-d)>
. ~ K d o d o

. _ k
= dlstBR<h(z), zZ— d——l) <D,

The above proof is a variation of the Douady and Hubbard’s proof([DH]) when
k = 0. Sodista,(h(X),a - x) < D, for u(X) = x, becausq:: Bk — Agr

is a local isometry. Hence - x — h(x) — 0 in the Euclidean topology, when

x — S, sincepag > CW;SI) near toS'. O
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The above statement was proved by M. Lyubich([L1]) wiea 2. We will
denote[h] = «a. Notice[h; o hy] = [h4] - [h2], for two homeomorphismk;
which commutes ta¢.

Definition 4.2. Let f: U — V andg: U — V be polynomial-like maps.
Leth;: U — K(f) > U — K(g) andh,: U — K(f) - U — K(g) be two
homeomorphisms such thgit= h; o f oh ™. Thenh; o h;* is an automorphism
of f inU — K(f). Choose a homeomorphismisU — K(f) — A(1,r) such
thatp o f = T o ¢, with T(x) = x4 andd = deg f. Theng o hy o h;* 0 1
is an automorphism of . Define

[f,0;h, hal=[poyop?

Observe thatf, g; hy, hy] is well defined, since i, and¢, are two conjugacies
betweenf andT then

[provopr1=[pr1od, 1 [P0y opy ] - [(pro¢; ) = [p20y 0,

The numbef f, g; hq, hy] was introduced by Douady and Hubbard([DH]) to
study when it is possible to glue conjugacies:

Corollary 4.1 (Gluing conjugacies:[DH]). Let f and g be polynomial like
maps, leth;: Vi — Vgandhy: Vi — K(f) — Vy — K(g) be conjugacies. If
[f, 9; hy, ho] = 1then there exists a conjugaby Vi — Vg such that

» The magh coincides withh; in K(f).

» The magh coincides withh, in V; — K(f).
Corollary 4.2. Let f: U — V andg: U — V be polynomial like maps with
the same hybrid and external class. If there is an external equivalenaed
a hybrid equivalencd, such that[ f, g, h1, h,] = 1, then f and g are affine
conjugated.
4.3 Compact sets

In a neighborhood of the locus of connectivity of polynomials of typselect a
holomorphic moving fundamental annulfg. This means that for eaghe C,
there exist a neighborhoatl of pand a mapy: A x A, — C such that

» Foreachp e A, ¥(P, Ap) = Ap.
* For each point in the annulusA,, ¥ (-, ) is a holomorphic function.
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* If U, andV,, are respectively bounded simply connected domains whose
boundaries are the internal and external boundaries of the annulus
v (p, Ap), thenp: U, — V, is a polynomial-like map.

To find suchy, let C be a large circle centered in zero which contains all the
Julia sets for polynomials of typecontained in the locus of connectivity. Then,
for p near toC, p~1(C) is a Jordan curve contained in the disc whose boundary
is C. We obtain a polynomial-like representation for Furthermore the set
C U p~(C) moves holomorphically in a neighborhood pf Let v be this
holomorphic motion. This holomorphic motion can be extended for all points
in C. Then we defineA; as the annulus delimited & and p~1(C). We will
fix this holomorphic moving annulus on the polynomials of typia the rest of
this paper.

Definition 4.3. We sayf: U — V, a polynomial like map of typa with
connected Julia set, belongs #®,(C) if there are aC-quasiconformal map
¢: C - Candp e C, such that

* p(Vp—Up) =V —-U,

L4 d)O p: f O¢|nUp
Proposition 4.3. The setP,(C) is compact up to affine conjugacies.

Proof. Let f; be a sequence A, (C). Replacingf; by a polynomial like map
which is affine conjugated to it, we can assudiamK(f;) = 1. Consider
C-quasiconformal mapg; and polynomial mapg; as in definition 4.3. Since
Cn is compact, select a subsequence, if necessary, suclpithat p € Cp,.
Since the Julia set op € C, has the diameter away of infinity and zero, and
¢ (K (fi)) = K(pi), selecting a subsequence we can assumepthainverges
to aC-quasiconformal map. Itis not difficult to see tifai po ¢~ is an analytic
map ing(Vp — Uyp). O

ForasetK C C, denotes-K :={z e C: dist(z, K) < § diam K}.

Corollary 4.3. For any$ > O there existr = n(C, §) so thatiff: U — V
belongs taP,(C) then f " (V) C §-K ().

Proof. Easy. O
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Lemma4.1([McM2]). Letf: U — V be apolynomial like map with connected
filled-in Julia set and-K (f) c V. Then the germ of has a representation
f:U — V such that:

« The boundaries df andV are C(¢)-quasicircles,
« diamV < C(e)diamK(f),
e mod(V —U) > m(e).

When p is a polynomial of typen with connected Julia set, we can select
a polynomial like restrictionp: Uy — U, with the above properties in the
following way: Let¢: C — K(f) — C — D be the Riemann map such that
¢ (00) = 00. We have

¢ 0 P(X) = ($(x))°

forx e C— K(p)andd =deg p LetD, = {ze C: |z| > r}. Define

Uo = ¢~ (Dexpyn; — D) UK(p) andUn = ¢~ (Dypgm — D) UK (p)

Thenmod (U411 — Ug) = m. ltis easy to prove thatU, andaU, areC(m)-
quasicircles. To prove thdiamU, < C(m)diam K(p), recall that the diameter

of K(p) is bounded above and below, by lemma 3.1. So it is sufficient to
prove thatdiam U,;; < C(m). Indeed, consider the Green functi@ix) =

log [¢(X)]. SinceC is compact, for any > 0 there existaR. such that for

|zl > R. andp € C one have
1
alog(l—e) +log|z| < G(x)

(e.g., see the proof of Theorem 2.1 in [FS]), which clearly implieeam U, <
C(m), sinceG(dU,.1) = dm/(d — 1). The advantage of this polynomial like
restriction is that the annull, . ; — K(f) andUg — K(f) are invariant by the
external automorphisms

dloR,0¢: C—K(f)—> C—K(f)

whereR, (X) = aX a[ldozd‘1 =1.

Denote by?,(C, C, m) the set of polynomials like maps of typewhich
admits a decompositiofi = f,o---0 f;: Uy — Upyg, fi: Up — Uiy, such
that

» The filled-in Julia seK ( f) is connected;
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The boundaries dfJ; are eitherC-quasicircles, foi = 1,n + 1, or the
unit disc, otherwise;

« diamU,,1 < CdiamK(f);

* modUpy1 —Up) >m;

The critical point off; is O.

Proposition 4.4. Let f : U; — U, and f: U; — U, be polynomial like maps
in of typen which belongsP,(C, C, m) which are conjugated by a one-to-one
continuous mapg in a neighborhood of their filled-in Julia sets. Then there
exists a one-to-one continuous map: C — C betweenf and f with the
following properties:

» The magh; is a conjugacy: fohy=hjo finU;
* hy(Uy — Uy =U, — Uy.

e hy =hpin K(f).

« h;isC(C, C, m)-quasiconformal irC — K (f).

In particular, if hg is a hybrid conjugacy theh; is a hybrid conjugacy.

Proof. Assume thadiamK(f) = diamK(f) = 1. Note that, since the
boundary ofU; is a quasicircle, the mafy has a quasiregular extension in a
neighborhoodf U;. Indeed, leyj: C — C be aC(Cy)-quasiconformal map
which is conformal inD and mapdD in U;. Thenozi;ll ofioai:D - D
extends to a rational magp which is a expansive map of degree 23h Hence
ajrp0 fi ooti_l: C — Cis aregular map of degree two in a neighborhodd; .
The same can be done fdr. Let ¢n: C — C be aC,(C)-quasiconformal map
which mapaJ, in U,. Sincef,(0) and f,(0) are contained in the Julia sets bf
and f, these points are at a definitive Euclidean distancélbf,., anddU,,. 1.
Thus, by lemma 8.5, we can assume #dtf,(0)) = f,(0).

We will prove, by induction, that there afg (C, m)-quasiconformal maps
¢i: Uj — Ui, such that

. ¢i+1o fi = ﬂ O¢i71 in 8U|
. $i(fi(0)) = fi(0).
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Letg_1: U1 — U;_; be alift of ¢ (in other wordsipj o fi_1 = fi_10¢7Y),
which has the same quasiconformality tlian Because the critical values &f
does notintercep, 1 — U1, and the modulus of this annulus is bounded below,
fi_1(0) is at a bounded distance of 0 in the hyperbolic metrit)on. Since the
same can be said abofjt_1(0), by lemma 8.5, if necessary modify_; such
that ¢i_1(fi_1(0)) = f,_1(0), and additionally the newp;_, is Cj_1(C, m)-
quasiconformal. In particulap, o f = f o ¢ in dUp,. By lemma 5.3.1 in
[GS], we can find & (C, m, M)-quasiconformal mapd: C — C such that
(1) H is equal togn,1 outsideU,,1 (2) H is equal tog; in U;. HenceH is a

quasiconformal map whiamapsU,1 — Uy in U,41 — U; and conjugate$ and

f in the boundary of this fundamental annulus. Now, with the usual pullback
argument, construct@(C, m, M)- guasiconformal conjugady betweenf and
finUn — K(f)inUyy1 — K(f) such thatf (Up 1 — Uy) = Unyq — Uy For

the last step, to obtain a conjugacy which extend& td ), the result follows

of the particular case wheh is a polynomlal and the annuILl$n+1 — U, is
invariant by the external automorphismsfaf Select an external automorphism
R: C— K(f) - C - K(f)sothatth, Ro H; f, f] = 1. Thus the conjugacy

hg in K (f) glues with the external conjuga®o H and the new map; has the
same quasiconformality dfl outsideK (f). O

5 Renormalization
5.1 Infinitely renormalizable polynomials

Here we will work with a more natural parameterization of polynomial of type
n. We will consider the family of polynomials in the forfn= fy o --- o fa,,
where fa(x) = —2ax? + 2a — 1, a € C. Note thatuf (1/«) belongs toPoly,
with
ot = 2" Taaal. . a2

For eachf in this family there is at most™— 1 polynomials inPol, affine
conjugated to it. Furthermore,af € R then there is exactly a real map#ol,
which is affine conjugated tdé. Because the results of section 2.1, there is, for
each combinatorial type = (o1, 02, .. .), at least one infinitely renormalizable
multimodal map of typen in this family which has typer. Denote the set of
infinitely renormalizable real polynomials of typeby Pol>* and the subset of
Pol>® with C-bounded combinatorics byol3°(C). Denote byF the extended
map associated to a decomposition in quadratic polynorfifgls. .., fa,). The
bounded geometry of the postcritical setofe Pol>°(C) is consequence of
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results of Blokh and Lyubich([BL])(see also J. Hu’s thesis[H1] and [H2] ). The
following result can be proved as in [Sm1](for notation, see introduction):

Proposition 5.1 (Bounded geometry).Letq, r, s be arbitrary critical points
of F so thatQ'firl and REJJ-Fl are contained irSEZ. The following quantities are
C1(C)-commensurable:

« The lengths oRQ**, R** and &,

« The distance betwee@“* and9 s,

« The distance betwee@“}* and REJJ-Fl, if these intervals do not touch.
Denote byP:°(C4, C,) the set of maps i, (Cz) which are hybrid conjugated

with polynomials inPol3°(C;). The main technical result in renormalization
theory is

Proposition 5.2 (Complex Bounds [Sm1])Let f be amap inPol>*(C;). Then
there exisky(C1) and C,(C,) so that any renormalizatioR¥( ), k > kg, has
a polynomial-like extensioR*(f): U — V in P°(Cq, Cyp). Furthermore, the
renormalization is unbranched®(f) NV = P(f) N K(RK(f)).

Proof. Here we have a very nice situation: the map f is a polynomial, it has
negative Schwartzian derivative and moreover satisfies properties analogous to
the standard conditions (see [Sm1]). Itis easy verify in the proof of the complex
bounds for analytic multimodal maps [Sm1] tlkgtandC, (for this use lemmas

4.1 and 4.4) can be select independent a&f Pol>°(Cy). O

Indeed, we proved the complex bounds for any analytic rhayghich is in-
finitely renormalizable with bounded combinatorics. But, in this caggepends
on f. Anyway, now we can assume in the Main Theorem thaindg (and all
renormalizations) are contained®{°(Cy, Cy).

J. Hu([H1]) stated a complex bounds result for bimodal maps in the Epstein
class and bounded combinatorics, but the outline of the proof seems to be in-
complete. Recently W. Shen([Sh2]) claimed complex bounds for any infinitely
renormalizable analytic map.

Proposition 5.3. The following statements holds:

* Let f; be maps inPol*(C) with combinatoricsr,. If o, converges te
then any limitf,, of a subsequence df has combinatorics .

* The postcritical set moves continuouslyRol>*(C).
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Proof. Let P* be the restrictive interval associated to Kath renormalization

of fi, 0 € PX. Since the period oP* is bounded bypy(k, C), the length ofP*

can not be small, otherwisk will contain a periodic point which attracts zero,
which is impossible. So we can assume tﬂétconverges to a periodic interval
PX for f,,, which proves thaf,, belongs toPol°(C). In particular, all periodic
points of f,, in | are repelling (because non repelling periodic points attracts a
critical point), so the periodic pointin the boundaryRiT converges to a periodic
point in dPX. ThusPX is the unique restrictive interval associated to kkeh
renormalization off,, and thek-th restrictive interval moves continuously in
Pol>*(C) and so do the postcritical set. O

5.2 Renormalization for polynomial like maps

Let f: U — V be a polynomial like map. Are renormalization of f is a
polynomial like mapgy: U — V such that

1)U cu,
(2) g= f' for somei > 0,
(3) The filled-in Julia seK (g) is connected.

Note that a pre-renormalization of a polynomial-like map of tyge a polyno-
mial like map of typek, for somek > 0. This is a consequence of the following
observation: ifg; andg, are holomorphic maps such thgto g;: U — Visa
proper map, theg;: U — g1 (U) andg,: g:(U) — V are proper maps.

Lemma 5.1. Let f: U — V be a polynomial like map i®,(C) with a pre
renormalizationg = f™: U — V such thatc € K(g), wherec is the crit-
ical point mapped to zero by conjugacies with a polynomial of typelhen
diamK(g) > C.(C, mydiamK(f)

Proof. Follows of lemma 3.3. O

Lemmab.2.Letg; = f": U; —» Vi andg, = f": U, — V;, be pre renormal-
izations of a polynomial like map. ConsiderK = K(g:) N K(gz). Then one
of the following statements holds:

1) K =¢.
(2) K = {p}, wherep is a repelling periodic point off .
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(3) K is the filled-in Julia set of a pre-renormalizatiaj: U — V of f.
Moreoverdeg(g) < min{deg(g:), deg(g>)} and the equality holds iff
K(9) = K(g) or K(g) = K(92).

Proof. Follows of the connectedness principle by McMullen (pg. 90
in [McM1]) that K = K(g1) N K(gp) is connected. Letl be the connected
component olU; N U, which containsk. Theng = f": U — f"U)is a
polynomial like map, and moreovét(g) = K, sinceK is totally invariant by

g. Hence we obtain item 2, deg g= 1, or 3, otherwise. The last statement of
item 3 follows of lemma 5.11 in [McM1]. O

Remark 5.1. A special case is when each critical point of the extended map
associated td can be accumulated by points in the closure of the postcritical or-
bit of c. Inthis caseify, = fk: Uy > Vi,i = 1, 2aretwo pre renormalizations
withdegg; < 2"then orK(g;) = K(g,) anddegg; = 2" eitherK (g1) N K(g2)

is at most a repelling period point. In particulardfis a pre-renormalization of

f whose domain contairtsand it has degree at mo2t thendegg = 2" and any

pre renormalization of) = f: U — V, for fixedk, whose domain contaires
define the same germ of polynomial like map of typ&hen we can call this
germg as therenormalizationof f.

We do not know if there is a canonical way of define renormalization when
f do not satisfy the hypothesis in the previous remark. However, in the case of
real polynomial like mapf: U — V of typen whered P contains a repelling
period point, we can use external rays which arrive in the boundary points of
the restrictive intervaP to find a degenerate polynomial like extension to the
renormalization. After modify the domain near to the boundary points of P, we
obtain:

Proposition 5.4.Let f : U — V be a real polynomial like map of typewhich
is renormalizable in the sense of section 1.1. Pdbe the restrictive interval
associated with the renormalizatidRf. Assume thad P contains a repelling
period point. Letk be minimal such thatk(P) c P. Then there exists a pre
renormalization§: U — V of degree2” such thatk (§) "R = P.

Remark 5.2. If g; and g, are two pre renormalizations of degr@é such that
the restrictive intervalP is contained inK(g). ThenK(g1) N K(gy) is the
filled in Julia set of a pre-renormalizatiog. SinceK (g;) N K(g,) containsP,
degg) = 2". By lemma 5.X (g) = K(91) = K(g2). Thusg; define the same
polynomial like germ. This germ will be called tbemplex renormalizatiorof
f. We say that a polynomial like map of typés renormalizable if it is hybrid
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conjugated with a renormalizable real polynomial like map of typ®enote by
P°(Cq, Cy) the subset of maps M, (C,) which are hybrid conjugated with a
real infinitely renormalizable polynomial of typewith combinatorics bounded
by C,.

Let K be a closed set ift. We say thatk hasC-bounded geometryif
1/C < supycq mMod A < C where A is the set of annulu®\ ¢ C — K
such that the both components ©f— A contain points inK. Recall that if
Rif = f™): U — V is arenormalization of , we call the sets

K(R f), F(K(RI f)),..., FM~Y(K(RI f))
thesmall Julia setsof f. The following result will be used a lot of times:
Proposition 5.5. For f € P°(Cy, Cy), the followings holds:
(1) K(f) has empty interior.
(2) For almost every point in the Julia set,f"(x) — P(f).
(3) The small Julia sets touch at most in an unique point.
(4) The postcritical seP(f) andK (f) moves continuously i?3°(C4, Cy).

(5) There exists a constaft(C,, C,) such that the postcritical sé?(f) has
C-bounded geometry.

(6) Thek-th renormalization, fok > ko(C), has a polynomial-like extension
R¥(f): UX — VK which belongs t@®°(C, C,). HereC = C(Cy, Cy).

(7) There existg (Cy, C,) so that

diam K(R<Hi(f))
diam K(RX(f))

A

1
2

Proof. The proof of 1 is exactly as in the unimodal case (see [McM1]): we can
assume that is a polynomial. Suppose, by contradiction tKatf ) has interior.

Then, by the Sullivan’s classification of periodic components, the interior of

K (f) contains an attractor or a Siegel disc: the first case is impossible because
P(f) is a Cantor set (and any attractor attracts a critical point) and the second
one does not hold because the boundary of a Siegel disc must be contained in the
postcritical set. The second statement is consequence of the ergodic or attract
theorem([McM1]). Item 3 is consequence of remark 5.1. Item 4 and 5 follow
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of the same statements for polynomials (propositions 5.3 and 5.2). The last item
is obvious for polynomials, sincgéiam K(R(f)) is commensurable with the
length of P¥, which goes exponentially fast to zero (proposition 5.1). Now the
general case is easy. O

If M is a hyperbolic Riemann surface, denote|by, the hyperbolic metric
in TM anddisty (-, -) the hyperbolic distance. We will denote dyst(, -) the
Euclidean distance.

Proposition 5.6. There exists a constam such that, for anyf: U — V €
Pr(Cyq, C),
disty_p(r)(z. 1 (P(f))) <D

forze f-1(V —-U).

Proof. Itis easyto see thatthere is a bounddoamy _pf) f ~1(V — U) which
depends only orC; andC,. So it suffice to prove that there is a pointe
f-1(V — U) whose hyperbolic distance tio*(P( )) is under control. Firstly,
assume thap: U — V is a polynomial inPol*(Cy) and V, — U_p is the
holomorphically moving fundamental annulés, selected in section 4.3. We
will prove that there exist® such that for eacp ¢ Polx°(Cy) there exist points
Xp € Vp—Up, ¥p € p~1(P(p)) and a topological disBj, such thakp, y, € By
andB, C V, — P(p) satisfying:

distg, (Xp, Yp) < D

Indeed, for eachp with combinatorics bounded b§,, select a pointzy €
f=1(V, —Up) and a topological dis® which containszy and a pointz;
p~2{0} — P(p). FurthermoreB cC Vp — P(p). sinceP(p) anddV, moves
continuously withp, for p close top we hae B c Vp — P(p). Furthermore
there is a point;, of p~2(0) — P(P) close toz;. In particular,distz(z, Z;)
is under control. Sincéo0l>°(C,) is compact, the proof is finished for maps
in Pol>*(Cy). In the general case, let: U — V e P*(Cq,Cy). Then
there exists a,-quasiconformal conjugacy betweenf and a polynomial
p: U, — Vp € PoI®(Cy) such thatp(V, —Up) = V — U. But this im-
plies

distys,) (@ (Xp), d(Yp)) < Dy,

whereD; depends only o€; andC,. Since thatp(x,) € V — U ande (yp) €
f~1(P(f)), this is enough to finish the proof, as in the polynomial case.]
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Let f: U; — Uy, be a polynomial like map of type. For each decompo-
sition fi: U; — U1, we can associate the extended nrapU — "V, where
U={xi):xeU,l<i<nandV ={(x,i): xeU;,2<i <n+1},
defined by

F(x, i) = (fi(x),i +1mod n

ThusF is a ramified covering map between the Riemann surfatasdV. If
G is the critical point off;, define the postcritical set ¢f by

P(F) = U Uy F1G. D)

Assume now thatf € P3°(Cq, Cy). ThenP(F) is a Cantor set with bounded
geometry. In particulary — P(F) is a M(Cy, Cy)-uniform domain (see Ap-
pendix). Clearly, by complex bounds, each small Julia set is the Julia set of a
polynomial like mapg in P3°(C3(Cq, Cy), Cy). Furthermore the fundamental
annulus ofg does not intersect the postcritical setraf For each small Julia set

K we can associate the closed geodesia the hyperbolic domaifV — P(F)

which separate®(F) N K from P(F) — K. These geodesics cut the domain
V — P(F) in subsets which we will calpieces

Lemma 5.3. Let F: U — "V be the extended map defined above. Kdbe
a small Julia set forF, P = P(F) N K and lety be the closed geodesic in
V — P(F) which separate® from P(F) — K. There exist€3, which depends
only onC; andC,, so that

e The hyperbolic diameter and length of in V — P(F) are Cs-
commensurable to one,

 dist(y, P) anddiam P are Cz-commensurable,

» The Euclidean diameters ¢, y, P and the Euclidean length of are
Cs-commensurable.

Furthermore, two points in the same piece can be linked by a path in the piece
with bounded hyperbolic length i — P(F).

Proof. Firstly note that, by lemma 5.1 and a priori bounKsis contained in a
larger small Julia sk’ so that the diameters & andK’ are commensurable.
Furthermore the diameters KfandP are also commensurable. The hyperbolic
length ofy is not large because there is unbranched fundamental annulus with
definitive modulus for each renormalization. If the Euclidean lengthy af
small, by the collar lemma (see, e.g., [McMZ2]), there is a essential annulus with
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large modulus inV — P(F), which is impossible, since this planar domain is a

M (Cy, Cy)-uniform domain. Furthermore, by lemma 8.3 the Euclidean diameter
of y is commensurable diam P. Itis easy to see that the Euclidean length of

y is also commensurable tiam P. The second statement is consequence of
the first one and proposition 8.3. Letandy be two points in a piece. We can

join these points using segments of lines and arcs of geodesics in the boundary
of the piece. By the previous items, the sum of the hyperbolic length of the
geodesic arcs is bounded. The sum of the Euclidean length of these segments
can be clearly bounded by the Euclidean diameter of the piece. On the other
hand, by the collar lemma (see, e.g., [McMZ2]) and previous items, the distance
between any point in these segments and the postcritical set is commensurable
with the Euclidean diameter of piece. This implies that the sum of the hyperbolic
length of these segments is bounded. O

We say that a map belongs t6(f) if the graph ofg is contained in
{((x,y): f'(x) = fi(y)}, for somei, j > 0. We are going to prove that there
are copies of the small Julia sets close to any poird(ih), in any scale:

Proposition 5.7 (Small Julia sets everywhere)Let f € P°(Cy, Cy). There
existC3(Cy, Cp) andCy4(C, C,) with the following property: For angin J(f)
anda € (0, 1) there exists a polynomial like map U — V, g € F(f) so that

* g€ Pr(Cy, Cy),

» The diameter oK (g) is Cz-commensurable te - diam(K (f)),

e dist(z, K(g)) < C3z-a.
Proof. The proof is quite similar to the proof in the unimodal case
(see [McM2]): Consider a decomposition in ramified coverings of degree two

f="fio---0 f,, fi: Uy = Ui,1, and the associated extended nragefined
inU={(zi):zeUjand 1l<i < n} by

F(z,i)=(fi(2),i +1modn

Define the postcritical set & by P(F) = U; F' (P(f)). If I-Ilv_p() denote
the hyperbolic metric oV — P(F) (extended tao on P(F)) then

|F'(x) - UHV—P(F) > [[vllv_pF)

with v in the tangent space gf sinceF ~1(P(F)) > P(F). Letvx = DFX(x)-v,
with x € J(F). Then

lokllv—pE) < llvksallv_pEy = 00,
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sinceU,F"(P(F)) is dense inJ(F). Forx € J(F), select a vectop in its
tangent space so that| = «. There are 3 cases:

» dist(x, P(F)) < «,
* dist(x, P(F)) > o and there exist& such that||v|l_pF) < € and
lvktally—pry = /e,

. dISI(X, P(F)) > o a.nd”Uk”’yfp(F) ~1.
Heree is sufficiently small so that the McMullen’s argument([McM2]) works
in the second case. The first and second cases are more easy and we will omit
the proof. For details, see [McM2]. Assume the last situation. In particular
lvllv_pe) < 1, becaus®” — P(F) is aM(Cy, Cy)-uniform domain.

Consider the piece, defined by closed geodesics, which corfiips. Let

yj be the exterior geodesic and tet;.1, ..., %, j+1 be the interior boundary
geodesics. Denote by(i, j + 1) the subset of the postcritical set bounded by
Y.j+1. Select minimal so that we can do the univalent pullback of the dorivain

bounded byy; along the inverse orbfX(x), F*~1(x), ..., F(x). This means
there exists a simply connected dom¥ihsatisfying

« FY(x) e V.
+ The mapF*~* is univalent invV’ and moreoveF*—¢(V') = V.
» The domainV’ contains a critical value of .

Denote byV; the domain bounded by;.1; and letV/ be the corresponding
domaininV’. LetV = F~1(V’) Then

g= Fk=t+1. v 5 v

is a proper map of degree two. Since the postcritical set is containginthe
critical value inV’ is contained in som@a’i’o, for someig. Choose an arbitrary
Vi,, i1 # io. Let g1 andp, be two paths inside the piece which contalffgx)
so that:

« The initial point of both isF¥(x).
» The end point of both is a point ip; ;, .

» The Jordan curve defined By andg, is not homotopic to a constant curve
inV — F<¢().
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¢ The hyperbolic diameter ¢ on"V — P(F) is bounded.

Let 8, UU L andB, U V2 be lifts with respect tg of the simply connected sets
B1UV;, andB, U Vi, so that; is an arc whose initial point i5~*(x). Note that
V! andV?2are disjoint and one of them, s&4}, does not intersect the postcritical
set of F. So all inverse branches & are well defined org; U V1. So leth
be the inverse branch &, defined ing; U Vi, so thath(FX(x)) = x. Since
locllv_pery ~ LandB1Uy;j1i, has bounded hyperbolic diameterifi- P(F),
we obtain, by corollary 8.4,

1Y
IDh(2)] ~ Ll

[vk|
forall z € 1 U yj41i,. By the maximum principle the same distortion con-
trol holds inU;,. There exists a small Julia s&t inside V;; whose diame-
ter is commensurable wiamy;,1i, ~ |v|. By 1/4-Koebe lemma (use that
dist(yj;+1i,, P(j +1,i1)) > C diamP(j + 1,i;) ) and the above distortion
control, the seh(K) has diameter commensurable wjih] = «. Moreover
dist(x, h(K)) < Ca, which proves the proposition. O

Corollary 5.1. The following holds:

A polynomial like map iP°(C1) does not support invariant line fields in
it Julia set,

* The hybrid class oP,(C,) is continuous at points i?>°(Cy, C,),

* The setP;°(C4, Cy) is compact.

Proof. Suppose, by contradiction, there exists an invariant line fieklp-
ported on the Julia sé€ (f) on f € P;°(Cy). Select an almost continuity point

x € J(f)to u. There are polynomial like maps, with definitive modulus, in all
scales around, which preservegs. After an affine conjugacy, we can assume
that a subsequence of these polynomial like maps converge to a polynomial like
map which preserves a straight line field, which is a contradiction. The second
statement is consequence of the lemma in pg. 313 of [DH]. The last statement
is an immediate consequence of the first ones. O

W. Shen [Sh1] proved that any real polynomial with real critical points does
not supportinvariantline fields in it Julia set. The above situation is notincluded,
in general, in Shen’s result, but we can expect the same result (probably with a
very similar proof) for compositions of real polynomials with real critical points.
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6 Hybrid conjugacy

As in the unimodal case (see [Su] and [dMvS]) and bimodal case([H1]), real
maps with same bounded combinatorics are hybrid conjugated. To be more
precise:

Theorem 1. Two real polynomial-like maps of tyme f and f, infinitely renor-
malizable map with same bounded combinatorics are hybrid conjugated.

Let f and f be multimodal maps of type with decomposition$fy, ..., f,)
and(fy, ..., f)). If ¢ (resp. &) is the critical point off; (resp. f;), define
vi = fho---0 fi(q) (resp.ii = fho---o i (&).

Lemma 6.1 (Lifts exist). Let f: Uy — U, and f:Uy, — U, be real
polynomial-like maps of typa with the same inner itinerary and such that
vi < v; iff 3 < v;. Then the following holds: For any continuous bijection
Hn: U, — Uy, realinthe real line and increasing iR, such thaH (f (C(f))) =
f(C(f)), there exists a continuous bijectitty: Uy — Uy, real in the real line
and increasing irR, such thatH, o f = f o H.

Proof. We will define, by induction, homeomorphisrit: U; — Uj, real in
the real line and increasing, such that,; o f, = f; o H;. Assume that we
have definedH;. We claim thatH; (fi_1(ci_1)) = fi_1(&_1). Indeed, consider
A = (fho---o f)L(vi_y) andA = (fro--- o f;)"X(#_1). SinceHp o fno
.o fi=fho---0 fi o H andH,(vi_1) = 3j_1, we haveH; (A) = A;. Since
H; is increasing, it suffice to show thatff_;(¢;_1) is the j-th point in A;, with
respect to the order in the real line, thén(¢_,) is also thej-th point in A;.
But this follows of lemma 2.3.3, sincé_1(ci_1) and f;_1(&_1) have the same
inner itinerary.

Now we can find a homeomorphishk) _1: Uj 1 — U;_4, real in the real line
and increasing such that

Uit — {61 —=2 Ug—(G.1)

) L (14)

Ui — {fi_1(ci-1)} — Ui — {fi_1(&_1)}
commutes, which proves the lemma. O

Lemma 6.2.1f f and f are as in Theorem 1, then there exists a quasiconformal
magh: C— C, whiE:h isrealintherealline andincreasing suchthaP(f)) =
P(f)andho f = f ohin P(f).
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Proof. This lemma is consequence of the bounded geometry (see proposition
5.1). For details see [Su] or [dMvS](last chapter). O

Proof of Theorem 1. ReplacingU, U, V andV by smaller domains, we can
assume that the boundary of these domains are quasicircles. Using similar argu-
ments as in lemma 4.4, we can construct a quasiconformahmay — U —

V —U which conjugated and f in 9U. Since the map$ and f are real, we can
assume thdt; is symmetric with respect to the real line. Ltetbe a symmetric
quasiconformal map which conjugatésind f in the postcritical set. Construct
a C-quasiconformal magiy: V — V, for someC, which is symmetric, in-
creasing in the real line, equallg in V — U and equal td, in a neighborhood
of I. As f and f have the same combinatorial type, the relative positions of
andd; are the same. Thus we can use lemma 6.1. Furtherfarel f has the
same inner itinerary. Define inductively;: V — V, aC-quasiconformal map
symmetric, increasing and such ttdf o f = f o Hj; 1. Note thatH; is C-
quasiconformal conjugacy in the postcritical set &hd f~(0-9(U). Moreover
Hj = Hj;1in vV — f-0-D(U). SinceK (f) has empty interior, the sequence
H; has an unique limitd, which is a conjugacy betweehand f. IndeedH is

a hybrid conjugacy by lemma 5.1. O

Theorem 2. The setPol>*(C) is a Cantor set.

Proof. LetX = X1 be the finite set of primitive, transitive m.c.d. with com-
binatorics bounded bg. By lemma 2.3, for any infinity sequenc¢e,, o», .. .),
with o; € X, there exists an infinitely renormalizable real polynomial map of
typen with this combinatorial type. By the previous theorem, two real polyno-
mial maps of type with same combinatorics are hybrid conjugated and so affine
conjugated, since they are polynomials. The boundary poirtsufst be a fixed

by this affine map. Thus the conjugacy must be the identityTLeEY — A,

be the application which maps each sequence (o1, 02, ...) in the unique
real polynomial magp, of typen with this combinatorial type. If; € N is a
sequence which convergesdpthen any accumulation poimptof the sequence
Py is a real infinitely renormalizable polynomial of typewith combinatorics

«. Sop = p,. Hencell is a homeomorphism between the Cantorsgtand
Pol>(C). O

A natural conjecture, in view of M. Lyubich results in the quadratic family, is

Conjecture 1. The setPol>°(C) has zeran-dimensional Lebesgue measure.
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7 Contraction of renormalization
7.1 Towers

Using McMullen arguments with towers ([McM2]) we will prove the contraction

of the renormalization operator in the hybrid classes of infinitely renormalizable
maps with bounded combinatorics. The main point here is that the Julia set of
bi-infinite towers is dense in the complex plane. Together the small Julia sets
everywhere Theorem, we will obtain the contraction. Apart McMullen’s work,
the renormalization theory in [SN] had some influence in the exposition below.

Definition 7.1. A bi-infinity towerf =< f; >z of typen with parameter<,,
C, andk is a family of polynomial-like map§ : U; — V, of typen, i € Z, such
that

* The mapsf; belongs taP°(Cq, Cy);

» For anyi € Z, there exista < k so thatR?(fi_y) = f; (as germs of
functions).

if furthermore we assume that

* If j > i thenV; is contained irJ;.
we say thaf is afine tower. Denote by4(Cy, k, Cy) (resp. T "(Cy, K, C2))
the set of bi-infinity towers (resp. fine towers) with paramef@rk, C..

We say that a bi-infinite towey is a restriction of other towdrif there exists
an increasing function: Z — Z so that the gerng; coincides with the germ
fi). The following lemma is easy to prove:

Proposition 7.1. For any towerf € T,(Cy, 1, Cy), there exists a restriction
g € Ta'"(C1, k, Cy), withk = K(Cy, Cy).

McMullen([McM2]) supply the set of towers with the following sequential
convergence: We say that the sequence of tofyezenverges to towe,, if

 For anyi € Z there exista so thatf; .1, = R2(fi ), for largen;
» fi.n converges tdfj .

Proposition 7.2. The setsT,(Cy, k, Cp) and T, ""®(C4, k, Cy) are compact.

Select an arbitrary; € Z. ThenA; = V; —Uj, jo < | < ]1, are disjoint
essential annulus i, — K (f;,). Becauseliam K(f;;) > 0and modA; >
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m(Cy), C = U;V;. We say that a line fielgk is invariant by the towef if u is
invariant for eachfi, i € Z.

Proposition 7.3 (Constructing bi-infinite towers). Let f;;: U;; — V;;; with
I e Nand|j| < j(i), j(i) —i oo; be polynomial-like maps iP°(Cq, Cp)
such that there existssatisfying
fi+1i = R*(fj;), wherea < k.
Then we can select a subsequencich thatf; ;, — f,-,oo,. wheref,, = (fj )
is a tower inT,(Cy. k, Cy). If Vi1 C Uj;, thenfy, € Tn'"*(Cy, k, Cy).
Proposition 7.4 (Constructing conjugacies)Let
fj,i : Uj,i —> Vj,i and ﬂ, : Uj,i — \7“

with |j| < j(i), be as in the previous lemma. Let: C — C be C-quasi-
conformal maps so that:

* h; is a hybrid conjugacy betweef) ; and f}i, for|j| < j(),

s hi(Uji) =Uj,;.

Then we can select a subsequencsuch that

(fiiohii=ido and (fii)iji<jao
converge to bi-infinite towers, and f., and h;, converges to a conjugacy be-
tween these towers.

Fix a bi-infinite fine towerf =< f; >z in Tn "*(Cy, k, C,). Denote byP
the postcritical set of;. DefineQ; = ffl(P.). LetP =U; P.

Lemma 7.1. Suppose that € U; with fij(2) € Vi — B.. Then

| /@ ”cfp,cfp > 1

Proof. Sincef;: Ui — Qi — V; — P, is a covering map

I fi/(z)”Ui—Qi,\/i—P. =1
and furthermore
”iUi—Qi’Vi—Pl HUi*Qi,Vi*PI <1
we obtain
1@y pyp > 1
Since the hyperbolic metric iN; — P, converges to the hyperbolic metric in
C — P, we obtain the lemma. O
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Lemma 7.2 (Strict expansion([McM2])). There exista = A(Cq, C,) > 1with
the following property: Let € U; be such thatf;(z) € V; — U;. Then

[ff@lcp =2

Proof. We sketch the McMullen’s proof: Considgr< i. We havef; = fja,
for somea > 0. so

[ @ -2, ppy 5, = L

Sincez fi‘l(\/i — Uj), by the inclusion contraction lemma (proposition 4.9 in
[McM2)):

i t-an/ _py v _p: <CD) <1
H fj a(VJ_PJ)’VJ_PJ HUifQi,ijpj - ( )

Itfollows that| f/(z) |, _, = A(D). Now tis suffice to observe that, _p, —
PC—P- 0

Leti < j be such thary € Uj — J(f;). Considert,, withi < £ < j, such
that . .

f;z o fetiJrll 0---0 fjtj:ll (¢} fjtj () € V, — U,

Let Abe a simply connected domainih— P, which containgy = f* ‘o f,% o
-ofi ot (2). Notethatf, o f,\to- -0 f ! Jof = £27L forsomen, and
sothere exists a simply connected domasuch thaiz, € Aand ff’“1 restrictsto
Ais an univalent map whose imagéfssincef?™: @Y —P) > Vi—P,
is a covering map.

The following resultis the main key in proof of density of the Julia set of a tower
and, in fact, it is an old trick: to study a dynamical system with singularities, it

is useful to find expansion and distortion control in a dynamics induced by the
original dynamics:

Proposition 7.5. In the conditions described above, the following holds:

(1) Uniform expansion: We have:
[P @ |e_p = 27
(2) Distortion control: lfdiamy, g (A) < D then

Lo,
S = [o* iz

< C(D),

forz;, 2z € A.
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Proof. The first statementis animmediate consequence of lemmas 7.1 and 7.2.
For the second statement, note tfiat*(z) € f,"*(V; — U;). The map

e M -R) > Vi- R

is a covering map, witf,” @Y (V; — P) c V, — P, thus we can apply corol-
lary 8.4(twice) to obtain 2 (Note th& — P, andC — P areM (C;, C,)-uniform
domains). O

Our distortion control is stronger than the similar statement in McMullen book
because we are using that the geometry of postcritical set is bounded in more
points in the proof.

Corollary 7.1. Letf be atowerinZ,(Cy, k, C). Thenthe sel(f) = Uiz J(f))
is dense irC.

Proof. By Proposition 7.1, we can assume thas fine. Letz be a complex
number which is not contained ih(f). Thenzis not in J(fy) for sufficiently
smallk. Letky be maximal such that € Uy,. For each smak > ko let a(k)

be minimal so that 2% (z) e (Vi — Uy) and lety be the minimal geodesic
betweenf® (z) and J(f) in Vi — P.. The hyperbolic length ofy is smaller
thanD, whereD is as in lemma 5.6, sincék‘l(Pk) c J(fy). By the previous
lemma, the length of the liff = f, "1y in the hyperbolic metric of — P goes
exponentially fast to zero, whenk goes to infinity. Since the end points jaf

arez and a point in the Julia set, we finished the proof (recall that the hyperbolic
metric inC — P is p(x)|dz|, wherep(X) is comparable with Adist(x, P)). [

Definition 7.2. Let A ¢ C. We say thar is a §-deep pointof A if there exists
C so that, forz € C, dist(A, 2) < Cdist(z, 2)1*?;

We can use a similar argument as in [McM2] to infinite towlets< i >jeyn
to obtain statements as lemmas 7.1 and 7.2 and proposition 7.5, replacing the
hyperbolic manifoldC — P by Vg — P(fp). This is useful to prove:

Corollary 7.2. The critical point0Oof f € P°(Cy, Cy) isasd(Cy, C,)-deep point
of J(f).

Proof. By Proposition 5.5.6, the renormalizations have extensiBhs$ :

Uk — vk e P®(C, Cy). Letx be a complex number close to 0. We can find
k > —C In||x|, with C = C(C4, C,), such tha € UK. We can assume that

is notinJ(f). By the same argument as in the previous corollary

disty_p(r)(x, J(f)) =C Ak < C|x’
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Since the hyperbolic metric M — P(f) is p(x)|dz], wherep(X) is commensu-
rable with /dist(x, P(f) U dV), itis easy to see that the Euclidean length of
the minimal hyperbolic geodesic betweeandJ ( f) is bounded by |x|**%. O

Corollary 7.3 (Rigidity). The towers in7 (Cy, k, C,) does not support non
trivial invariant Beltrami fields.

Proof. Letu be an invariant line field to the towér BecauseK ( fj) does not
support invariant line fields, it is possible select a paint C — K (f) whereu
is almost continuous. This means

im (421 12— 20l <dand|u@) — p(zo)| <€) _
5—0 L{z: |z— 20| < 8)) -

1

Here? is the Lebesgue measure@ SinceJ(f) is dense and by small Julia
sets everywhere theorem, for aay> O there exists a polynomial like map
O.: V§ = V, so that:

* The mapg,: V{ — Vy belongs toF (f;), for somei (indeed, for any
small enough);

* The mapg, : V{ — V5 belongs taP,(C(Cy, Cy));

* diam(J(Qw)) ~ o;

¢ dist(zo, J(Q)) < C(C1, C) - @.

Sinceu is invariant by these maps, normalizigg so thatdiam(J(g,)) = 1,
we can select a subsequence which converges to a polynomial like map which
preserves a straight line field. This is impossible. O

Leto = (oo, 01, ...) be a sequence of m.c.d. We will denote B§(o) the
bi-infinite sequence
("'7&—1,&0a&l"")
wheres; = o fori > —k. Fill the other positions in the sequence in an
arbitrary way (we are interested in convergent subsequenc&(efy when

k — oo in the space of bi-infinite sequences. Thus the other positions are not
important for us).

Corollary 7.4. There exists an unique bi-infinite towgy in 7,,(C, 1, C,) with
C-bounded combinatorics

o = (""0—270—17007017029"')
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Here uniqueness means thagjindg are bi-infinite towers with same combina-
torics then the germg andg; are the same (up to an affine conjugacy). Further-
more there exist€;(C) such that the germg; has a representatiog : U' — V'
which belongs t&’;°(C, C,). Notice thatC; does not depend an.

Proof.

Existence: Select a real infinitely renormalizable polynomigd of type n

with combinatoricss = (69, 61, . . .) S0 that for anyC-bounded combinatorics
there exists a sequenkesatisfyingRk (6) — o. Using the complex bounds,
select, for renormalizations deep enough, polynomial like representations in
P (C, C(f)). Then the finite towek g;; >j <k defined by

gji = R¥" pg

has a subsequence which converges to a bi-infinite towdr, (€, 1, C,(f))
with combinatoricsr.

Uniqueness: Let f and g be bi-infinity towers in7,(Cy, 1, C;). Since
g:U% - vPandf: Uif — \/if have the same combinatorics, there exists
oneC(Cy, Cy)-quasiconformal magp; : C — C which mapsUif in Uig anditis
a conjugacy betweefiy andg; in Uif. Wheni — —oo we have\/if — C. Thus
¢; admits a convergent subsequence to some quasiconformap m@p—> C.
This map is a conjugacy between the tofand the towef, whereg; is equal
to g; restricts tap(uif). Since the Beltrantield g—f; is invariant by the towef,
the rigidity of towers implies thap is conformal. Thus, up to affine mapsis
the identity. O

LetV be adomainirC. denote byB(V) the Banach space of the holomorphic
functions defined itv and with a continuous extensitmV. Denote byA:°(C)
the set of germg in some level (and hence in the level 0) of a bi-infinite tower
in T,(C, 1, Cy), for someC;. Apart the rate of contraction, the main theorem
was reduced to

Theorem 3 (Contraction of renormalization). There exist$ = §(C;) with
the following property: For any > O there existsjg = jo(Cy, Cy) so that
if f e AF(C)andg € P°(Cq, Cy) are polynomial like maps with same
combinatorics then, fof > jo:

 The germR! (g) belongs taP°(Cq, C3). HereCs = C3(Cy).
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« The renormalization®! ( f), R/ (g) belong toB(5-K (R! (f))), for j > jo
and ‘ ‘
IRI(f)(@ - R (@)@ <e

for z € 5-K(RI(f)).

Proof. Sincef e P°(Cq, C(Cy)) there exists & (Cy)-quasiconformal con-
jugacy¢ betweenf andg. NormalizingR! (f) andR! (g) so thatR! (f)(0) =

1 = RI(g)(0), we obtain quasiconformal conjugacigsso thatg; (0) = 0 and
¢;j(1) = 1. We claim thatp; converges uniformly in compact sets to identity.
Indeed, suppose by contradiction that there exist sequences offinapdg;,

fp € A°(C) andg, € P (Cq, Cy), with same combinatorial type so that the
corresponding conjugacigs , does not converge in an uniform way to identity:
in other words we can seleet> 0 so thatlg;, ., (2) — z| > ¢, for somez € C

and with j; — oco. But lemma 7.3 and proposition 7.4 say that a subsequence
of ¢;, ¢, converges to a conjugacy between two bi-infinite towers, which do not
support invariant line fields, so this conjugacy is a conformal map, hence it is
the identity, which is a contradiction. Sindee P;°(C;, C(C1)), we can select
representation&®*(f): UX — VK which belongs taP(Cy, C(Cy)) and fur-
thermore they are restrictions of iteratesfof This is possible fok > ko(C»).
ThenR¥(g): UX — VK whereUk = ¢(U¥) andVk = ¢(V¥), is a representa-
tion of R¥(g). Since 3-K (R¥(f)) c VX, for somes = §(Cy), ande; is close

to identity, one gets-K (Rk(g)) c V¥ for k > k;(Cy, C,). By lemmas 4.1 and
4.4, R(g) € P°(Cy, C3(Cy)), which proves the first statement. To prove the
second one, note thatK (R¥(f)) c VK and(8/2)-K (R¥(g)) C §-K (R¥(f)),

for k > kx(C,). By corollary 4.3R¥(g): RX(g)"(V¥) — RX(g)""1(VK) is

a representation iB(5-K (f)), wheren = n(5/2, C3). Since¢; converges to
identity, uniformly in compact sets, and the diametes-d€ (R*(f)), after the
normalizationR¥( f)(0) = 1, is bounded, the proof is finished. O

7.2 Exponential Contraction

The exponential contraction of the renormalization operator in the hybrid classes
of the infinitely renormalizable quadratic-like maps with bounded combinatorics
was proved by C. McMullen ([IMcM2]). Indeed, McMullen’s argument is quite
general, and it was successfully applied for certain results about Kleinian groups
(IMcM2] and critical circle maps ([dFdM]). LeH? be the hyperbolic space
and identify the Riemann sphe§ with its ideal boundary. 1K is a subset

of the Riemann sphere, denote byl (K) the convex hull of the set of points
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in H2 contained in geodesics which arrive in both directions in a poiri of
Furthermore, given a quasiconformal vector fielth S?, we said thaw is a
quasiconformal deformation of a polynomial like mapf if dv is invariant by
f. For a continuous vectarin S?, define thevisual distortion Mv: H® — R*
by

Mu(p) = 5iur)lfollv — wl[oo(P)

Here|| - || (p) denotes the visual metric at poipt(see [McM2]). The visual

distortion measure the distancewdf the conformal vector fields. For instance,

SUPyersMu(p)

is finite if and only ifv is a quasiconformal vector field on the Riemann sphere.
For anintroduction of quasiconformal vector fields, visual distortion and it prop-
erties, see [McM2]. The following result is the main tool to prove the Dynamic
Inflexibility Theorem in our setting:

Main Lemma 7.1. For any Cy, C, there exists (Cy, C,) with the following
property: letf € P3°(Cy, Cy) and letv be a quasiconformal deformation éf
Furthermore assum&(p, r) c hull(K(f)). Then

1
Muv(p) < ESqueS(p,r)MU(Q)

Proof. The proof will be exactly as in lemma 9.12 in [McM2], with some
small modifications to avoid technical definitions: Suppose, by contradiction,
there exist sequences— oo, vi, pi € C and f; € P°(Cy, Cy) so that

* S(pi, ri) C hull(K(f;)),
e Muvi(p) > 1/2,
° Supqu(pi,ri)MUi (q) < 1

We can assume thag, = p. ThenS(p,ri) C hull(K(f)), withr; — oo,

which implies that, for alz € C ande > 0, distz(z, K(fi)) <€, ifi is large
enough. In particular, by small Julia sets everywhere theorem, forz anyC
andd > O there exists a sequence of polynomial-like mgpsU; — Vi, fori

large enough, so that

* g € F(f),
* g € Pn(C),C =C(Cyq, Cy),
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e diamK(g)) ~ d,
* distgya(z, K(gi)) <Cd.

Becaussupesp.riyMvi(Q) < 1, withr; — oo, we canassume thatthe sequence
vi, up to sums with conformal fields in the Riemann sphere, converge uniformly to
aquasiconformal vectar,. Moreowerdv; — dv. as distributions. In particular
oo = OV IS iNvariant by any limit of the sequencp. Sinced is arbitrary,

we obtained polynomial-like maps close to each point in the complex plane, in
any scale, which keeps,, invariant. We claim thatt,, = 0. Otherwise, select

z a point of almost continuity of..,. Henceu, is almost a straight Beltrami
field near taz, which is impossible since there are polynomial-like maps (which
form a compact family after conjugacies by affine maps) in all scales sp.that

is invariant for them. But this is a contradiction, singl; (p) > 1/2 implies
Mvs(P) > 1/2, SO # 0. O

Theorem 4 (Exponential contraction). Let f € A>°(Cy) and letg be a map
in P3°(Cyq, Cy) with the same combinatorics thét There exisky = ko(g) and
8 so thatR¥(g) € B(8-K (f)), for k > ko and furthermore

IR“(f)(2) — RY9)(2)| < X

forz € §-K(f) anda < 1. Here§ anda depends only of;.

Proof. By the dynamic inflexibility theorem ([McM2]), iip: C — Cis a
K -quasiconformal conjugacy betwedn U — Vs andg: Ug — Vg, f, g €

P(Cq, Cp), with ¢(U¢) = Ug theng is C1+#-conformal at 0. It is not difficult
to verify in the proof of dynamic inflexibility theorem that

B = B(K,1r(Cyq, Cp),8(Cq, Cy))

Herer is as in the previous lemma. Note that we can sejestich thatk =
K(C4, C,). Hencep satisfies

¢ (X) = ¢'(0) - x + O(|x|**#)

Sincediam K(R¥(f)) < C - Ak for someC > 0 andx < 1, after normalize
RK(f) so thatRK(f)(0) = 1 = RX(g)(0), ¢ define a conjugacyy satisfying

Pk(X) = X + O

for somex < 1. Using arguments as in theorem 3, the proof is finished.(d
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8 Appendix
8.1 A fixed point theorem

The following fixed point theorem was proved by de Melo and van Strien
([dMvS]) whenK is a simplex.

Proposition 8.1 (de Melo-van Strien fixed point theorem [dMvS]).LetK be
a bounded closed convex body in a finite dimensional normed linear space and
letT: int K — int K be a continuous function such that

TOO —x|

W TA 15
x—aK dist(x, IK) (15)

ThenT has a fixed point in inK.

The proof of de Melo-van Strien can be generalized to convex bodies using
the following result: LetK; andK, be two bounded closed convex bodies in a
finite dimensional normed linear space. The radial projeatiorK; — K is
defined by (1) (0) = (0) (2) If x;, i = 1, 2 are the unique points such that a ray
beginning at 0 cross&K; theng (AX1) = AXp, for A > 0. Then

Lemma 8.1 (Sz.-Nag§ Klee Theorem: [K]). The radial projection between
K1 and K3 is bi-Lipschtizian.

8.2 Hyperbolic domains on the plane

Let Q2 be a hyperbolic domain on the plane argd z| its hyperbolic metric. For
z € Q, define

1z—a|

b_al |:a,bedQ;|z—al =dist(z, 9Q)}

Ba(2) = inf{llog

To compare the Euclidean and hyperbolic metri€hnve will use the following
Beardon-Pommerenke results:

Proposition 8.2 ([BP]). There exists a constaft, with does not depend dn,
such that
1 1 1 C+mn/d
. < pa(2) < =
2./2dist(z, 9Q2) dist(z, 92) C + Ba(2)

In this proposition and in the following lineslist(x, y) anddiam(A) are
distances and diameters with respect to the Euclidean meti(e, amd, if M
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is a hyperbolic planar domain, thehisty (x, y) anddiamy (A) are distances
and diameters with respect the hyperbolic metridvf An annulusA c Q2 is
essential if the bounded component®f A contain points ird 2.

Corollary 8.1 ([BP]). The following holds:

» If Q is a hyperbolic domain whose any essential annulus has modulus
bounded byM, then there exist€ (M) such that

! < pad < C (16)

C dist(z, 90 dist(z, 9Q)

Forall ze @;

* If (16) holds, then there exidfl (C) such that any essential annulus has
modulus bounded biyl.

The domains satisfying the hypothesis of the previous corollary will be called
M-uniform domains. Observe that i€2 is a uniform domain with maximum
essential modulus bounded B and D is a simply connected region in the
plane, therD N Q2 is also a uniform domain with the same bound for the maximal
essential modulus.

Proposition 8.3. Lety be a Jordan curve in ¢ -uniform domairlJ with length
¢ < {5 in the hyperbolic metric df) and letD be the bounded region i — y.
Then

Ci(M, £y)diam(D naU) < dist(y, DNaU) < Co(M)diam(D nau)

Moreover
diam(y) < Cy(¢1, M)diam(D N aU)

Proof. Note that
dist(y, DNnouU) < Co,(M)diam(D naU)

otherwise there will be a large essential ring th. Denoted = (1 +
Cypdiam(D naU) and fixA > 1. Select an arbitrarg € D N dU and define

An = {x € C: A"d < dist(x, 2) < A"1d}
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Letae € U N Ay, n > 1, be acurve which touch both components 8f,. Then
the Euclidean length af is at least." (A — 1)d and, if p|dZ is the hyperbolic
metric onU then

AN (—1)d
Ezﬁ Py @)y )]t

AN(a—1)d 1 1
CM dt> (1— 2)d
= C( )/0 disty®.pnauyt= ¢T3

which proves the lemma. If the diameter jofis large relative to diameter of
D N aU theny crosses many ring8,, so its hyperbolic length is large, which
is impossible. To obtain the lower bounddost(y, D N dU), notice that

dist(x;, 02
chmm—%fJ>
i<N
for somex; in y andN = N(£1, M). Itis easy to see that
diam(y) < C(N)dist(x;, 0R2),

forany i. Sincediam(y) > diam(@d2 NU), the proof is complete. O

Remark 8.1. The previous lemma will be used in the following situation: Let
f: U — V be an infinitely renormalizable polynomial-like map of typeith
bounded combinatorics. Then the postcriticalBés a Cantor set with bounded
geometry and hendé— P is aM-uniform domain. Furthermore, the hyperbolic
length of the closed geodesics\¥h— P is under control. Thus we can apply
lemma 8.3 for these geodesics.

The following proposition is a kind of Koebe lemma figr-uniform domains:
the proof is easy.

Proposition 8.4.Let f : U — Q, be a covering map so that
e Q5 is aM-uniform domain;
e The domairlJ is contained in aM-uniform domairt2;.

If A is a simply connected domain insitk and A is a connected component of
f~1(A), then
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and /
1 f @

CT If@la. o, —
for z;, z, € AandC = C(M, diamg, (A)).

8.3 Quasiconformal mappings

We say that a Jordan curvd C C is a C-quasicircle if there is a
C-quasiconformal magp on the Riemann Sphere such tiggS') = C.

Lemma 8.2. Lety: D — D be aC;-quasiconformal map and,y € D
vyith disty(x,y) < D. Then there exists €,(Cy, D)-quasicpnformal map
¥ : D — D which coincide with/ in a neighborhood of* and vy (x) = y.

Proof. It follows of lemma 5.2.3 in [GS] or the moving lemma at pg. 288 in
[L1]. O

Proposition 8.5. Let J be aC;-quasicircle andk a point in the bounded domain
in C — J such thatdist(x, J) > ~ediam(J).~Then there e>~<ists €,(Cyq, §)-
quasiconformal mapn the plane such thatp(SY) = J and¢(0) = x.

Proof. Assume, without loss of generality, thditam J = 1. Consider &;-
quasiconformal majin C such thatp(Sh = J. After a composition with a
Moebius transformation which preserves the circle, we can assumg(tkgt=

oo. Furthermore, after translate and rotdteve can assume that(0) = 0 and
¢(1) = 1. Since the set of€;-quasiconformal maps on the plane such that
$(0) = 0 and¢ (1) = 1 is compact, there exisés> 0 such that fom, b € D,
|a—b| < § implies|¢p (@) — ¢ (b)| < €. In particulardist(¢—1(x), S') > 8. By

the previous lemma, we obtainGy(C, §)-quasiconformal mag on the plane
which is equal tap outsideD and¢(0) = x. O
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