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Milnor numbers and Euler obstruction*
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Abstract. Using a geometric approach, we determine the relations between the local
Euler obstruction Eu of a holomorphic functionf and several generalizations of the
Milnor number for functions on singular spaces.
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1 Introduction

In the case of a nonsingular ger@X, xg) and a functionf with an isolated
critical point atxg, the following three invariants coincide (for (c), up to sign):

(a) the Milnor number off atxy, denotedu(f);
(b) the number of Morse points in a Morsification bf

(c) the Poincaré-Hopf indexf grad f at Xo;

This fact is essentially due to Milnor’s work in the late sixties [Mi]. There

exist extensions of all these invariants to the case wiemry) is a singular germ,

but they do not coincide in general. One of the extensions of (c) is the Euler
obstruction off at xy, denoted Eu(X, Xo). This was introduced in [BMPS];
roughly, it is the obstruction to extending the conjugate of the gradient of the
function f as a section of the Nash bundle(@f, xg). It measures how far the
local Euler obstruction is from satisfying the local Euler condition with respect
to f in bivariant theory. It is then natural to compareEX, Xg) to the Milnor
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number off in the case of a singular gergX, xg). This has been also a question
raised in [BMPS].

The main idea of this paper is that, for singuldr the Euler obstruction
Eus (X, Xg) is most closely related to (b). We use the homological version of
the bouquet theorem for the Milnor fiber given in [Ti], which relates the con-
tributions in the bouquet to the number of Morse points. Through this relation,
one may compare EuX, Xg) to the highest Betti number of the Milnor fiber
of f. In caseX hasMilnor’'s property, the comparison is optimal and yields a
general inequality, see §3.1. We further compare ([ u Xo) with two different
generalizations of the Milnor number for functions with isolated singularity on
singular spaces, one due to [L&3], the other to [Go, MS] for curve singularities
and to [IS] for functions on isolated complete intersection germs in general. In
case when the gerigX, Xp) is an isolated complete intersection singularity, we
use in addition the GSV-index of vector fields [GSV] to completely determine
the relations between E0X, Xg), the Milnor number off and the GSV-index
attached tof .

2 Euler obstruction and Morsification of functions

Let (X, Xo) denote the germ at some poixg of a reduced pure dimensional
complex analytic space embeddedGfY, for someN. Consider a Whitney
stratification W of some representativ of (X, Xg).! Let Wy be the stratum
containingxo and letW, ... Wy be the finitely many strata oX havingxo in
their closure, other thaip. Such a Whitney stratification is not unique, but
there is a unique “most economical’ one (having maximal strata, in the sense
of inclusion of strata) by results of Mather and Teissier. We shall not need here
this unique stratification, we just fix any Whitney stratificatiovi. Once we
have fixed the stratification, its germ>atdoes not depend on the choice of the
representative oK. The next definitions (of general functions, resp. functions
with singularity) will depend on the the chosen stratification but not on the local
embedding in a nonsingular space.

Let us denote by : (CN, xo) — (C, 0) some extension of .

Definition 2.1. (Lazzeri '73, Benedetti '77, Pignoni '79, Goresky-Mac-
Pherson '83 [GM, p.52]). One says thaf : (X, Xo) — C is ageneral function
if dFy, does not vanish on any limit of tangent spaces\o Vi # 0, and to
Wo \ {Xo}. One says thaf : (X, xg) — C is astratified Morse function geriift

Iwe shall use throughout the paper the notatiofor some representative of the geti, Xg).

Bull Braz Math Soc, Vol. 36, N. 2, 2005



MILNOR NUMBERS AND EULER OBSTRUCTION 277

dimW, > 1, f is general with respect to the straté, i % 0 and the restriction
f|WO : Wy — C has a Morse point axo.

We have emphasized the special role of the dimensiddfy the following
reason: if dim\y = 0 (which meand®\Vy = {Xg}) then general functions on the
germ(X, Xp) do exist, whereas Morse functions do not.

Let us recall some definitions and notations from [BMPS]. The complex
conjugate of the gradient of the extensiBrprojects to the tangent spaces of
the strata ofX into a vector field, which may not be continuous. One can make
it continuous by “tempering” it in the neighborhoods of “smaller” strata. One
gets a well-defined continuous stratified vector field, up to stratified homotopy,
which we denote by gragdf. We shall call it brieflythe gradient vector field

Let now f : (X, xg) — C be a function withisolated singularity ak, with
respect to the stratification. This means by definition that is a general
function at any poink # X of some representatl\bé of the germ(X, Xp). Then
grady f hasanisolated d zero =g. If v: X — Xisthe Nash blow- up oK andT
is the Nash bundle ovéX, then grag f lifts canonically to a never-zero section

grad, f of T restricted toX N v=1(X N S.), whereS is a small enough sphere
aroundxg, given by Milnor's result [Mi, Cor. 2.8]. Following [BMPS], the
obstruction to extengj?a_ax/f without zeros throughout (X N B,) is denoted
by Eu; (X, Xo) and is called théocal Euler obstruction off .

Example 2.2. If the germ(X, Xp) is nonsingular, then the Nash blow-up of
the representativiX can be identified tX itself, the Nash bundle is the usual
tangent bundle oK and Eu (X, Xg) is, by definition, the Poincaré-Hopf index
of grad, f atxp. From [Mi, Th.7.2] one deduces: EUX, Xg) = (—1)4Mc Xy,
whereu is the Milnor number off . It is also easy to prove (see [BLS, BMPS])
that if (X, Xg) is any singular space bdtis a general function germ ag, then
the obstruction Eu(X, Xg) is zero.

We claim that a natural way to study Eis to split it according to a Morsi-
fication of f. We prove the following general formula for holomorphic germs
with isolated singularity:

Proposition 2.3. Let f : (X, X9) — (C, 0) be a holomorphic function with
isolated singularity akg. Then
Eur (X, Xo) = (—1)"™ %y,

whereqy is the number of Morse points Ol = Xieqin @ generic deformation
of f.
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Proof. We Morsify the functionf, i.e. we consider a small analytic deforma-
tion f, of f such thatf; only has stratified Morse points within the b&land
it is general in a small neighborhood xf. (See, for instance, the Morsification
Theorem 2.2 in [L&2].)

Sincef, isadeformation of , it follows thatgrag, f ishomotopictogragd f;
over the spher& N 9B, so the obstructions to extend their liftsito!(X N B)
without zeros are equal.

On the other hand, the obstruction corresponding togrfads also equal to
the sum of local obstructions due to the Morse point§ofLemma 4.1 of [STV]
shows that the local obstruction at a stratified Morse point is zero if the point
lies in a lower dimensional stratum. So the points that only count are the Morse
points on the straturnX,eg and, at such a point, the obstructior(is1)dmc X as
explain above in Example 2.2. O

Remark 2.4. The Euler obstruction is defined via the Nash blow-up and the
latter only takes into account the closure of the tangent bundle over the regular
part Xeg. Since the other strata are not counting in the Nash blow-up, it is
natural that they do not count for EUX, Xo) neither. The numbet, does not
depend on the chosen Morsification, by a trivial connectedness argument. We
refer to [STV] for more abouk, and other invariants of this type, which enter

in a formula for theglobal Euler obstructiorof an affine varietyy ¢ CN.

Remark 2.5. The numbetk, may be interpreted as the intersection number
within T*CN between & and the conormdly . Therefore our Proposition 2.3

may be compared to [BMPS, Corollary 5. 4] WhICh is proved by using different
methods. J. Schirmann informed us that such a result can also be obtained using
the techniques of [Sch].

3 Milnor numbers
3.1 Lé&'s Milnor number

Lé D.T. [L&3] proved that for a functiofi with an isolated singularity af € X

(in the stratified sense) one has a Milnor fibration. He pointed out that, under
certain conditions, the space has “Milnor’s property” in homology (which
means that the reduced homology of the Milnor fiberfols concentrated in
dimension dimX — 1). Thenthe Milnor number.( f) is well defined as the rank

of this homology group. By Lé&’s results [L&3], Milnor’s property is satisfied
for instance if(X, Xg) is a complete intersection (not necessarily isolated!) or,
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more generally, if rHd X, Xg) > dim(X, Xg), where rHd(X, Xo) denotes the
rectified homology deptbf (X, Xo), see [L&3] for its definition originating in
Grothendieck’s work.

To compareu( f) with Eus (X, Xo) we use the general bouquet theorem for the
Milnor fiber in its homological version. La¥; andM, denote the Milnor fiber
of f and of a general function Let f : (X, Xg) — (C, 0) be a function with
stratified isolated singularity and let be the set of stratified Morse points in
some chosen Morsification df (by conventionxg ¢ A). Then by [Ti, pp.228-
229 and Bouquet Theorem] we have:

H,(M¢) =~ H, (M) @ ®iea He_k+1(C(F), F) 1)

where, forg; € A, F denotes the complex link of the stratum to whigh
belongsk; is the dimension of this stratum a{F;) denotes the cone ovéy.

In particular, ifthe gerniX, Xp) is a (singular) complete intersection (and more
generally, if tHA(X, Xo) > dim(X, Xo)), then:u(f) = () + >, 5 ii, where
wi = rankHgimx—k (C(Fi), F). This result shows that the Milnor number
w( ) gathers information from all stratified Morse points, whereas(Eu Xo)
is, up to sign, the number; = #Ao, whereA, denotes the set of Morse points
occurring onXq (See Proposition 2.3 above). Notice that we haweC A,
ud)y =0, ui =1ifi € Apandu; > 0ifi € A\ Ao. We therefore get
the general inequality, whenever the spachas Milnor’s property (e.g. when
(X, Xo) is a complete intersection, not necessarily with isolated singularities),
and therefore the Milnor-L& number dfis well defined:

() = (=) XEu¢ (X, Xo). (2)

Incasq X, Xg) is acomplete intersection with isolated singularitg1S for short,
from the discussion following (1) we get the equality:

Eus (X, Xo) = (=)™ X[ (f) — p()]. 3)

Stillin case(X, Xg) is an ICIS case, the relation (3) also shows that the inequality
(2) is strict, provided that is actually a singularity oK. Indeed, in this case we
haveu(l) > 0, which can be proved using Greuel’s results for ICIS in [Gr], in
particular his remarks on p. 264 after Proposition $¢,cit. Let us also point
out that for certain complete intersectiof¥s, Xo) with nonisolatedsingularity
one might have the equality(l) = 0 (for instance in case of equisingular
hypersurfaces).
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3.2 Another Milnor number

A different generalization of the Milnor number is due to V. Goryunov [Go], D.
Mond and D. van Straten [MS]. This is originally defined for functions on curve
singularitiesX ¢ CN, and we referto [MS, p.178] for the precise definition. This
number is preserved under simultaneous deformations of both the Xpaoe

the functionf. Thus, if the curve singularityX, xp) is a complete intersection
with isolated singularity (ICIS), defined by some applicatgpn(CP+1, xg) —

(CP, 0) on an open setitP*!, andF is an extension of to the ambient space,
thenug () counts the number of critical points (with their multiplicities) of the
restriction ofF to a Milnor fiber ofg, sayX; = g~1(t) for some regular value

of g. This makes sense for higher dimensional ICIS too and is equivalent to the
fact thatus(f) is the Poincaré-Hopf index of the gradient of the restrictqn.

In other words, this is saying that; (f) is theGSV-indexf the gradient vector
field of f on X (the genuine gradient, not the conjugate of it as we have used
up to now). We recall that the GSV-index of a vector fieldn an ICIS(X, Xp),

as defined in [GSV, SS], is the Poincaré-Hopf index of an extensientothe
Milnor fiber X;.

We may notice that, for an ICIS, the invariging () equals thevirtual mul-
tiplicity at xo of the function f on X introduced by Izawa and Suwa in [IS]
and denotedn( f; xo). This multiplicity is by definition the localization ag
of the top Chern class of the virtual cotangent buntif¢X) of X defined by
the differential of f, which is non-zero orX \ {Xg} by hypothesis. The virtual
multiplicity has the advantage of being defined even if the singular sktief
non-isolated (we refer to [IS] for details).

The invariantug(f), in case of an ICIS, also coincides with the index of the
1-formdgdefinedin [EG] and itis similar to the interpretation of the GSV index
of vector fields given in [LSS] as a localization of the top Chern class of the
virtual tangent bundle.

One can find the relation betwegg (f) andu (f) in case(X, Xg) is an ICIS,
by using Greuel’s [Gr, Lemma 5.3], as follows. LetX, xg) be the Milnor
number of the ICIS X, Xg) and letf be some function with isolated singularity
on (X, Xg). Then:

pe(f) = u(f) + u(X, Xo).

Using (3) we get:

Eus (X, Xo) = (=)™ *[uc(f) — us)]. (4)
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These equalities completely clarify the relation between(&u o), the GSV-
index and the Milnor number of, in terms of the Milnor number of the ICIS
(X, Xo).

4 Further remarks

Itis proved in [BMPS], using [BLS], that one has:

q
Eur (X, Xo) = Y _[x(M(, X0) NW) — x(M(f, Xo) N W)] - Eux (W),  (5)
i=0

whereM (f, Xg) and M (l, Xo) denote representatives of the Milnor fibers fof
and of the generic linear functidnrespectively. Combining this relation with
Proposition 2.3 one gets:

q
D I (M1, %) N W) — x (M(f, X0) N W] - Eux (W) = (—1)%™ Xayg.
i=0

Example 4.1. LetX = {x>—y? =0} x C c C3andf be the restriction tX
of the function(x, y, z) > x+ 2y + z2. Takexo := (0, 0, 0) and take as general
linear function the restriction toX of the projection(x, y, z) — z. ThenX has
two strata:Wp = thez-axis, W; = X \ {x = y = 0}. We compute Eu(X, Xo)
from the relation (5).

First, M(l, Xo) N W is one point andM ( f, xg) N Wy is two points. Next,
M, Xo) "W, is the disjoint union of two copies @* andM ( f, xo) "W, is the
disjoint union of two copies of**, whereC* is C minus a point and** is C
minus two points. Then formula (5) gives: HWX, Xg) = (1 — 2) - EU(X, Xg) +
0—-(-2)- 1.

We have E@X, Xg) = Eu(XN{l = 0}, X0). Next EUXN{l = 0}, Xp) isjustthe
Euler characteristic of the complex link of the slé& {| = 0} = {x>—y? = 0}.

This complex link is two points, so EX N {I = 0}, Xo) = 2. We therefore get
EUf (X, Xg) = 0.
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